COMPUTER SCIENCE TRIPOS Part II

Tuesday 1 June 1993 1.30 to 4.30

Paper 7

Answer five questions.

Submit the answers in five separate bundles each with its own cover sheet. Write on one side of the paper only.

1 Distributed Systems

A distributed software system follows the client-server model. The microkernel on which it is based supports multi-threaded processes. A remote procedure call (RPC) package is used for client-server interactions. The RPC system runs above an unreliable, datagram-based communications service.

- (a) Explain how timers may be used in the RPC protocol to achieve client-server synchronisation. [10 marks]
- (b) Discuss how the RPC system may support the location of remote procedures. [7 marks]
- (c) Discuss the requirements on the RPC system that follow from the use of multithreaded processes. [3 marks]

2 Distributed Systems

A distributed computation may involve related operations on a number of objects which reside at different nodes of a distributed system.

- (a) Explain why the concept of *transaction* is suitable for modelling such a computation. [6 marks]
- (b) Explain what is involved in committing a transaction in a distributed system. [14 marks]

3 Comparative Architectures

A revisionist view might be that a processor design is RISC if every transistor pays its way in terms of global system performance, i.e. the design is in some sense a local optimum. Explain how this view relates to the original definition of RISC. Can a CISC instruction set be RISC under such a definition? [4 marks]

Given a certain silicon budget (e.g. 10^6 transistors) compare and contrast, under the above criterion, alternative ways of spending the excess over the (say) 10^4 transistor cost of a simple load-store one-accumulator machine. You might find it helpful to consider the various features and instructions of common processors. [12 marks]

This budget is sufficient to build most, but not all, of a VAX. Which parts would you omit and how could you arrange to execute full VAX code? [4 marks]

4 Comparative Architectures

Compare and contrast possible implementations of instructions which

(a)	load a single byte from memory	[8 marks]
(b)	store a single byte in memory	[4 marks]
(c)	move a sequence of n bytes from one address to another	[8 marks]

For each implementation, indicate briefly whether it conforms to the RISC philosophy, its effect on pipelining, and its likely efficiency compared with any alternatives.

5 Specification and Verification of Hardware

You are given components MUX, REG and COMP whose behaviour is defined by

 $MUX(sw,in1,in2,out) = (\forall t. out t = (sw t \rightarrow in1 t | in2 t))$ REG v (in,out) = (out 0 = v) \land (\forall t. out(t+1) = in t) COMP(in1,in2,out) = (\forall t. out t = (in1 t < in2 t))

Use these to implement a device MAX that satisfies the specification

MAX(in,out) \Rightarrow (\forall t. out t = Max in t)

where the function Max is defined by

 $(Max \text{ in } 0 = \text{ in } 0) \land$ $(Max \text{ in } (n+1) = (Max \text{ in } n < \text{in}(n+1) \rightarrow \text{in}(n+1) | Max \text{ in } n))$ [10 marks]

Prove that your implementation meets its specification. [10 marks]

6 Specification and Verification of Hardware

Describe the simple switch model of CMOS transistors.	[5 marks]
---	------------

Draw a circuit diagram of a	CMOS inverter and	give a proof that it is correct in
the simple switch model.		[2+3 marks]

Describe the unidirectional model of NMOS transistors. [5 marks]

Draw a circuit diagram of an NMOS inverter and give a proof that it is correct in the unidirectional model. [2 + 3 marks]

7 Numerical Analysis II

State a recurrence formula suitable for evaluating the sequence of Chebyshev polynomials $\{T_n(x)\}$ for an argument x. What are the starting values? [2 marks]

The error in Lagrange interpolation can be expressed in the form

$$f(x) - L_{n-1}(x) = \frac{f^{(n)}(\zeta)}{n!} \prod_{j=1}^{n} (x - x_j)$$

for a suitable function f(x). Suggest a choice of the interpolation points $\{x_j\}$ which tends to minimise this error over the interval [-1, 1]. [3 marks]

Hence justify and explain the method of *economisation of a power series*. [5 marks]

In what sense is an economised power series a *best approximation*? [2 marks]

Suppose $P_n(x)$ is a polynomial formed by truncating a power series after the term in x^n . Perform an economisation of the truncated power series

$$\cosh x \simeq P_4(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!}$$
 [5 marks]

Given that the maximum error in $P_4(x)$ over [-1,1] is approximately 0.0014, compare the error in your economised polynomial with the error in $P_2(x)$.

[3 marks]

8 Numerical Analysis II

If **B** is a real symmetric $n \times n$ matrix such that $\bar{\mathbf{z}}^T \mathbf{B} \mathbf{z} \ge 0$ for any complex vector \mathbf{z} , prove that any eigenvalue λ of **B** is such that $\lambda \ge 0$. Hence prove that the eigenvalues of $\mathbf{A}^T \mathbf{A}$, where \mathbf{A} is any real square matrix, are real and non-negative. [3 marks]

Let **P**, **Q** be real $n \times n$ matrices and let $\|\mathbf{P}\|_2^2$ denote the maximum eigenvalue of $\mathbf{P}^T \mathbf{P}$. State Schwarz's inequality for $\|\mathbf{P}\mathbf{Q}\|_2$. Explain how this is modified if **Q** is replaced by a vector of n elements. [3 marks]

Derive the *condition number* K for solution of the equations $\mathbf{A}\mathbf{x} = \mathbf{b}$. Hint: start by setting $\mathbf{e} = \mathbf{x} - \hat{\mathbf{x}}$ where $\hat{\mathbf{x}}$ is an approximate solution. [5 marks]

Describe the singular value decomposition

$$\mathbf{A} = \mathbf{U}\mathbf{W}\mathbf{V}^T$$

and explain how you would use it to solve the *n* equations $\mathbf{Ax} = \mathbf{b}$ when \mathbf{W} has rank *n*. [5 marks]

How may the singular value decomposition help in solving the equations $\mathbf{Ax} = \mathbf{b}$ when \mathbf{A} has rank < n? Use the case n = 4, $\mathbf{W} = \text{diag}\{1, 10^{-3}, 10^{-20}, 0\}$ to illustrate your answer. (You may assume that machine epsilon $\simeq 10^{-16}$.) [4 marks]

9 Graphics II

When scan-converting items for display, a Z-buffer is sometimes used to avoid some sorting. Outline its operation and limitations. [12 marks]

The use of an A-buffer will improve matters. Explain why. [8 marks]

10 Semantics

An imperative language has boolean expressions be, integer expressions ie, and commands C, whose abstract syntax is specified by:

 $\begin{array}{ll} ie & ::= & \underline{n} \mid X \mid ie + ie \mid ie - ie \\ be & ::= & \underline{b} \mid ie = ie \\ C & ::= & \mathsf{skip} \mid X := ie \mid C \ ; C \mid \mathsf{if} \ be \ \mathsf{then} \ C \ \mathsf{else} \ C \mid \mathsf{while} \ be \ \mathsf{do} \ C \end{array}$

where b is *true* or *false*, n is any integer, and X ranges over a fixed set of variables. Describe the operational semantics of the language in terms of inductively defined evaluation relations

$$be, S \Rightarrow b$$
 $ie, S \Rightarrow n$ and $C, S \Rightarrow S'$

where S and S' are integer-valued functions on the set of variables. [5 marks]

In what sense are these evaluation relations *deterministic*? What is meant by the assertion that two commands are *semantically equivalent*? [3 marks]

For any choice of be, C and C', which of the following pairs of commands are semantically equivalent and which are not? Justify your answer in each case.

(a) ((while be do C); C) and (if be then ((while be do C); C) else C)

(b) (C; (while be do C)) and (if be then (while be do C) else C)

(c) (while be do (if be then C else C')) and (while be do C)

[12 marks]

11 Additional Topics

Describe, for a competent programmer, the decoding of a Lempel-Ziv data compression code. Assume that the input is a stream of positive integers.

[10 marks]

Construct a Huffman Code for a seven-letter alphabet, given the following approximate frequencies:

Give an error-correcting code and explain how it works, excluding the simple repetition code. [3+3 marks]

12 Additional Topics

Name an example of each type. [1+1 marks]	Explain the distinction between Public	e- and Secret-Key cryptosystems.	[4 marks]
	Name an example of each type.	[1	+1 marks]

Is a One Time Pad a Public- or Secret-Key system? [1 mark]

Discuss the advantages and disadvantages of One Time Pads as compared with alternative systems. When might One Time Pads be used and when should they be avoided? [13 marks]