Numerical Analysis II

If B is a real symmetric $n \times n$ matrix such that $z^T B z \geq 0$ for any complex vector z, prove that any eigenvalue λ of B is such that $\lambda \geq 0$. Hence prove that the eigenvalues of $A^T A$, where A is any real square matrix, are real and non-negative. [3 marks]

Let P, Q be real $n \times n$ matrices and let $\|P\|_2^2$ denote the maximum eigenvalue of $P^T P$. State Schwarz’s inequality for $\|PQ\|_2$. Explain how this is modified if Q is replaced by a vector of n elements. [3 marks]

Derive the condition number K for solution of the equations $Ax = b$. Hint: start by setting $e = x - \hat{x}$ where \hat{x} is an approximate solution. [5 marks]

Describe the singular value decomposition

$$A = UWV^T$$

and explain how you would use it to solve the n equations $Ax = b$ when W has rank n. [5 marks]

How may the singular value decomposition help in solving the equations $Ax = b$ when A has rank $< n$? Use the case $n = 4$, $W = \text{diag}\{1, 10^{-3}, 10^{-20}, 0\}$ to illustrate your answer. (You may assume that machine epsilon $\approx 10^{-16}$.) [4 marks]