Numerical Analysis II

Consider the alternative formulae

\[y_{n+1} = y_n + hf(x_n, y_n) + O(h^2) \] \hspace{1cm} (1)
\[y_{n+1} = y_{n-1} + 2hf(x_n, y_n) + O(h^3) \] \hspace{1cm} (2)

applied to the ODE

\[y' = -5y, \quad y(0) = 1 \]

using \(h = 0.1 \) in each case.

(a) Define the terms local error and order for an ODE formula. What is the order of each of the methods (1) and (2)? \hspace{1cm} [2 marks]

(b) Giving answers to 2 significant decimal digits of accuracy, compute the solution of the ODE for \(x_n = 0, 0.1, 0.2, \ldots 1.0 \) for each method. Tabulate your answers. The exact solutions to 2 significant digits are:

1.0, 0.61, 0.37, 0.22, 0.14, 0.082, 0.050, 0.030, 0.018, 0.011, 0.0067

Assume the exact value of \(y(0.1) \) for method (2). \hspace{1cm} [7 marks]

(c) Which method is more accurate initially and why? Explain the behaviour of each method as \(x \) increases. \hspace{1cm} [3 marks]

(d) Solve the ODE. Find a general term for \(y_n \) in method (1) and show that the absolute error in (1) will be small when \(n \) is large. Without performing any further calculations, how do you expect the absolute error in method (2) to behave when \(n \) is large? \hspace{1cm} [5 marks]

(e) Discuss briefly the suitability of formulae (1) and (2) as predictors for predictor–corrector methods in respect of order and stability. \hspace{1cm} [3 marks]