2002 Paper 9 Question 1

Denotational Semantics

(a) Let A be a set. Let R consist of a set of pairs (X_0, a) where X_0 is a finite subset of A and $a \in A$. Define a function on the powerset of A,

$$\widehat{R}: \mathcal{P}(A) \to \mathcal{P}(A)$$

by

$$\widehat{R}(X) = \{ a \mid \exists X_0 \subseteq X. \ (X_0, a) \in R \}$$

for $X \subseteq A$. Prove that the function \widehat{R} is a continuous function on the domain $(\mathcal{P}(A), \subseteq)$. [6 marks]

- (b) Describe how to construct the function cpo $((D \to E), \sqsubseteq)$ of two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) . Prove that $((D \to E), \sqsubseteq)$ is a cpo. (You may use facts about least upper bounds provided you state them clearly.) [7 marks]
- (c) Exhibit two terms of PCF which are contextually equivalent and yet have distinct denotations in the domain $(\mathbb{B}_{\perp} \to (\mathbb{B}_{\perp} \to \mathbb{B}_{\perp})) \to \mathbb{B}_{\perp}$ where $\mathbb{B} = \{true, false\}$ is the set of truth values. Exhibit the domain element on which the two denotations differ. [7 marks]