
CST.94.1.1

COMPUTER SCIENCE TRIPOS Part IA

Friday 27 May 1994 1.30 to 4.30

Paper 1

Answer five questions.

No more than two questions from any one section are to be answered.

Submit the answers in five separate bundles each with its own cover sheet.

Write on one side of the paper only.

SECTION A

1 An UP-DOWN binary counter with input A is required. If A=0 the counter counts
up, and if A=1 it counts down. Design an implementation for 3 bits using T-type
flipflops. [20 marks]

2 Describe the main components that make up a computer. [4 marks]

Illustrate different ways of connecting these components together to span a range
of performance requirements. [10 marks]

For each of the performance categories that you identify state today’s typical
memory size, bus width and CPU speed. [6 marks]

3 Self-timed logic circuits may enable an existing technology to achieve higher
performance. Explain the principle of self-timed circuits. [8 marks]

Comment on the possible opportunities for improved performance. [6 marks]

Is it likely that large logic systems will become easier to design using self-timed
logic rather than more traditional arrangements? Explain. [6 marks]

1 [TURN OVER

CST.94.1.2

4 Explain, in about 25 words each, five of the following terms:

(a) barrel shifter;

(b) depletion layer;

(c) state assignment;

(d) signal combination with diodes;

(e) dynamic logic;

(f) binary addition;

(g) static hazard. [4 marks each]

2

CST.94.1.3

SECTION B

5 Study the following ML function definitions and answer the questions below:

fun prefix [] [] = []

| prefix (x::xs) (y::ys) = (x::y)::prefix xs ys;

fun sep [] = [[], []]

| sep [x] = [[x], []]

| sep (x::y::rest) = prefix [x,y] (sep rest);

fun merge[[],y] = y : int list

| merge[x,[]] = x

| merge[x::xs, y::ys)] =

if x<y then x :: merge[xs, y::ys]

else y :: merge[x::xs, ys];

fun s [] = []

| s [x] = [x]

| s x = merge (map s (sep x));

Deduce the ML type of the function prefix and derive the result of the call:

prefix [1, 2, 3] [[4], [5], [6]];

[2 marks]

Give a correctly-typed call to prefix that will generate an exception when
evaluated. [2 marks]

What values do sep[1,2,3,4,5,6,7,8] and sep[1,2,3,4,5,6,7] yield?
[4 marks]

Deduce the ML type of merge and explain why the omission of ‘: int list’ would
lead to an error [2 marks]

Give an ML definition of the standard library function map. [2 marks]

Describe what the function s does and explain why it works. [8 marks]

3 [TURN OVER

CST.94.1.4

6 The following ML declaration introduces a data type that can be used to represent
a potentially infinite arrangement of cells at positions with integer coordinates in
the first quadrant of the x− y plane:

datatype A = Z

| Cell of int ref * A ref * A ref;

Each cell contains an integer value and pointers to the cells immediately to its right
and above itself. These three components are all mutable so that the arrangement
of the cells and the integers they contain can change during use. The constructor
Z can be used in an A ref to allow a cluster to have a boundary rather than
continuing through unbounded chains of cells.

Define a function mkrow(n) of type int->A that will return a row of length n + 1
cells initialised with zeros. For instance:

mkrow(1) = Cell(ref 0, ref(Cell(ref 0, ref Z, ref Z)), ref Z)

[5 marks]

Define a function zip(row1, row2) of type A*A->A that will return row1 with row2
joined above it. This function is entitled to change some of the ref A pointers in
row1. For example

val root = zip(mkrow(3), mkrow(2));

would give root a value representing the following arrangement.

0 → 0 → 0

↑ ↑ ↑
root : 0 → 0 → 0 → 0

[5 marks]

Next define a function mkarr(m,n) of type (int*int)->A that will return a value
representing a rectangular array of n+ 1 rows each of which are of length m+ 1 in
which each cell is initialised to zero [5 marks]

Paths originating from the bottom leftmost cell (which will be referred to by the
variable root) are represented by values of the type dir list where dir is declared
as follows:

datatype dir = Right | Up;

Finally define a function inc path cells of type A->A list->unit that will
increment the integers in all the cells that lie on a specified path within a given
collection of cells. For instance after root had been set up as above, the two calls

4

CST.94.1.5

inc path cells root [Right, Up, Right];

inc path cells root [Right, Right, Right];

would leave root representing the following arrangement:

0 → 1 → 1

↑ ↑ ↑
root : 2 → 2 → 1 → 1

You may assume that the path does not try to reach cells outside the given
arrangement. [5 marks]

7 Show, by defining suitable selector and constructor functions, how the ML type
defined as follows:

datatype L = N of int * unit->L;

can be used in the representation of lazy integer lists. [5 marks]

Define a function makeseq(f) that will yield a lazy list representing the following
infinite sequence:

0, f(0), f(f(0)), ...

where the integer at position i has the value fi(0). [5 marks]

Define a function ‘matches s seq’, where s is of type int list and seq is a
lazy list, that will yield a lazy list of integers giving the positions where s matches
consecutive items in seq. For example, if matches [1 1] is applied to the lazy
list

1,1,2,1,1,1,0,1,2,1,1,...

it will produce a lazy list starting

0,3,4,9,...

[10 marks]

5 [TURN OVER

CST.94.1.6

8 Sets of distinct integers can be implemented in ML as values of type set declared
below:

datatype set = Leaf | N of set * int * set;

Describe how you would use this data type to represent sets. [4 marks]

Give simple definitions for the following functions:

(a) insert: int*set->set

Returns a set containing the given integer as well as all the elements of the
given set; [4 marks]

(b) mkset: int list->set

Creates a set containing all the integers from the given list; [3 marks]

(c) mklist: set->int list

Makes a list of all the integers present in the given set; [3 marks]

(d) union: set*set->set

Forms a set from all integers in the two arguments, avoiding the introduction
of repeated entries; [3 marks]

(e) select : set->int*set

Returns an arbitrary integer from the set, and also the set with that item
removed.
select should raise an exception if the given set is empty. [3 marks]

Your definitions should aim for simplicity and elegance rather than efficiency.

6

CST.94.1.7

SECTION C

9 The Imperial system for Sterling currency was based on the pound, the shilling and
the penny, with 12 pence per shilling and 20 shillings per pound. Define a Modula-3
record type to store an amount of money in pounds, shillings and pence. Allow for
both positive and negative sums, and use sub-range types to restrict the values of
fields in your data structure so that (for instance) the pence field always contains
a number in the range 0 to 11. [4 marks]

Write procedures to convert an integer value in pence to the Imperial type you
have just defined, and to convert from the Imperial type to text. The following
examples illustrate aspects of the desired text corresponding to various numbers of
pence. The library procedure Fmt.Int may be used to convert integer values to
text.

0 → zero

1 → 1 penny

10 → 10 pence

60 → 5 shillings

80 → 6 shillings and 8 pence

252 → 1 pound and 1 shilling

479 → 1 pound, 19 shillings and 11 pence

1201 → 5 pounds and 1 penny

2400 → 10 pounds

-252 → minus 1 pound and 1 shilling

[16 marks]

Credit will be given for a clearly explained, concise and tidily presented solution.
Minor syntax or punctuation errors in the Modula-3 code will not count heavily
against you.

7 [TURN OVER

CST.94.1.8

10 Modula-3 allows the user to declare arrays with any sort of contents — for instance
arrays of integers, reals, TEXT or structures, but the index type for an array is
restricted and in particular cannot be of type TEXT.

It is sometimes useful to achieve an effect analogous to having an array that can
be indexed using values of type TEXT. One way of doing this is to use a structure
known as a hash table: given an index value of type TEXT an integer is computed
using a hash function and this is then used to index an array. The library procedure
Text.Hash computes a suitable integer from a TEXT value. Two complications arise.
First the integer computed by the hash function may lie outside the valid range of
index values for the array. Secondly two different TEXT objects may give rise to the
same hash value.

The problems can be resolved first by reducing the raw hash value modulo the size
of the array and arranging that each array entry refers to the start of a linked list of
(index,value) pairs. Retrieving a value from the table involves accessing the array
to obtain the correct list of pairs and then scanning the list to find an index value
that is identical (use the library function Text.Equal) with the TEXT index being
sought. The corresponding value can then be returned. Storing into the table will
involve adding a new (index,value) pair to one of the lists.

Design appropriate data structures for such a table, and write procedures to store
and retrieve values, using the following signatures:

PROCEDURE Put(VAR table: Table; key, value: TEXT)

RAISES {DuplicateKey}

PROCEDURE Get(READONLY table: Table; key: TEXT): TEXT

RAISES {MissingKey}

[20 marks]

8

CST.94.1.9

11 In Modula-3 what are object types, and how do they differ from simple record data
types?

In this context give a brief explanation of method invocation, inheritance and of
each of the keywords METHODS, NEW and OVERRIDES. Include short examples where
appropriate. [10 marks]

Describe briefly the facilities in Modula-3 for defining and using array and reference
types.

Explain the concept of an open array, showing how access to an array that is
received as an argument by a procedure may differ from direct references to the
same array. Give an example of a programming task that would be harder in
Modula-3 if open arrays were not provided. [10 marks]

9 [TURN OVER

CST.94.1.10

12 A Unix user (with the BASH shell) sets up a file containing the following commands,
and ensures it is executable:

echo $1 $2

mv $1 $1.temp

mv $2 $1

mv $1.temp $2

The user at the next terminal sets up a file that is very similar, but which uses cp

rather than mv. Describe the behaviour each can expect when they use these files
as command scripts. Assuming that the files concerned are both called sw, explain
carefully the consequences of such uses as

sw somefile somefile

sw firstfile.temp secondfile.temp

sw only/one.file

[7 marks]

In another file, called de (say) the following commands exist:

echo $# files >> de.info

for n in $*

do

echo $n >> de.info

mv $n backup/$n

done

What do the various substitutions (involving ‘$’ signs) do in this case? Given that
‘>>’ is much like ‘>’ but appends new data to an existing file rather than creating
a new one, what will build up in de.info over the course of time? Discuss the
effect of issuing the command “de *”. [7 marks]

Many Unix commands, for example xlsfonts and even just ls, can generate more
output than will fit on the screen at once. Give a brief account of (a) how to use
more to inspect the output and (b) how to collect a copy of the output in a file
for inspection using a text editor. Write a shell script that will run ls with the -l

flag (to get a full detailed listing of file sizes and dates) on one or more directories,
will collect all the output in a single temporary file, enter an editor to allow you to
inspect the information you have gathered and at the end get rid of the temporary
file. [6 marks]

10

