Type Systems

Lecture 6: Existentials, Data Abstraction, and Termination for System F

Neel Krishnaswami
University of Cambridge

Polymorphism and Data Abstraction

- So far, we have used polymorphism to model datatypes and genericity

- Reynolds's original motivation was to model data abstraction

An ML Module Signature

module type BOOL = sig
type t
val yes : t
val no : t
val choose
t -> 'a->"'a ->

- We introduce an abstract type t

- There are two values, yes and no of
type t

- There is an operation choose,
which takes a t and two values, and

end switches between them.

An Implementation

module M1 : BOOL = struct

type t = unit option - Implementation uses option type
let yes = Some () over unit

let no = None

let choose v ifyes ifno =
match v with
| Some () -> ifyes
| None -> ifno

- There are two values, one for true
and one for false

- choose implemented via pattern
matching

end

Another Implementation

module M2 : BOOL = struct
type t = int

let yes =1
let no = 0 - Implement booleans with integers
let choose b ifyes ifno = - Use 1 for true, 0 for false
if b = 1 then - Why is this okay? (Many more
ifyes integers than booleans, after all)
else
ifno

end

Yet Another Implementation

module M3 : BOOL = struct

type t =
{f : 'a. 'a -> 'a -> 'a}

let yes = - Implement booleans with Church
{f = funab -> a} encoding (plus some Ocaml hacks)

let no = - |Is this really the same type as in the
{f = fun a b -> b} previous lecture?

let choose b ifyes ifno =
b.f ifyes ifno
end

A Common Pattern

- We have a signature — BOOL — with an abstract type in it

- We choose a concrete implementation of that abstract type

- We implement the other operations (yes, no, choose) of the interface in
terms of that concrete representation

- Client code cannot identify the representation type because it sees an
abstract type variable t rather than the representation

Abstract Data Types in System F

Types A == ... | Ja.A
Terms e == ... | pack,g(A,e) | let pack(a,x)=ein ¢
Values v == pack,g(A,Vv)

©,a Btype © F Atype ©;FTt+e:[A/a]B 5
©;T + pack, g(A,e) : Ja.B

Ol e:da. A O,a;T,x:AFe:C GFCtypeaE
O;l + let pack(a,x) =eine : C

Operational Semantics for Abstract Types

e~ e

pack, (A, e) ~ pack, g(A,¢€’)

e~ e

let pack(a,x) = ein t~ let pack(a,x) =€’ int

let pack(a, x) = pack,, g(A,v) in e~ [A/a,v/X]e

Data Abstraction in System F

- We have a signature with an

/abstract type in it
©,a - Btype - We choose a concrete
OFA typeWimplementation of that abstract

©;T I pack, g(A,€) : Ja. B \type
We implement the operations of

©;lFe:da.A the interface in terms of the
J_& C © F Ctype concrete representation

O;T I- let pack(W Client code sees an abstract type

variable « rather than the
representation

Abstract Types Have Existential Type

- No accident we write Ja. B for abstract types!

- This is exactly the same thing as existential quantification in second-order
logic

- Discovered by Mitchell and Plotkin in 1988 - Abstract Types Have Existential
Type

- But Reynolds was thinking about data abstraction in 1976...7

10

A Church Encoding for Existential Types

©,a Btype © F Atype O;Ft+e:[A/a]B 5
©;T + pack, g(A,e) : Ja.B

©:le:Ja.B ©,a;T,x:BFe:C @I—CtypezlE
O;l F let pack(a,x) =eine : C

Original ‘ Encoding
Ja. B VB. (Ya.B — B) —
pack, g(A,e) NB.AR :Ya.B— f.RAe

let pack(a,x) =eine : C e C(Aa. Xx:B.¢)

1

Reduction of the Encoding

let pack(a, x) = pack, g(A,e)ine : C
= pack, g(A,e) C (Aa. Xx: B.€')
AB. AR :Va.B— .RAe)C (Aa.) x: B.¢e)
AR :Va.B— C.RAe) (Aa.Xx:B.€)
Aa. Xx:B.e')Ae
M [A/a]B.[A/ale’) e
= [e/x][A/ale

= (
= (
= (
= (

12

System F, The Girard-Reynolds Polymorphic Lambda Calculus

Types A = o | A—=B | Va.A
Terms e == x | Mx:A.e | ee | Na.e | eA
Values v = XM:A.e | Aa.e
/ /
€o ~ € €1~ &
——— CONGFUN —— CONGFUNARG
€0 €1~ €y ey Vo €1~ Vg €,

FUNEVAL

(M :A.e)v~ [v/x]e

e~ e
——— CONGFORALL FORALLEVAL
eA~s e A (Aa.e)A«» [A/a]e

13

So far:

1. We have seen System F and its basic properties

2. Sketched a proof of type safety

3. Saw that a variety of datatypes were encodable in it

4. We saw that even data abstraction was representable in it

5. We asserted, but did not prove, termination

Termination for System F

- We proved termination for the STLC by defining a logical relation
- This was a family of relations

- Relations defined by recursion on the structure of the type
- Enforced a “hereditary termination” property

- Can we define a logical relation for System F?

- How do we handle free type variables? (i.e., what's the interpretation of a?)
- How do we handle quantifiers? (i.e., what's the interpretation of Va. A?)

15

Semantic Types

A semantic type is a set of closed terms X such that:

- (Halting) If e € X, then e halts (i.e. e ~* v for some v).
- (Closure) If e~ €, then e’ € X iffe € X.

ldea:

- Build generic properties of the logical relation into the definition of a type.

- Use this to interpret variables!

Semantic Type Interpretations

a €0 © F Atype © B type O,aF Atype
O F «a type ©FA— Btype © F Va. A type

- We can interpret type well-formedness derivations

- Given a type variable context ©, we define will define a variable
interpretation 6 as a map from dom(©) to semantic types.

- Given a variable interpretation 6, we write (6,X/a) to mean extending 6 with
an interpretation X for a variable .

Interpretation of Types

[-] € WellFormedType — VarInterpretation — SemanticType

[©F atype] 6 = 0(a)
e halts A
[©FA—Btype] 0 = <(e| Ve €[OFAtype]o.
(e€’) e [©+ Btype] ¢
e halts A
[©FVa.Btype] &6 = <(e| VA€ type,X € SemType.
(eA) € [©,aF Btype] (0,X/a)

Note the lack of a link between A and X in the Va. B case

Properties of the Interpretation

- Closure: If 8 is an interpretation for ©, then [© - A type] 6 is a semantic type.
- Exchange: [©,a, 3,0 - A type] = [©, 5, o, © F A type]
- Weakening: If © F A type, then [©,a A type] (6,X/a) = [© F A type] 6.
- Substitution: If © - A type and ©, a + B type then
[©F[A/a]Btype] 0 = [©,a - Btype] (6,[© F A type] 6/«)

Each property is proved by induction on a type well-formedness derivation.

Closure: (one half of the) V Case

Closure: If 6 interprets ©, then [© - Va. A type] 6 is a type.

Suffices to show: if e~ €, then e € [© - Va. A type] 0 iff €' € [© - Va. A type] 6.

(@)

o N O U1 &~ W N R

e~ ¢
e € [©F Va.Atype] 0
V(C,X). €' Ce [©,atF Atype] (6,X/a)
Fix arbitrary (C, X)
eCe[O,at Atype] (6,X/a)
eC~ecC
eCe[©,at Atype] (0,X/a)
V(C, X). eCe[©,ak Atype] (0,X/a)
e €O+ Va.Atype] 6

Assumption
Assumption
Def.

By 2
CONGFORALL 0n 0
Induction on 4,5

From 7

20

Substitution: (one half of) the V case

[©,aFV3.Btype] (6,[© F Atype] 6) =[O F [A/a](V5. B) type] 0

1. We assume e € [©,a V3. B type] (0,[© F A type] 6)

2. We want to show: e € [© F [A/a](V}. B) type] 6.

3. Expanding the definition of 1

V(C,X). eCe [©,a,5F Btype] (0,[© + A type] 0,X/5).

4. For 2, it suffices to show: V(C,X). eC € [©, 8 F [A/a](B) type] (6, X/p).
- Fix (C,X)
- SoeCe[O,a,8F Btype] (6,[© F Atype] 0,X/5)
- Exchange: eC € [0, 8,a - Btype] (0,X/5,[© F A type] 0)
- Weaken: eCe [©,8,at Btype] (0,X/5,[0, 5 Atype] (6,X/5))
- Induction: eC € [©, 8 - [A/a]B type] (8,X/5)

21

The Fundamental Lemma

If we have that
o r
. m;X12A1,...,XnZAn|—€IB
+ ©OFT ctx
- 0 interprets ©

- Foreach xj: Aj €T, we have e; € [© - A; type] ¢

Then it follows that:

[G/on, . Ce/on]len/xa, .. en/xnle € [© - B type] 6

22

Questions

1. Prove the other direction of the closure property for the © F Va. A type case.
2. Prove the other direction of the substitution property for the © F Va. A type
case.
3. Prove the fundamental lemma for the forall-introduction case
O:TF Aa.e: Va. A

23

