Denotational Semantics

State, with justification, whether each of the following statements is true or false.

(a) The set of natural numbers, \(\mathbb{N} = \{0,1,2,\ldots\} \), equipped with the usual less-than-or-equal relation, \(\leq \), is a domain. \(\text{[3 marks]} \)

(b) The set of all subsets of \(\mathbb{N} \), equipped with the relation of subset inclusion, is a domain. \(\text{[4 marks]} \)

(c) For any domain \(D \) and element \(d \in D \) with \(d \neq \bot \)

\[
f_d(x) = \begin{cases} \top & \text{if } d \sqsubseteq x, \\ \bot & \text{otherwise} \end{cases}
\]

defines a strict continuous function \(f_d \) from \(D \) to the flat domain \(\{\top\}_\bot \). \(\text{[4 marks]} \)

(d) For any domain \(D \) and element \(d \in D \) with \(d \neq \bot \)

\[
g_d(x) = \begin{cases} \bot & \text{if } x \sqsubseteq d, \\ \top & \text{otherwise} \end{cases}
\]

defines a strict continuous function \(g_d \) from \(D \) to \(\{\top\}_\bot \). \(\text{[4 marks]} \)

(e) For any continuous functions \(h : D \to E \) and \(k : E \to D \) between domains \(D \) and \(E \), \(\text{fix} (k \circ h) \sqsubseteq k (\text{fix} (h \circ k)) \). \(\text{[5 marks]} \)