Suppose that \(take \) and \(drop \) are ML functions such that \(take(n, s) \) returns the first \(n \) elements of the list \(s \), while \(drop(n, s) \) returns all but the first \(n \) elements of \(s \). Let \(length(s) \) be the function to compute the length of the list \(s \). Consider the following ML function

\[
\begin{align*}
\text{fun front } s & = \text{take(length } s \div 2, s) ; \\
\text{fun back } s & = \text{drop(length } s \div 2, s) ;
\end{align*}
\]

\[
\begin{align*}
\text{fun bsum } [&] = 0.0 \\
& | \text{bsum } [x] = x \\
& | \text{bsum } s = \text{bsum front } s + \text{bsum back } s ;
\end{align*}
\]

\[
\begin{align*}
\text{fun sum } [&] = 0.0 \\
& | \text{sum } (x :: s) = x + \text{sum } s ;
\end{align*}
\]

Give a formal proof that \(\text{sum(front } s) + \text{sum(back } s) = \text{sum(s)} \) for all lists \(s \), explaining what properties of arithmetic you are assuming. [9 marks]

Describe a proof of \(\text{bsum(s)} = \text{sum(s)} \) for all \(s \) using the lemma that you have just established. Do not give a detailed proof but instead outline the main argument. State any additional lemmas required and indicate how they might be proved. [6 marks]

Does proving \(\text{bsum(s)} = \text{sum(s)} \) for all \(s \) in this way ensure that \(\text{bsum} \) and \(\text{sum} \) are completely interchangeable in ML programs? Discuss. [5 marks]