Type Systems

Lecture 6: Existentials, Data Abstraction, and Termination for System F

Neel Krishnaswami University of Cambridge

- So far, we have used polymorphism to model datatypes and genericity
- Reynolds's original motivation was to model *data abstraction*

```
module type BOOL = sig
  type t
  val yes : t
  val no : t
  val choose
    : t -> 'a -> 'a -> 'a
end
```

- $\cdot\,$ We introduce an abstract type t
- There are two values, yes and no of type t
- There is an operation choose, which takes a t and two values, and switches between them.

```
module M1 : BOOL = struct
  type t = unit option
  let yes = Some ()
  let no = None
  let choose v ifyes ifno =
    match v with
    | Some () -> ifyes
     None -> ifno
end
```

- Implementation uses option type over unit
- There are two values, one for true and one for false
- **choose** implemented via pattern matching

```
module M2 : BOOL = struct
  type t = int
  let ves = 1
  let no = \odot
  let choose b ifyes ifno =
    if b = 1 then
      ifves
    else
      ifno
end
```

- Implement booleans with integers
- Use 1 for true, 0 for false
- Why is this okay? (Many more integers than booleans, after all)

```
module M3 : BOOL = struct
  type t =
    {f : 'a, 'a -> 'a -> 'a}
  let ves =
    \{f = fun a b -> a\}
  let no =
    {f = fun a b -> b}
  let choose b ifyes ifno =
    b.f ifves ifno
end
```

- Implement booleans with Church encoding (plus some Ocaml hacks)
- Is this really the same type as in the previous lecture?

- \cdot We have a signature BOOL with an abstract type in it
- $\cdot\,$ We choose a concrete implementation of that abstract type
- We implement the other operations (**yes**, **no**, **choose**) of the interface in terms of that concrete representation
- Client code cannot identify the representation type because it sees an abstract type variable **t** rather than the representation

Types
$$A ::= ... | \exists \alpha. A$$

Terms $e ::= ... | pack_{\alpha.B}(A, e) | let pack(\alpha, x) = e in e$
Values $v ::= pack_{\alpha.B}(A, v)$

$$\frac{\Theta, \alpha \vdash B \text{ type} \quad \Theta \vdash A \text{ type} \quad \Theta; \Gamma \vdash e : [A/\alpha]B}{\Theta; \Gamma \vdash pack_{\alpha.B}(A, e) : \exists \alpha. B} \exists I$$

$$\frac{\Theta; \Gamma \vdash e : \exists \alpha. A \quad \Theta, \alpha; \Gamma, x : A \vdash e' : C \quad \Theta \vdash C \text{ type}}{\Theta; \Gamma \vdash \text{ let } pack(\alpha, x) = e \text{ in } e' : C} \exists E$$

Operational Semantics for Abstract Types

$$\frac{e \rightsquigarrow e'}{\operatorname{pack}_{\alpha,B}(A, e) \rightsquigarrow \operatorname{pack}_{\alpha,B}(A, e')}$$
$$\frac{e \rightsquigarrow e'}{\operatorname{let}\operatorname{pack}(\alpha, x) = e \text{ in } t \rightsquigarrow \operatorname{let}\operatorname{pack}(\alpha, x) = e' \text{ in } t}$$

let $pack(\alpha, x) = pack_{\alpha,B}(A, v)$ in $e \rightsquigarrow [A/\alpha, v/x]e$

Data Abstraction in System F

- We have a signature with an abstract type in it
- We choose a concrete implementation of that abstract type
- We implement the operations of the interface in terms of the concrete representation
- Client code sees an abstract type variable α rather than the representation

- No accident we write $\exists \alpha$. *B* for abstract types!
- This is exactly the same thing as existential quantification in second-order logic
- Discovered by Mitchell and Plotkin in 1988 Abstract Types Have Existential Type
- But Reynolds was thinking about data abstraction in 1976...?

A Church Encoding for Existential Types

$$\begin{array}{c|c} \Theta, \alpha \vdash B \text{ type } \Theta \vdash A \text{ type } \Theta; \Gamma \vdash e : [A/\alpha]B\\ \hline \Theta; \Gamma \vdash \text{pack}_{\alpha,B}(A, e) : \exists \alpha, B \\ \hline \Theta; \Gamma \vdash e : \exists \alpha, B & \Theta, \alpha; \Gamma, x : B \vdash e' : C & \Theta \vdash C \text{ type }\\ \hline \Theta; \Gamma \vdash \text{let pack}(\alpha, x) = e \text{ in } e' : C \\ \hline 0 \text{riginal } & \text{Encoding }\\ \hline \exists \alpha, B & \forall \beta. (\forall \alpha, B \to \beta) \to \beta \\ \text{pack}_{\alpha,B}(A, e) & A\beta. \lambda k : \forall \alpha, B \to \beta, k A e \\ \text{let pack}(\alpha, x) = e \text{ in } e' : C & e C (\Lambda \alpha, \lambda x : B, e') \end{array}$$

let pack(
$$\alpha, x$$
) = pack _{α,B} (A, e) in $e' : C$
= pack _{α,B} (A, e) C ($\Lambda \alpha, \lambda x : B. e'$)
= ($\Lambda \beta, \lambda k : \forall \alpha, B \rightarrow \beta, k \land e$) C ($\Lambda \alpha, \lambda x : B. e'$)
= ($\lambda k : \forall \alpha, B \rightarrow C. k \land e$) ($\Lambda \alpha, \lambda x : B. e'$)
= ($\Lambda \alpha, \lambda x : B. e'$) $\land e$
= ($\lambda x : [A/\alpha]B. [A/\alpha]e'$) e
= [e/x][A/α] e'

System F, The Girard-Reynolds Polymorphic Lambda Calculus

$$\begin{array}{rcl} \text{Iypes} & A & ::= & \alpha & | & A \to B & | & \forall \alpha. A \\ \text{Terms} & e & ::= & x & | & \lambda x : A. e & | & ee & | & \Lambda \alpha. e & | & eA \\ \text{Values} & v & ::= & \lambda x : A. e & | & \Lambda \alpha. e \\ \\ \hline \hline e_0 & e_1 & \sim & e'_0 & e_1 \\ \hline \hline e_0 & e_1 & \sim & e'_0 & e_1 \\ \hline \hline \hline (\lambda x : A. e) & v & [v/x]e \\ \hline \hline Fune Val \\ \hline \hline \hline eA & \sim & e'A \\ \end{array}$$

So far:

- 1. We have seen System F and its basic properties
- 2. Sketched a proof of type safety
- 3. Saw that a variety of datatypes were encodable in it
- 4. We saw that even data abstraction was representable in it
- 5. We asserted, but did not prove, termination

- We proved termination for the STLC by defining a *logical relation*
 - This was a family of relations
 - Relations defined by recursion on the structure of the type
 - Enforced a "hereditary termination" property
- Can we define a logical relation for System F?
 - How do we handle free type variables? (i.e., what's the interpretation of α ?)
 - How do we handle quantifiers? (i.e., what's the interpretation of $\forall \alpha. A$?)

A *semantic type* is a set of closed terms X such that:

- (Halting) If $e \in X$, then *e* halts (i.e. $e \rightsquigarrow^* v$ for some *v*).
- (Closure) If $e \rightsquigarrow e'$, then $e' \in X$ iff $e \in X$.

Idea:

- $\cdot\,$ Build generic properties of the logical relation into the definition of a type.
- Use this to interpret variables!

$\alpha \in \Theta$	$\Theta \vdash A$ type	$\Theta \vdash B$ type	$\Theta, lpha \vdash A$ type	9
$\Theta \vdash \alpha$ type	$\Theta \vdash A =$	→ <i>B</i> type	$\Theta \vdash orall lpha.$ A typ	e.

- We can interpret type well-formedness derivations
- Given a type variable context Θ , we define will define a variable interpretation θ as a map from dom(Θ) to semantic types.
- Given a variable interpretation θ , we write $(\theta, X/\alpha)$ to mean extending θ with an interpretation X for a variable α .

 $\llbracket - \rrbracket \in \mathsf{WellFormedType} \to \mathsf{VarInterpretation} \to \mathsf{SemanticType}$

$$\begin{bmatrix} \Theta \vdash \alpha \text{ type} \end{bmatrix} \theta = \theta(\alpha)$$
$$\begin{bmatrix} \Theta \vdash A \to B \text{ type} \end{bmatrix} \theta = \begin{cases} e & \text{ e halts } \land \\ \forall e' \in \llbracket \Theta \vdash A \text{ type} \rrbracket \theta. \\ (e e') \in \llbracket \Theta \vdash B \text{ type} \rrbracket \theta \end{cases}$$
$$\begin{bmatrix} \Theta \vdash \forall \alpha. B \text{ type} \rrbracket \theta = \begin{cases} e & \text{ halts } \land \\ \forall A \in \text{ type}, X \in \text{ SemType.} \\ (e A) \in \llbracket \Theta, \alpha \vdash B \text{ type} \rrbracket (\theta, X/\alpha) \end{cases}$$

Note the *lack* of a link between A and X in the $\forall \alpha$. B case

- **Closure:** If θ is an interpretation for Θ , then $\llbracket \Theta \vdash A$ type $\rrbracket \theta$ is a semantic type.
- Exchange: $\llbracket \Theta, \alpha, \beta, \Theta' \vdash A \text{ type} \rrbracket = \llbracket \Theta, \beta, \alpha, \Theta' \vdash A \text{ type} \rrbracket$
- Weakening: If $\Theta \vdash A$ type, then $\llbracket \Theta, \alpha \vdash A$ type $\rrbracket (\theta, X/\alpha) = \llbracket \Theta \vdash A$ type $\rrbracket \theta$.
- Substitution: If $\Theta \vdash A$ type and $\Theta, \alpha \vdash B$ type then $\llbracket \Theta \vdash \llbracket A/\alpha \rrbracket B$ type $\rrbracket \theta = \llbracket \Theta, \alpha \vdash B$ type $\rrbracket (\theta, \llbracket \Theta \vdash A$ type $\rrbracket \theta/\alpha)$

Each property is proved by induction on a type well-formedness derivation.

Closure: If θ interprets Θ , then $\llbracket \Theta \vdash \forall \alpha$. A type $\rrbracket \theta$ is a type.

Suffices to show: if $e \sim e'$, then $e \in \llbracket \Theta \vdash \forall \alpha$. A type $\rrbracket \theta$ iff $e' \in \llbracket \Theta \vdash \forall \alpha$. A type $\rrbracket \theta$.

0	$e \sim e'$	Assumption
1	$e' \in \llbracket \Theta dash orall lpha.$ A type $ rbracket heta$	Assumption
2	$\forall (C, X). \ e' \ C \in \llbracket \Theta, \alpha \vdash A \ type rbracket (\theta, X/\alpha)$	Def.
3	Fix arbitrary (C,X)	
4	$e' C \in \llbracket \Theta, lpha dash A \; type rbracket \; (heta, X / lpha)$	By 2
5	$e \ C \rightsquigarrow e' \ C$	CongForall on 0
6	$e {\mathcal C} \in \llbracket \Theta, lpha dash {\mathsf A}$ type]] ($ heta, {\mathsf X} / lpha$)	Induction on 4,5
7	$\forall (C, X). \ e \ C \in \llbracket \Theta, \alpha \vdash A \ type rbracket \ (\theta, X/\alpha)$	
8	$e \in \llbracket \Theta \vdash orall lpha$. A type $\rrbracket heta$	From 7

 $\llbracket \Theta, \alpha \vdash \forall \beta. B \text{ type} \rrbracket (\theta, \llbracket \Theta \vdash A \text{ type} \rrbracket \theta) = \llbracket \Theta \vdash [A/\alpha] (\forall \beta. B) \text{ type} \rrbracket \theta$

- 1. We assume $e \in \llbracket \Theta, \alpha \vdash \forall \beta. B \text{ type} \rrbracket (\theta, \llbracket \Theta \vdash A \text{ type} \rrbracket \theta)$
- 2. We want to show: $e \in \llbracket \Theta \vdash [A/\alpha](\forall \beta. B)$ type $\rrbracket \theta$.
- 3. Expanding the definition of 1:

 $\forall (C, X). \ e \ C \in \llbracket \Theta, \alpha, \beta \vdash B \ \text{type} \rrbracket \ (\theta, \llbracket \Theta \vdash A \ \text{type} \rrbracket \ \theta, X/\beta).$

- 4. For 2, it suffices to show: $\forall (C, X). \ e \ C \in \llbracket \Theta, \beta \vdash \llbracket A/\alpha \rrbracket (B) \ type \rrbracket (\theta, X/\beta).$
 - Fix (*C*, *X*)
 - · So *e C* ∈ $\llbracket \Theta, \alpha, \beta \vdash B$ type \rrbracket (*θ*, $\llbracket \Theta \vdash A$ type \rrbracket *θ*, *X*/β)
 - Exchange: $e C \in \llbracket \Theta, \beta, \alpha \vdash B \text{ type} \rrbracket (\theta, X/\beta, \llbracket \Theta \vdash A \text{ type} \rrbracket \theta)$
 - Weaken: $e C \in \llbracket \Theta, \beta, \alpha \vdash B \text{ type} \rrbracket (\theta, X/\beta, \llbracket \Theta, \beta \vdash A \text{ type} \rrbracket (\theta, X/\beta))$
 - Induction: $eC \in \llbracket \Theta, \beta \vdash [A/\alpha]B$ type $\rrbracket (\theta, X/\beta)$

If we have that

•
$$\overbrace{\alpha_1,\ldots,\alpha_k}^{\Theta}$$
; $\overbrace{x_1:A_1,\ldots,x_n:A_n}^{\Gamma} \vdash e:B$

$$\cdot \Theta \vdash \mathsf{\Gamma} \mathsf{ctx}$$

- $\cdot \ \theta$ interprets Θ
- For each $x_i : A_i \in \Gamma$, we have $e_i \in \llbracket \Theta \vdash A_i \text{ type} \rrbracket \theta$

Then it follows that:

$$\cdot \ [C_1/\alpha_1, \ldots, C_k/\alpha_k][e_1/x_1, \ldots, e_n/x_n]e \in \llbracket \Theta \vdash B \text{ type} \rrbracket \theta$$

- 1. Prove the other direction of the closure property for the $\Theta \vdash \forall \alpha$. A type case.
- 2. Prove the other direction of the substitution property for the $\Theta \vdash \forall \alpha$. A type case.
- 3. Prove the fundamental lemma for the forall-introduction case Θ ; $\Gamma \vdash \Lambda \alpha$. $e : \forall \alpha$. A.