
Introduction to Julia

Markus Kuhn

Department of Computer Science and Technology
University of Cambridge

https://www.cl.cam.ac.uk/teaching/2526/TeX+Julia/

julia-slides-4up.pdf 2025-10-14 20:50 9970d3c 1

Technical computing languages

▶ support rapid prototyping and interactive exploration of numerical
algorithms and data sets

▶ high-level language (garbage collecting, var-len structures)

▶ comprehensive support for linear algebra, statistics, and plotting

▶ main data types: multi-dimensional numeric arrays and matrices

▶ operators and functions can work on entire vectors or matrices
⇒ rarely necessary to write out loops

▶ use internally highly optimized numerical libraries
(BLAS, LAPACK, FFTW)

▶ support interactive use via read-evaluate-print loop (REPL)

▶ interpreted or just-in-time compiled, notebook support

▶ ecosystem of toolboxes/modules/packages for easy access to
standard algorithms from many fields: statistics, machine learning,
image processing, signal processing, neural networks, wavelets,
communications systems, etc.

▶ very easy I/O for many data/multimedia file formats

▶ widely used as a visualization and teaching tool
2

Older contenders

▶ MATLAB – “matrix laboratory” student tool (University of New
Mexico, 1970s), commercial product since 1984, very widely used
since 1990s in engineering simulations and teaching, initially not a
general-purpose language (e.g., object classes only from 2008,
dictionaries only added in 2022), integrated IDE, since 2000 based
on Java JVM code generation
Campus licence:
https://uk.mathworks.com/academia/tah-portal/the-university-of-cambridge-666637.html

▶ Similar to (earlier versions of) MATLAB, subset compatible:
GNU Octave, SciLab, FreeMat

▶ R – focus on statistics and plotting
https://www.r-project.org/

▶ Python – a full-featured programming language. Modules:
• numpy – MATLAB-like numerical arrays, fast linear algebra

• matplotlib – MATLAB-like plotting functions
https://matplotlib.org/

• SciPy – scientific computing, Pandas – data analysis, etc.

▶ others: LuaJIT (SciLua), Perl Data Language (PDL), OCaml (Owl)
R and especially Python became very popular ≈2000–2010, but are much slower than compiled
statically typed C/C++/Fortran, as their dynamic types were intended for interpreted execution. In
HPC applications, they remain mainly configuration/glue languages for C/C++/Fortran libraries.

3

Julia

Modern, fast, full-featured, compiled, interactive language,
initially created 2009–2012 at Massachusetts Institute of Technology
by J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah.

▶ MATLAB-inspired syntax (especially much nicer
and compacter array syntax than NumPy)

▶ not intended to be MATLAB compatible

▶ combines dynamic and static type systems via multiple dispatch

▶ just-in-time compiled by LLVM backend

▶ with some care, Julia code can execute nearly as fast as C/C++

▶ aims to solve the two-language problem
(versus e.g. Python having to call C/C++ code for performance)

▶ can also call C, C++, Python, R, Fortran functions

▶ LISP-like metaprogramming, rich flexible parametric type system

▶ built-in package manager for easy access to package ecosystem,
version-controlled virtual package environments (“projects”)

▶ multiple dispatch helps with reusing types across packages

▶ Backwards-compatible since version 1.0 (2018)
4

Shootout

import random
import time

def monte_carlo_pi(n):
inside = 0
for i in range(n):

x = random.random()
y = random.random()
if x**2 + y**2 <= 1.0:

inside += 1
return 4.0 * inside / n

Benchmark
start = time.time()
result = monte_carlo_pi(100_000_000)
elapsed = time.time() - start

print(f"Time: {elapsed:.3f} seconds")
print(f"Estimated pi: {result}")

$ python3 benchmark.py
Time: 31.345 seconds
Estimated pi: 3.14168972

function monte_carlo_pi(n)
inside = 0
for i in 1:n

x = rand()
y = rand()
if x^2 + y^2 <= 1.0

inside += 1
end

end
return 4.0 * inside / n

end

Warm up (compile)
monte_carlo_pi(100)

Benchmark
@time result = monte_carlo_pi(100_000_000)
println("Estimated pi: ", result)

$ julia benchmark.jl
0.493790 seconds (13 allocations: 592 bytes)

Estimated pi: 3.14145216

5

Julia shortcomings

▶ start-up delay when loading/calling large packages, as they need to
be JIT compiled first (“time to first plot”)
Since Julia 1.9 much faster thanks to on-disc cache for pre-compiled object code of
packages.

▶ not aimed at compilation of stand-alone binaries
Julia 1.12 comes with a new experimental juliac compiler tool for building binaries.

▶ not aimed at hard real-time applications: heap memory allocation
and automatic mark-and-sweep garbage collection can introduce
non-deterministic delays
Manual control of memory allocation is possible, but not typical Julia style, and often not
supported by ecosystem packages.

▶ package ecosystem and package documentation sometimes still less
mature or complete than that of Python, R, MATLAB
But it is very easy to get involved via Pkg.develop and GitHub pull requests.

▶ diversity of package ecosystem can be confusing initially (e.g.
several competing major plotting libraries), usually more than one
way of doing everything (esp. compared to MATLAB)
Hence this quick introductory tour!

6

Installing Julia via Juliaup (recommended)

The Juliaup tool automates installing and updating Julia.

Follow the instructions at: https://julialang.org/install/
Juliaup also makes it easy to switch between several versions of Julia installed simultaneously:

$ juliaup add 1.10 # install the latest 1.10 (LTS) release
$ julia +1.10 # start that version
$ juliaup default 1.10 # make that the default version
$ juliaup status

Windows: install Julia with Juliaup using either

▶ Microsoft Store

▶ C:\>winget install --name Julia --id 9NJNWW8PVKMN -e -s msstore

Linux/Unix/macOS:

Run in your terminal the shell command line

$ curl -fsSL https://install.julialang.org | sh

This will interactively guide you through installing juliaup and a julia

wrapper command in ~/.juliaup/bin/ and help you to add that folder to
your PATH environment variable.

Julia versions packaged by Linux distributors are still better avoided (often lack LLVM patches).

7

Installing Julia manually

Download the current stable or long-term support (LTS) release (e.g.
v1.10.10) from:

https://julialang.org/downloads/

Windows: Run the 64-bit installer (e.g., julia-1.10.10-win64.exe), then
add “C:\Program Files\Julia-1.10\bin” to your PATH environment
variable.
Also: On Windows version older than Windows 11, install Windows Terminal and call Julia inside
that, for much better terminal-emulation behaviour than in cmd.exe.

Homebrew: (on macOS or Linux)

$ brew install --cask julia

or

macOS: Install the 64-bit .dmg package, then add to your PATH the path
“/Applications/Julia-1.10.app/Contents/Resources/julia/bin”.

Linux: Download the julia-1.10.10-linux-x86_64.tar.gz tarball and
unpack somewhere convenient, e.g. at /opt/julia-1.10.10 with e.g.

$ sudo bash

cd /opt && tar xvzf /path/to/julia-1.10.10-linux-x86_64.tar.gz

Then add “/opt/julia-1.10.10/bin” to your PATH environment variable.
8

Documentation

The Julia documentation at

https://docs.julialang.org/

consists of the core language manual, plus the reference manuals for

▶ “Base” – the built-in standard functions and types

▶ “Standard Library” – packages preinstalled with Julia

These reference manuals are autogenerated from “docstrings” embedded
in the source code. You can also read these docstrings from the REPL
help mode with “?function ”.

Most of “Base” and “Standard Library” are written in Julia, with some C. The
@less macro followed by a function call displays the called method in the Julia
source code, e.g.

julia> @less exit()

exit() = exit(0)

shows that exit() just calls exit(0), while providing an integer exit code calls
the internal C function jl_exit:

julia> @less exit(0)

exit(n) = ccall(:jl_exit, Cvoid, (Int32,), n)

9

Basic REPL use

Invoking julia without a script.jl filename prints a banner and starts the
REPL. Enter Julia expressions and it will display the result:

$ julia

_

_ _ _(_)_ | Documentation: https://docs.julialang.org

(_) | (_) (_) |

_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.

| | | | | | |/ _` | |

| | |_| | | | (_| | | Version 1.10.10 (2025-06-27)

_/ |__'_|_|_|__'_| | Official https://julialang.org/ release

|__/ |

julia> 6*7

42

Press one of the keys ?] ; to switch the julia> REPL prompt into one
of these alternate REPL modes: help mode, package manager, shell mode:

help?> exit

(@v1.10) pkg> status

shell> date

Press backspace to leave each mode and return to the julia> prompt.

Type Ctrl-D or exit() to leave julia.

10

Installing packages

Julia’s Standard Library does not contain e.g. plotting, audio or
digital-signal-processing functions, but add-on packages that provide
these (and their dependencies) can be installed easily from the REPL.

Hit the] key to enter pkg mode, then type e.g.

(@v1.10) pkg> add Plots WAV DSP

(@v1.10) pkg> status

Status `/home/mgk25/.julia/environments/v1.10/Project.toml`

[717857b8] DSP v0.8.4

[91a5bcdd] Plots v1.41.1

[8149f6b0] WAV v1.2.0

Julia’s Pkg manager downloads https://github.com/JuliaRegistries/General and searches in
it for the latest versions of the registered packages you asked to add. [You can also ask for specific
versions (add Plots@1.35.3) or add unregistered packages by providing a git URL.]

To modify a downloaded package, use e.g. “dev WAV” to prepare and use a local git clone of that
package in ~/.julia/dev/WAV/. Later use “free WAV” to return to a registered version.

Quick docs: type ? or prefix a pkg-mode command with ?

Full Pkg.jl documentation: https://pkgdocs.julialang.org/
Packages and their metadata are all installed into ~/.julia/ by default. Set the environment
variable JULIA_DEPOT_PATH if you want them elsewhere.

11

Julia basic types and their literals

Bool false, true

Int, Int8, ..., Int128 123, 1_000_000, UInt128(2)^127

UInt, UInt8, ..., UInt128 0xff, 0x0012, 0b1011, 0o377

Float64, Float32, Float16 .5, 1.0, 3e6, 2.3f9, NaN, -Inf16

Complex{Float64} 0.0 + 1.0im

Rational{Int64} 3//4 + 1//2 == 5//4

Char 'a', '\n', '\u20ac'

String "hi", "I am \"$name\"", "1+1=$(1+1)"

Symbol :test

Vector{Int} = Array{Int,1} [1, 2, 3]

Matrix{Int} = Array{Int,2} [1 2; 3 4]

Tuple{Int64,Char,Bool} (1, 'a', false)

Nothing nothing

Missing missing + 1 == missing

Int and UInt arithmetic is not checked for overflow, like in C: 2^64==0
Use floating-point literals to get floating-point operations: 2.0^64 > 0

Type aliases on 64-bit CPUs: Int = Int64, UInt = UInt64
12

Julia matrices

Assign a 3× 3 matrix of integers:

julia> a = [8 1 6; 3 5 7; 4 9 2]

3Ö3 Matrix{Int64}:
8 1 6

3 5 7

4 9 2

Semicolons equal line feeds:

julia> a = [8 1 6

3 5 7

4 9 2]

3Ö3 Matrix{Int64}:
8 1 6

3 5 7

4 9 2

Access a single element:

julia> a[2,3]

7

Vector and matrix indices start at 1. The first
index selects the row, the second the column,
like in linear algebra notation.

julia> a[3,2];

julia> ans

9

The REPL normally prints the value returned
by each expression entered (assignment returns
the value assigned). Following an expression
with a semicolon suppresses this.

The value of the last expression evaluated in
the REPL is also assigned to variable ans.

13

Julia vectors

Vectors are one-dimensional arrays that act in a linear-algebra context
like a vertical/column vector:

julia> b = [1, 2, 3]

3-element Vector{Int64}:
1

2

3

They are different from horizontal/row vectors, which are stored as
two-dimensional 1× n matrices:

julia> b = [10 20 30]

1Ö3 Matrix{Int64}:
10 20 30

14

Julia range objects

start :stop and start :step :stop generate a range of numbers:

-1:3 == [-1, 0, 1, 2, 3]

3:0 == Int64[]

1:3:12 == [1, 4, 7, 10]

3:-0.5:1 == [3.0, 2.5, 2.0, 1.5, 1.0]

The colon actually generates a range object, which behaves like a vector when used like one. The
collect function copies that emulated vector into a real vector in memory.

Loop example:

julia> b = 0; for i in 1:10; b += i; end; b

55
Alternatively:

range(1, length=10) == 1:10
range(1, step=2, stop=10) == 1:2:10

Vectors and ranges as matrix indices select several rows and columns.

When used inside a matrix index, the variable end provides the highest
index value: a[end, end-1] == 9.

Using just “:” is equivalent to “1:end” and can be used to select an
entire row or column.

15

Row and column selection

Select rows, columns and
submatrices of a:

julia> a[:,:]

3Ö3 Matrix{Int64}:
8 1 6

3 5 7

4 9 2

julia> a[1,:]

3-element Vector{Int64}:
8

1

6

julia> a[:,1]

3-element Vector{Int64}:
8

3

4

julia> a[2:3,1:2]

2Ö2 Matrix{Int64}:
3 5

4 9

Matrices can also be accessed as a
1-dimensional vector:

julia> a[1:5]

5-element Vector{Int64}:
8

3

4

1

5

julia> a[6:end]

4-element Vector{Int64}:
9

6

7

2

julia> a[1:4:9]

3-element Vector{Int64}:
8

5

2

Julia matrices use column-major storage
order, like Fortran/MATLAB/R, unlike C.

16

Element-wise operators and broadcasting

Prefix any operator with . to apply it element-by-element to matrices and
vectors. For element-wise function calls, insert dot before opening parenthesis.

julia> [1 2 3] + 5

ERROR: MethodError:

For element-wise addition, use

broadcasting with dot syntax:

array .+ scalar

julia> [1 2 3] .+ 5

1Ö3 Matrix{Int64}:
6 7 8

julia> 2 .^ [1 2 3]

1Ö3 Matrix{Int64}:
2 4 8

julia> sqrt.([4 9 16])

1Ö3 Matrix{Float64}:
2.0 3.0 4.0

Dotted operators also grow (broadcast) vectors and matrices along singleton
dimensions, until both operands have the same dimensions:

julia> [8 1 6; 3 5 7] .+ [10; 20]

2Ö3 Matrix{Int64}:
18 11 16

23 25 27

17

Combining matrices and vectors

Use [] to build new matrices, where ; joins submatrices vertically (dimension
1), space (or ;;) joins them horizontally (dimension 2), ;;; joins them in
dimension 3, etc. The , does not join matrices or vectors, it separates elements.

julia> a = [8 1 6; 3 5 7; 4 9 2]

3Ö3 Matrix{Int64}:
8 1 6

3 5 7

4 9 2

julia> d = [a[:,end] a[1,:]]

3Ö2 Matrix{Int64}:
6 8

7 1

2 6

julia> e = [zeros(1,3); a[2,:]']

2Ö3 Matrix{Float64}:
0.0 0.0 0.0

3.0 5.0 7.0

julia> [[1,2],[3,3]]

2-element Vector{Vector{Int64}}:
[1, 2]

[3, 3]

You can also mask elements:

julia> a .> 5

3Ö3 BitMatrix:

1 0 1

0 0 1

0 1 0

julia> a[a .> 5] .= 0 ; a

3Ö3 Matrix{Int64}:
0 1 0

3 5 0

4 0 2

18

Matrix multiplication

Operators on scalars and matrices:

julia> [1 1; 1 0] * [2 3]'

2Ö1 Matrix{Int64}:
5

2

julia> [1 2 3] .* [10 10 15]

1Ö3 Matrix{Int64}:
10 20 45

Inner and outer vector product:

julia> [2 3 5] * [1 7 11]'

1Ö1 Matrix{Int64}:
78

julia> [2 3 5]' * [1 7 11]

3Ö3 Matrix{Int64}:
2 14 22

3 21 33

5 35 55

Complex number types: Complex{Int16}, Complex{Float64}, etc.

The imaginary unit vector
√
−1 is available as 1im and vectors and

matrices can also be complex.

Related functions: real, imag, conj, exp, cis, abs, angle

19

Plotting

using Plots

x = 0:20;
y = 0.5 .- 0.5*cos.(2*pi * x/20);
plot(x, y; line=:stem, marker=:circle,

legend=false,
title="20-point raised cosine")

t = 0:0.1:10;
x = exp.(t * (1im - 1/3));
plot(t, [real(x) imag(x)];

grid=true,
label=["real" "imaginary"])

Function plot expects a vector of x coordinates, and a vector or matrix of y
coordinates, one column per curve. Use plot! to add additional curves with
independent x coordinates.

Use savefig("plot2.pdf") to save current figure as graphics file.

20

2D plotting

using Plots

x = -20:0.5:20;
y = -20:0.5:20;
r = sqrt.(x.^2 .+ y'.^2);
s = sin.(r) ./ r; s[findall(r.==0)] .= 1;
wireframe(x, y, s; grid=true)

heatmap(x, y, s; c=:grays,
aspect_ratio=1, xlim=x[[1,end]])

Plots.jl manual: https://docs.juliaplots.org/

21

Functions

To define a new function, for example decibel(x) = 10x/20, write

function decibel(x)

return 10 .^ (x ./ 20)

end

or simply

decibel(x) = 10 .^ (x ./ 20)

and call as

julia> decibel(40)

100.0

Note that the function needs no type declaration for parameters. Each time the function is called
with a new type, a new method will be JIT compiled for that type signature.

Type annotations using :: are assertions and for type-dependent dispatch.

Default values for positional and keyword parameters:

function decibel(x=0; base::Number=10)

return base .^ (x ./ 20)

end

22

Example: generating an audio illusion

Generate an audio file with 12 sine tones of apparently continuously
exponentially increasing frequency, which never leave the frequency range
300–3400 Hz. Do this by letting them wrap around the frequency interval
and reduce their volume near the interval boundaries based on a
raised-cosine curve applied to the logarithm of the frequency.

First produce a 2 s long waveform in which each tone raises 1/12 of the
frequency range, then concatenate that into a 60 s long 16-bit WAV file,
mono, with 16 kHz sampling rate. Avoid phase jumps.

Parameters:

fs = 16000; # sampling frequency [Hz]

d = 2; # time after which waveform repeats [s]

n = 12; # number of tones

fmin = 300; # lowest frequency

fmax = 3400; # highest frequency

A variant of this audio effect, where each tone is exactly
one octave (factor 2 in frequency) from the next, is known
as the Shepard–Risset glissando.

What changes to the parameters would produce that?

23

Example solution:
using DSP, Plots, WAV

t = 0:1/fs:d-1/fs; # timestamps for each sample point

normalized logarithm of frequency of each tone (row)

for each sample point (column), all rising linearly

from 0 to 1, then wrap around back to 0

l = mod.(((0:n-1)/n) .+ (t/(d*n))', 1);

f = fmin * (fmax/fmin) .^ l; # freq. for each tone and sample

p = 2*pi * cumsum(f, dims=2) / fs; # phase for each tone and sample

make last column a multiple of 2*pi for phase continuity

p = ((2*pi*floor.(p[:,end]/(2*pi))) ./ p[:,end]) .* p;

s = sin.(p); # sine value for each tone and sample

mixing amplitudes from raised-cosine curve over frequency

a = 0.5 .- 0.5 * cos.(2*pi * l);

w = sum(s .* a, dims=1)/n; # mix tones together, normalize to [-1, +1]

w = repeat(vec(w), 3); # repeat waveform 3x

m = spectrogram(w, 2048, 1800; fs, window=hamming);

ps = 10 * log10.(power(m)); mx = maximum(ps);

heatmap(time(m), freq(m), ps;

xlabel="time [s]", ylabel="frequency [Hz]",

ylim=(0, fmax*1.1), clim=(mx-47,mx))

savefig("ladder-jl.pdf")

w = repeat(w, 5); # repeat waveform 5x

#wavplay(w, fs);

wavwrite(w, "ladder.wav", Fs=fs); # make audio file

24

Running Julia code

There are many ways to run Julia code:

▶ Load script manually from REPL:

julia> include("script.jl")

▶ Run as script:

$ julia script.jl

▶ Run as script, then activate REPL (e.g., to manually call functions):

$ julia -i script.jl

▶ Automatically reload modified source files:
https://github.com/timholy/Revise.jl

▶ Run from within an IDE, such as Visual Studio Code:
https://code.visualstudio.com/docs/languages/julia

▶ Jupyter notebooks – for Julia, Python, R, etc.
https://github.com/JuliaLang/IJulia.jl

▶ Pluto.jl notebooks – reactive notebooks that are Julia scripts
https://github.com/fonsp/Pluto.jl

25

Pluto notebooks

▶ Web browser + JavaScript based working environment, Julia server

▶ Notebook is a sequence of “cells”, each with a Julia expression

▶ Add a new cell by clicking “+” above/below existing cell

▶ Run a cell by pressing Shift+Enter

▶ Return value of the expression in a cell is displayed above the cell

▶ Notebooks can be exported as PDF or static HTML

▶ Cell can output pretty documentation as Markdown md"..." or
HTML html"..." strings, cell source code can be hidden

Pluto notebooks are “reactive”, like a spreadsheet

▶ Each global variable can only be assigned to in one cell

▶ If running that cell changes a global variable, then all other cells that
read that global variable get automatically re-evaluated

▶ A Pluto notebook is just a Julia script containing the code from all
cell, arranged in the order in which they need to be executed

▶ The order in which cells appear in the browser does not matter
To run multiple expressions in the same Pluto cell, wrap them in a begin ... end block.
To create a lexical scope for local variables in a cell, use instead let ... end blocks or functions.

26

Multiple dispatch

Julia functions are commonly written without specifying argument types:

julia> function biggest(x, y)

if x < y ; return y

else return x end

end

biggest (generic function with 1 method)

julia> biggest(3, 3.14), biggest("All", "B")

(3.14, "B")

Julia compiles for each call signature encountered at compile time a specialized
instance of the function, e.g. here for

biggest(x::Int64, y::Float64)

biggest(x::String, y::String)

And those again call specialized code for other functions, such as

<(x::Int64, y::Float64)

<(x::String, y::String)

Even though Julia source code may look like that of a dynamically-typed scripting language (often
no type declaration), if the compiler can infer the types of function calls at compile time, it will
produce efficient statically-typed code.

But Julia can also dispatch methods at run-time based on the non-inferrable dynamic type of any
arguments (not just the first one, as in “single dispatch” OOP languages like C++, Java, Python).

27

Methods

If we define for a function (here: “biggest”) several “methods”, which
have the same name but different argument types, the most specific
method will be called:

julia> function biggest(x, y)

if x < y ; return y

else return x end

end

biggest (generic function with 1 method)

julia> biggest(3, 3.14), biggest("All", "B")

(3.14, "B")

julia> biggest(x::String, y::String) =

if length(x) < length(y); y else x end

biggest (generic function with 2 methods)

julia> biggest(3, 3.14), biggest("All", "B")

(3.14, "All")

28

Type stability

Julia code is more efficient if the compiler can infer fixed concrete types
for each expression in a function:

julia> using BenchmarkTools

julia> function compute(n)

r = [] # Vector{Any} - type instability!

for i in 1:n

push!(r, sqrt(i))

end

return sum(r)

end

julia> @btime compute(100_000)

3.371 ms (200017 allocations: 4.88 MiB)

2.1082008973917738e7

29

Type stability

Julia code is more efficient if the compiler can infer fixed concrete types
for each expression in a function:

julia> using BenchmarkTools

julia> function compute(n)

r = Float64[] # Vector{Float64} - type stable

for i in 1:n

push!(r, sqrt(i))

end

return sum(r)

end

julia> @btime compute(100_000)

498.374 µs (18 allocations: 1.83 MiB)

2.108200897391774e7

30

Cheatsheet: finding out things in Julia

typeof(...) type of any object
sizeof(...) array dimensions
axes(...) array index ranges
eachindex(...) vector index range
eltype(...) element type of an Array
apropos("keyword") search in documentation for string
methods(open) list all methods for a function
methodswith(Vector{UInt8}) list all methods that accept a type
@show expr show expression and result, return result
dump(...) field types and values of structs
fieldnames(Complex) fieldnames of a struct
Complex{Real}.types types of struct fields
names(Base) names exported by a module
subtypes(AbstractString) list of immediate subtypes of a type
supertype(String) return the supertype of a type

@code_lowered, @code_typed, @code_warntype, @code_llvm,
@code_native show code in different compilation stages,
@edit, @less give easy access to source code.

31

MATLAB, Julia, NumPy: comparative cheat sheet
MATLAB Julia NumPy

vector size (1,n) [1 2 3] [1 2 3] np.array([1, 2, 3]).reshape(1, 3)

vector size (n,1) [1; 2; 3] [1 2 3]’ np.array([1, 2, 3]).reshape(3, 1)

vector size (n) n/a [1, 2, 3] np.array([1, 2, 3])

j to n step k j:k:n j:k:n np.arange(j, n+1, k)

matrix [1 2; 3 4] [1 2; 3 4] np.array([[1, 2], [3, 4]])

0 matrix zeros(2, 2) zeros(2, 2) np.zeros((2, 2))

1 matrix ones(2, 2) ones(2, 2) np.ones((2, 2))

identity matrix eye(2, 2) I np.eye(2)

diagonal matrix diag([1 2 3]) Diagonal([1, 2, 3]) np.diag([1, 2, 3])

transpose A.’ transpose(A) A.T

complex conj. transpose A’ A’ A.conj()

concat hor. [[1 2] [1 2]] [[1 2] [1 2]] B = np.array([1, 2])
np.hstack((B, B))

matrix to vector A(:) A[:] A.flatten()

flip left/right fliplr(A) reverse(A,dims=2) np.fliplr(A)

broadcast a function f=@(x) x.^2;
f(x)

f(x)=x^2; f.(x) def f(x):
return x**2

f(x)

element A2,2 A(2, 2) A[2, 2] A[1, 1]

rows 1 to 4 A(1:4, :) A[1:4, :] A[0:4, :]

element-wise multipl. A .* B A .* B A * B

matrix multiplication A * B A * B A @ B

. . .

https://cheatsheets.quantecon.org/
32

