2004 Paper 8 Question 15

Denotational Semantics

- (a) The function fix is the least fixed point operator from $(D \to D)$ to D, for a domain D.
 - (i) Show that $\lambda f. f^n(\perp)$ is a continuous function from $(D \to D)$ to D for any natural number n. [Hint: Use induction on n. You may assume the evaluation function $(f,d) \mapsto f(d)$ and the function $f \mapsto (f,f)$, where $f \in (D \to D)$ and $d \in D$, are continuous.] [7 marks]
 - (ii) Now argue briefly why

$$fix = \bigsqcup_{n \ge 0} \lambda f. \ f^n(\bot) \ ,$$

to deduce that fix is itself a continuous function. [3 marks]

- (b) In this part you are asked to consider a variant $\mathbf{PCF_{rec}}$ of the programming language \mathbf{PCF} in which there are terms $\mathbf{rec} \, x : \tau . t$, recursively defining x to be t, instead of terms \mathbf{fix}_{τ} .
 - (i) Write down a typing rule for $\operatorname{rec} x : \tau . t$. [2 marks]
 - (*ii*) Write down a rule for the evaluation of $\mathbf{rec} x : \tau. t$. [2 marks]
 - (*iii*) Write down the clause in the denotational semantics which describes the denotation of $\mathbf{rec} x : \tau. t$. (This will involve the denotation of t which you may assume.) [3 marks]
 - (*iv*) Write down a term in $\mathbf{PCF}_{\mathbf{rec}}$ whose denotation is the least fixed point operator of type $(\tau \to \tau) \to \tau$. [3 marks]