Semantics of Programming Languages

What is meant by a *labelled transition system*? [2 marks]

A language of commands, C, for interactive input/output is given by

$$C ::= \mathbf{skip} \mid \ell := \ell \mid \mathbf{getc}(\ell) \mid \mathbf{putc}(\ell) \mid C ; C$$
$$\mid \mathbf{if} \ \ell = \ell \mathbf{ then} \ C \mathbf{ else} \ C \mid \mathbf{while} \ \ell = \ell \mathbf{ do} \ C$$

where ℓ ranges over some fixed set of locations for storing characters. The command $\ell_1 := \ell_2$ copies the contents of ℓ_2 to ℓ_1 . The command $\text{getc}(\ell)$ reads the next character from the standard input stream into ℓ . The command $\text{putc}(\ell)$ writes the contents of ℓ to the standard output stream. The conditional and while-loop commands involve testing whether or not the contents of two locations are equal. The commands skip and C_1 ; C_2 have their usual meanings. Define an operational semantics for this language as a labelled transition system whose configurations are (command, state)-pairs, $\langle C, s \rangle$, and whose actions are of the form get(c) (for reading a character c), put(c) (for writing a character c), and τ (for transitions not involving input/output). [9 marks]

Explain, without proof, in what sense this labelled transition system is deterministic. [2 marks]

A finite list t of non- τ actions is a *trace* of $\langle C, s \rangle$ if there is a sequence of labelled transitions starting from $\langle C, s \rangle$ whose corresponding list of actions is equal to t once any τ -actions have been erased from it. Write $C \approx_{tr} C'$ to mean that for any state s, the configurations $\langle C, s \rangle$ and $\langle C', s \rangle$ have the same traces. Show that $C_1 \approx_{tr} C_2$, where

$$C_1 \stackrel{\text{def}}{=} \mathbf{getc}(\ell_1) \ ; \ \mathbf{putc}(\ell_1) \ \text{ and } \ C_2 \stackrel{\text{def}}{=} \mathbf{getc}(\ell_1) \ ; \ \ell_2 := \ell_1 \ ; \ \mathbf{putc}(\ell_2).$$
[3 marks]

By considering C_1 ; C and C_2 ; C for a suitable C, or otherwise, show that \approx_{tr} does not have the congruence property for this language. [4 marks]