1997 Paper 7 Question 5

Denotational Semantics

Suppose that for each domain D we wish to have a function $Y_{D}:(D \rightarrow D) \rightarrow D$ (where as usual, $D \rightarrow D$ denotes the domain of continuous functions from D to itself). Consider the following two properties:
(a) For all continuous functions $f: D \rightarrow D, Y_{D}(f)=f\left(Y_{D}(f)\right)$.
(b) For all domains E and for all continuous functions $f: D \rightarrow D, g: E \rightarrow E$ and $h: D \rightarrow E$, with h strict, if $h \circ f=g \circ h$ then $Y_{E}(g)=h\left(Y_{D}(f)\right)$.

Prove that there is such a family of functions Y_{D} satisfying (a) and (b). Any facts that you use about the existence of fixed points must be proved.
[10 marks]
Let $\Omega=\left\{d_{n} \mid n \geqslant 0\right\} \cup\left\{d_{\omega}\right\}$ be the domain consisting of a countably infinite chain together with its least upper bound: thus the non-trivial instances of the partial order relation on Ω are $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \cdots \sqsubseteq d_{\omega}$. Let $s: \Omega \rightarrow \Omega$ be the continuous function that sends each d_{n} to d_{n+1} and sends d_{ω} to itself. For each continuous function $g: E \rightarrow E$ on a domain E, show that there is a strict continuous function $h: \Omega \rightarrow E$ satisfying $h \circ s=g \circ h$. Hence, or otherwise, deduce that there is only one family of functions Y_{D} satisfying properties (a) and (b).
[10 marks]

