2003 Paper 5 Question 7

Artificial Intelligence I

The following Prolog relation appends a list A to a list B to give a list C.

append([],Y,Y).
append([H|T],Y,[H|Z]) :- append(T,Y,Z).

(a) Using the append relation, write a Prolog predicate insert(X,Y,Z) that is

true if X can be inserted into a list Y to give a list Z. Your relation should be
capable of using backtracking to generate all lists obtained from Y by inserting
X at some point, using a query such as:

insert(c, [a,b]l,Z).

to obtain Z=[c,a,b], Z=[a,c,b], and Z=[a,b,c] and it should generate each
possibility exactly once. [5 marks]

Using the insert relation, write a Prolog predicate perm(X,Y) that is true if
a list Y is a permutation of a list X. Your predicate should respond to a query
such as

perm([a,b,c],Y)

by using backtracking to generate all permutations of the given list. [6 marks]

We have a list of events [el,e2,...,en]. A partial order can be expressed in
Prolog by stating

before(e3,e4).
before(el,eb).

and so on, where before(a,b) says that event a must happen before event
b (although not necessarily immediately before). No ordering constraints are
imposed other than those stated using before.

Given a list of events, a linearisation of the list is any ordering of its
events for which none of the before constraints are broken. Given the
example above and the list [e1,e2,e3,e4,e5], one valid linearisation would be
[e3,el,e2,e5,e4]. However, [e4,e2,el,e5,e3] is not a valid linearisation
because the first before constraint does not hold.

Using the perm predicate or otherwise, and assuming that your Prolog program
contains before constraints in the format suggested above, write a Prolog
predicate po(X,Y) that is true if Y is a valid linearisation of the events in the
list X. Your relation should be capable of using backtracking to generate all
valid linearisations as a result of a query of the form

po([el,e2,e3,e4,e5],Y). [9 marks]

