Advanced Algorithms

Explain the steps involved in using the Miller–Rabin test to check whether a number \(N \) is composite. This will involve computing \(a^{N-1} \mod N \) for some value of \(a \).

[10 marks]

Carry out the steps for \(N = 65 \) and \(a = 1, 2, 8 \) and 12. Comment on what (if anything) each partial result tells you about \(N \) and which cases (if any) help you to decide whether \(N \) is prime or what its factors might be.

Pretend throughout the calculation that you do not know that \(65 = 5 \times 13 \). Proceed as though 65 were a huge number, imagining that you do not know at the outset whether it is prime or composite and that you are certainly unable to spot any factors.

[10 marks]