2002 Paper 9 Question 1

Denotational Semantics

(a) Let A be a set. Let R consist of a set of pairs $\left(X_{0}, a\right)$ where X_{0} is a finite subset of A and $a \in A$. Define a function on the powerset of A,

$$
\widehat{R}: \mathcal{P}(A) \rightarrow \mathcal{P}(A)
$$

by

$$
\widehat{R}(X)=\left\{a \mid \exists X_{0} \subseteq X .\left(X_{0}, a\right) \in R\right\}
$$

for $X \subseteq A$. Prove that the function \widehat{R} is a continuous function on the domain $(\mathcal{P}(A), \subseteq)$.
(b) Describe how to construct the function cpo $((D \rightarrow E), \sqsubseteq)$ of two cpos $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$. Prove that $((D \rightarrow E), \sqsubseteq)$ is a cpo.
(You may use facts about least upper bounds provided you state them clearly.)
[7 marks]
(c) Exhibit two terms of PCF which are contextually equivalent and yet have distinct denotations in the domain $\left(\mathbb{B}_{\perp} \rightarrow\left(\mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}\right)\right) \rightarrow \mathbb{B}_{\perp}$ where $\mathbb{B}=$ $\{$ true, false\} is the set of truth values. Exhibit the domain element on which the two denotations differ.

