
1993 Paper 9 Question 6

Optimising Compilers

Consider a flowgraph, containing 3-address instructions, which represents a source-
level routine. Let e be an expression (e may be considered to be a right-hand side
3-address instruction, i.e. either x or x op y where x and y are variables).

We say that e is very busy at a node n if all paths from n compute the expression e
at least once and each such computation yields the same value as evaluating e at n
would (i.e. no modification of its variables occurs between n and the first occurrence
of e on any path from n).

Let V B(n) be the set of very busy expressions at n.

(a) Give data flow equations for V B(n). [4 marks]

(b) Give the relationship, if any, to the set Avail(n) of expressions available at n
including the direction (forwards/backwards) of the analyses. Indicate whether
either inclusion V B(n) ⊆ Avail(n) or Avail(n) ⊆ V B(n) holds. [4 marks]

(c) Sketch an algorithm to compute V B(n), briefly commenting on any
initialisation. [4 marks]

Suppose now that we compile a program in a call-by-need functional language into
3-address code using closures (i.e. λ().e′) to represent laziness. Given a functional
definition f(x, y, z) = e we have notions of f being strict in, or needing, its second
parameter y.

Point out similarities and differences between these notions and that of y (or y())
being very busy at some, to be determined, point in the 3-address code form of e.

[8 marks]

Hint: you may find it helpful to consider separately

(a) a case where e uses only the conditional function and strict primitive functions
such as +

(b) a case such as f(x, y) = g(x, y + 1)

1


