2004 Paper 9 Question 15

Denotational Semantics

- (a) Show that any continuous function $h: D \to D$ on a domain D has a least prefixed point fix(h). [5 marks]
- (b) Let $f: D \times E \to D$ and $g: D \times E \to E$ be continuous functions where D and E are domains. The continuous function $\langle f, g \rangle : D \times E \to D \times E$, acts so that $(d, e) \mapsto (f(d, e), g(d, e))$. Bekič's theorem states that the least fixed point of $\langle f, g \rangle$ is the pair (\hat{d}, \hat{e}) where

$$\hat{d} = fix(\lambda d. f(d, \hat{e})) \text{ where}$$
$$\hat{e} = fix(\lambda e. g(fix(\lambda d. f(d, e)), e)) .$$

You are asked to show Bekič's theorem in the following stages. Write (d_0, e_0) for the least fixed point of $\langle f, g \rangle$.

- (i) Show that (\hat{d}, \hat{e}) is a fixed point of $\langle f, g \rangle$. Deduce that $(d_0, e_0) \sqsubseteq (\hat{d}, \hat{e})$. [5 marks]
- (*ii*) Show the converse, that $(\hat{d}, \hat{e}) \sqsubseteq (d_0, e_0)$. [10 marks]