Foundations of Functional Programming

The binary trees, denoted by B, whose branch nodes contain natural numbers, are generated by the grammar

$$B ::= \text{Leaf} \mid \text{Br}(n, B, B)$$

where n ranges over natural numbers. Although this question concerns the encoding of binary trees as λ-terms, you may use the encodings of other well-known data structures, such as booleans and pairs, provided you state the properties assumed.

Give an encoding of binary trees as λ-terms by defining as λ-terms

(a) Leaf and Br, used to construct the λ-terms corresponding to binary trees;

(b) isLeaf, which tests whether a λ-term corresponds to a leaf or a branch node;

(c) value, fstsubtree and sndsubtree, used to identify respectively the natural number and the two subtrees at a branch node.

Justify your answer by describing the behaviour of isLeaf, value, fstsubtree and sndsubtree: for example, the reduction $\text{isLeaf} \text{(Leaf)} \Rightarrow \text{true}$ describes part of the behaviour of isLeaf.

Consider the function treeadd defined inductively on the structure of binary trees by

$$\text{treeadd} \ (m, \text{Leaf}) = \text{Leaf}$$
$$\text{treeadd} \ (m, \text{Br} (n, B_1, B_2)) = \text{Br} \ (m + n, \text{treeadd} \ (m, B_1), \text{treeadd} \ (m, B_2))$$

Give and justify a λ-term which encodes treeadd, using the λ-term $Y \equiv \lambda f. (\lambda x. f(xx))(\lambda x. f(xx))$.

Give the λ-term for the infinite binary tree whose branch nodes consist of zeros at even depths and ones at odd depths, as pictured below:

```
0
/  \
 1   1
/ \ / \ \
0 0 0 0
/ / / / \
1 1 1 1
```

[6 marks]