
Type Systems
Lecture 6: Existentials, Data Abstraction, and Termination for System F

Neel Krishnaswami
University of Cambridge

Polymorphism and Data Abstraction

• So far, we have used polymorphism to model datatypes and genericity
• Reynolds’s original motivation was to model data abstraction

1

An ML Module Signature

module type BOOL = sig
type t
val yes : t
val no : t
val choose

: t -> 'a -> 'a -> 'a
end

• We introduce an abstract type t
• There are two values, yes and no of
type t

• There is an operation choose,
which takes a t and two values, and
switches between them.

2

An Implementation

module M1 : BOOL = struct
type t = unit option
let yes = Some ()
let no = None
let choose v ifyes ifno =
match v with
| Some () -> ifyes
| None -> ifno

end

• Implementation uses option type
over unit

• There are two values, one for true
and one for false

• choose implemented via pattern
matching

3

Another Implementation

module M2 : BOOL = struct
type t = int
let yes = 1
let no = 0
let choose b ifyes ifno =
if b = 1 then
ifyes

else
ifno

end

• Implement booleans with integers
• Use 1 for true, 0 for false
• Why is this okay? (Many more
integers than booleans, after all)

4

Yet Another Implementation

module M3 : BOOL = struct
type t =
{f : 'a. 'a -> 'a -> 'a}

let yes =
{f = fun a b -> a}

let no =
{f = fun a b -> b}

let choose b ifyes ifno =
b.f ifyes ifno

end

• Implement booleans with Church
encoding (plus some Ocaml hacks)

• Is this really the same type as in the
previous lecture?

5

A Common Pattern

• We have a signature — BOOL — with an abstract type in it
• We choose a concrete implementation of that abstract type
• We implement the other operations (yes, no, choose) of the interface in
terms of that concrete representation

• Client code cannot identify the representation type because it sees an
abstract type variable t rather than the representation

6

Abstract Data Types in System F

Types A ::= . . . | ∃α. A
Terms e ::= . . . | packα.B(A, e) | let pack(α, x) = e in e′

Values v ::= packα.B(A, v)

Θ, α ⊢ B type Θ ⊢ A type Θ; Γ ⊢ e : [A/α]B
Θ; Γ ⊢ packα.B(A, e) : ∃α.B

∃I

Θ; Γ ⊢ e : ∃α. A Θ, α; Γ, x : A ⊢ e′ : C Θ ⊢ C type
Θ; Γ ⊢ let pack(α, x) = e in e′ : C

∃E

7

Operational Semantics for Abstract Types

e; e′

packα.B(A, e) ; packα.B(A, e′)

e; e′

let pack(α, x) = e in t; let pack(α, x) = e′ in t

let pack(α, x) = packα.B(A, v) in e; [A/α, v/x]e

8

Data Abstraction in System F

Θ, α ⊢ B type
Θ ⊢ A type Θ; Γ ⊢ e : [A/α]B

Θ; Γ ⊢ packα.B(A, e) : ∃α.B
∃I

Θ; Γ ⊢ e : ∃α. A
Θ, α; Γ, x : A ⊢ e′ : C Θ ⊢ C type
Θ; Γ ⊢ let pack(α, x) = e in e′ : C

∃E

• We have a signature with an
abstract type in it

• We choose a concrete
implementation of that abstract
type

• We implement the operations of
the interface in terms of the
concrete representation

• Client code sees an abstract type
variable α rather than the
representation

9

Abstract Types Have Existential Type

• No accident we write ∃α.B for abstract types!
• This is exactly the same thing as existential quantification in second-order
logic

• Discovered by Mitchell and Plotkin in 1988 – Abstract Types Have Existential
Type

• But Reynolds was thinking about data abstraction in 1976…?

10

A Church Encoding for Existential Types

Θ, α ⊢ B type Θ ⊢ A type Θ; Γ ⊢ e : [A/α]B
Θ; Γ ⊢ packα.B(A, e) : ∃α.B

∃I

Θ; Γ ⊢ e : ∃α.B Θ, α; Γ, x : B ⊢ e′ : C Θ ⊢ C type
Θ; Γ ⊢ let pack(α, x) = e in e′ : C

∃E

Original Encoding
∃α.B ∀β. (∀α.B→ β) → β

packα.B(A, e) Λβ. λk : ∀α.B→ β. k A e
let pack(α, x) = e in e′ : C e C (Λα. λx : B. e′)

11

Reduction of the Encoding

let pack(α, x) = packα.B(A, e) in e′ : C
= packα.B(A, e) C (Λα. λx : B. e′)
= (Λβ. λk : ∀α.B→ β. k A e) C (Λα. λx : B. e′)
= (λk : ∀α.B→ C. k A e) (Λα. λx : B. e′)
= (Λα. λx : B. e′) A e
= (λx : [A/α]B. [A/α]e′) e
= [e/x][A/α]e′

12

System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types A ::= α | A→ B | ∀α. A
Terms e ::= x | λx : A. e | e e | Λα. e | e A
Values v ::= λx : A. e | Λα. e

e0 ; e′0
e0 e1 ; e′0 e1

CONGFUN
e1 ; e′1

v0 e1 ; v0 e′1
CONGFUNARG

(λx : A. e) v; [v/x]e
FUNEVAL

e; e′

e A; e′ A
CONGFORALL

(Λα. e)A; [A/α]e
FORALLEVAL

13

Summary

So far:

1. We have seen System F and its basic properties
2. Sketched a proof of type safety
3. Saw that a variety of datatypes were encodable in it
4. We saw that even data abstraction was representable in it
5. We asserted, but did not prove, termination

14

Termination for System F

• We proved termination for the STLC by defining a logical relation
• This was a family of relations
• Relations defined by recursion on the structure of the type
• Enforced a “hereditary termination” property

• Can we define a logical relation for System F?
• How do we handle free type variables? (i.e., what’s the interpretation of α?)
• How do we handle quantifiers? (i.e., what’s the interpretation of ∀α. A?)

15

Semantic Types

A semantic type is a set of closed terms X such that:

• (Halting) If e ∈ X, then e halts (i.e. e;∗ v for some v).
• (Closure) If e; e′, then e′ ∈ X iff e ∈ X.

Idea:

• Build generic properties of the logical relation into the definition of a type.
• Use this to interpret variables!

16

Semantic Type Interpretations

α ∈ Θ

Θ ⊢ α type
Θ ⊢ A type Θ ⊢ B type

Θ ⊢ A→ B type
Θ, α ⊢ A type
Θ ⊢ ∀α. A type

• We can interpret type well-formedness derivations
• Given a type variable context Θ, we define will define a variable
interpretation θ as a map from dom(Θ) to semantic types.

• Given a variable interpretation θ, we write (θ, X/α) to mean extending θ with
an interpretation X for a variable α.

17

Interpretation of Types

[[−]] ∈ WellFormedType→ VarInterpretation→ SemanticType

[[Θ ⊢ α type]] θ = θ(α)

[[Θ ⊢ A→ B type]] θ =

e
∣∣∣∣∣∣∣
e halts ∧
∀e′ ∈ [[Θ ⊢ A type]] θ.

(e e′) ∈ [[Θ ⊢ B type]] θ

[[Θ ⊢ ∀α.B type]] θ =

e
∣∣∣∣∣∣∣
e halts ∧
∀A ∈ type, X ∈ SemType.

(e A) ∈ [[Θ, α ⊢ B type]] (θ, X/α)

Note the lack of a link between A and X in the ∀α.B case

18

Properties of the Interpretation

• Closure: If θ is an interpretation for Θ, then [[Θ ⊢ A type]] θ is a semantic type.
• Exchange: [[Θ, α, β,Θ′ ⊢ A type]] = [[Θ, β, α,Θ′ ⊢ A type]]
• Weakening: If Θ ⊢ A type, then [[Θ, α ⊢ A type]] (θ, X/α) = [[Θ ⊢ A type]] θ.
• Substitution: If Θ ⊢ A type and Θ, α ⊢ B type then
[[Θ ⊢ [A/α]B type]] θ = [[Θ, α ⊢ B type]] (θ, [[Θ ⊢ A type]] θ/α)

Each property is proved by induction on a type well-formedness derivation.

19

Closure: (one half of the) ∀ Case

Closure: If θ interprets Θ, then [[Θ ⊢ ∀α. A type]] θ is a type.

Suffices to show: if e; e′, then e ∈ [[Θ ⊢ ∀α. A type]] θ iff e′ ∈ [[Θ ⊢ ∀α. A type]] θ.

0 e; e′ Assumption
1 e′ ∈ [[Θ ⊢ ∀α. A type]] θ Assumption
2 ∀(C, X). e′ C ∈ [[Θ, α ⊢ A type]] (θ, X/α) Def.
3 Fix arbitrary (C, X)
4 e′ C ∈ [[Θ, α ⊢ A type]] (θ, X/α) By 2
5 e C; e′ C CONGFORALL on 0
6 e C ∈ [[Θ, α ⊢ A type]] (θ, X/α) Induction on 4,5
7 ∀(C, X). e C ∈ [[Θ, α ⊢ A type]] (θ, X/α)
8 e ∈ [[Θ ⊢ ∀α. A type]] θ From 7

20

Substitution: (one half of) the ∀ case

[[Θ, α ⊢ ∀β.B type]] (θ, [[Θ ⊢ A type]] θ) = [[Θ ⊢ [A/α](∀β.B) type]] θ

1. We assume e ∈ [[Θ, α ⊢ ∀β.B type]] (θ, [[Θ ⊢ A type]] θ)
2. We want to show: e ∈ [[Θ ⊢ [A/α](∀β.B) type]] θ.
3. Expanding the definition of 1:

∀(C, X). e C ∈ [[Θ, α, β ⊢ B type]] (θ, [[Θ ⊢ A type]] θ, X/β).
4. For 2, it suffices to show: ∀(C, X). e C ∈ [[Θ, β ⊢ [A/α](B) type]] (θ, X/β).

• Fix (C, X)
• So e C ∈ [[Θ, α, β ⊢ B type]] (θ, [[Θ ⊢ A type]] θ, X/β)
• Exchange: e C ∈ [[Θ, β, α ⊢ B type]] (θ, X/β, [[Θ ⊢ A type]] θ)
• Weaken: e C ∈ [[Θ, β, α ⊢ B type]] (θ, X/β, [[Θ, β ⊢ A type]] (θ, X/β))
• Induction: e C ∈ [[Θ, β ⊢ [A/α]B type]] (θ, X/β)

21

The Fundamental Lemma

If we have that

•
Θ︷ ︸︸ ︷

α1, . . . , αk;

Γ︷ ︸︸ ︷
x1 : A1, . . . , xn : An ⊢ e : B

• Θ ⊢ Γ ctx
• θ interprets Θ
• For each xi : Ai ∈ Γ, we have ei ∈ [[Θ ⊢ Ai type]] θ

Then it follows that:

• [C1/α1, . . . , Ck/αk][e1/x1, . . . , en/xn]e ∈ [[Θ ⊢ B type]] θ

22

Questions

1. Prove the other direction of the closure property for the Θ ⊢ ∀α. A type case.
2. Prove the other direction of the substitution property for the Θ ⊢ ∀α. A type
case.

3. Prove the fundamental lemma for the forall-introduction case
Θ; Γ ⊢ Λα. e : ∀α. A.

23

