Randomised Algorithms

Lecture 11: Spectral Graph Theory

Thomas Sauerwald (tms41@cam.ac.uk)

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Origin of Graph Theory

Source: Wikipedia

Source: Wikipedia
Leonhard Euler (1707-1783)

Is there a tour which crosses each bridge exactly once?

Graphs Nowadays: Clustering

Goal: Use spectrum of graphs (unstructured data) to extract clustering (communitites) or other structural information.

Graph Clustering (applications)

- Applications of Graph Clustering
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
- ..
- Unsupervised learning method (there is no ground truth (usually), and we cannot learn from mistakes!)
- Different formalisations for different applications
- Geometric Clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.
- Graph Clustering: partition vertices in a graph
- modularity, conductance, min-cut, etc.

Graphs and Matrices

Graphs

Matrices

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

- Connectivity
- Bipartiteness
- Number of triangles
- Graph Clustering
- Graph isomorphism
- Maximum Flow
- Eigenvalues
- Eigenvectors
- Inverse
- Determinant
- Matrix-powers
- Shortest Paths
- . .

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

Adjacency Matrix

Adjacency matrix
Let $G=(V, E)$ be an undirected graph. The adjacency matrix of G is the n by n matrix \mathbf{A} defined as

$$
\mathbf{A}_{u, v}= \begin{cases}1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise } .\end{cases}
$$

$$
\mathbf{A}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

Properties of \mathbf{A} :

- The sum of elements in each row/column i equals the degree of the corresponding vertex $i, \operatorname{deg}(i)$
- Since G is undirected, \mathbf{A} is symmetric

Eigenvalues and Graph Spectrum of A

Eigenvalues and Eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

An undirected graph G is d-regular if every degree Graph Spectrum is d, i.e., every vertex has exactly d connections.

Let \mathbf{A} be the adjacency matrix of a d-regular graph G with n vertices. Then, A has n real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and n corresponding orthonormal eigenvectors f_{1}, \ldots, f_{n}. These eigenvalues associated with their multiplicities constitute the spectrum of G.
= orthogonal and normalised

Remark: For symmetric matrices we have algebraic multiplicity = geometric multiplicity (otherwise \geq)

Example 1

Bonus: Can you find a short-cut to $\operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I})$?

Question: What are the Eigenvalues and Eigenvectors?

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Example 1

$$
\text { Bonus: Can you find a short-cut to } \operatorname{det}(\mathbf{A}-\lambda \cdot \mathbf{I}) \text { ? }
$$

Question: What are the Eigenvalues and Eigenvectors?

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Solution:

- The three eigenvalues are $\lambda_{1}=\lambda_{2}=-1, \lambda_{3}=2$.
- The three eigenvectors are (for example):

$$
f_{1}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad f_{2}=\left(\begin{array}{c}
-\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right), \quad f_{3}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Laplacian Matrix

Laplacian Matrix
Let $G=(V, E)$ be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix L defined as

$$
\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}
$$

where I is the $n \times n$ identity matrix.

Question: What is the matrix $\frac{1}{d} \cdot \mathbf{A}$?

Laplacian Matrix

Laplacian Matrix

Let $G=(V, E)$ be a d-regular undirected graph. The (normalised) Laplacian matrix of G is the n by n matrix \mathbf{L} defined as

$$
\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}
$$

where \mathbf{I} is the $n \times n$ identity matrix.

$$
\mathbf{L}=\left(\begin{array}{cccc}
1 & -1 / 2 & 0 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 & 0 \\
0 & -1 / 2 & 1 & -1 / 2 \\
-1 / 2 & 0 & -1 / 2 & 1
\end{array}\right)
$$

Properties of \mathbf{L} :

- The sum of elements in each row/column equals zero
- L is symmetric

Relating Spectrum of Adjacency Matrix and Laplacian Matrix

Correspondence between Adjacency and Laplacian Matrix
\mathbf{A} and \mathbf{L} have the same set of eigenvectors.

Exercise: Prove this correspondence. Hint: Use that $\mathbf{L}=\mathbf{I}-\frac{1}{d} \mathbf{A}$. [Exercise 11/12.1]

Eigenvalues and Graph Spectrum of L

Eigenvalues and eigenvectors
Let $\mathbf{M} \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{C}$ is an eigenvalue of \mathbf{M} if and only if there exists $x \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ such that

$$
\mathbf{M} x=\lambda x
$$

We call x an eigenvector of \mathbf{M} corresponding to the eigenvalue λ.

Graph Spectrum
Let \mathbf{L} be the Laplacian matrix of a d-regular graph G with n vertices. Then, \mathbf{L} has n real eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and n corresponding orthonormal eigenvectors f_{1}, \ldots, f_{n}. These eigenvalues associated with their multiplicities constitute the spectrum of G.

Useful Facts of Graph Spectrum

Lemma

Let \mathbf{L} be the Laplacian matrix of an undirected, regular graph $G=(V, E)$ with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

1. $\lambda_{1}=0$ with eigenvector $\mathbf{1}$
2. the multiplicity of the eigenvalue 0 is equal to the number of connected components in G
3. $\lambda_{n} \leq 2$
4. $\lambda_{n}=2$ iff there exists a bipartite connected component.

The proof of these properties is based on a powerful characterisation of eigenvalues/vectors!

A Min-Max Characterisation of Eigenvalues and Eigenvectors

Courant-Fischer Min-Max Formula

Let \mathbf{M} be an n by n symmetric matrix with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$. Then,

$$
\lambda_{k}=\min _{S: \operatorname{dim}(S)=k} \max _{x \in S, x \neq 0} \frac{\boldsymbol{x}^{(i)^{T}} \mathbf{M} x^{(i)}}{x^{(i)^{T}} x^{(i)}}
$$

where S is a subspace of \mathbb{R}^{n}. The eigenvectors corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ minimise such expression.

$$
\lambda_{1}=\min _{x \in \mathbb{R}^{n} \backslash\{0\}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}
$$

minimised by an eigenvector f_{1} for λ_{1}

$$
\lambda_{2}=\min _{\substack{x \in \mathbb{R}^{n} \backslash\{\mathbf{0}\} \\ x \perp f_{1}}} \frac{x^{\top} \mathbf{M} x}{x^{\top} x}
$$

minimised by f_{2}

Quadratic Forms of the Laplacian

Lemma

Let \mathbf{L} be the Laplacian matrix of a d-regular graph $G=(V, E)$ with n vertices. For any $x \in \mathbb{R}^{n}$,

$$
x^{T} \mathbf{L} x=\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d} .
$$

Proof:

$$
\begin{aligned}
x^{T} \mathbf{L} x & =x^{T}\left(\mathbf{I}-\frac{1}{d} \mathbf{A}\right) x=x^{T} x-\frac{1}{d} x^{T} \mathbf{A} x \\
& =\sum_{u \in V} x_{u}^{2}-\frac{2}{d} \sum_{\{u, v\} \in E} x_{u} x_{v} \\
& =\frac{1}{d} \sum_{\{u, v\} \in E}\left(x_{u}^{2}+x_{v}^{2}-2 x_{u} x_{v}\right) \\
& =\sum_{\{u, v\} \in E} \frac{\left(x_{u}-x_{v}\right)^{2}}{d}
\end{aligned}
$$

Visualising a Graph

Question: How can we visualize a complicated object like an unknown graph with many vertices in low-dimensional space?

Embedding onto Line

Coordinates given by x

$$
\lambda_{2}=\frac{1}{d} \cdot \min _{\substack{x \in \mathbb{R}^{n} \backslash\{0\} \\ x \perp f_{1}}} \frac{\sum_{\{u, v\} \in E}\left(x_{u}-x_{v}\right)^{2}}{\|x\|_{2}^{2}}
$$

The coordinates in the vector \mathbf{x} indicate how similar/dissimilar vertices are. Edges between dissimilar vertices are penalised quadratically.

Outline

Introduction to (Spectral) Graph Theory and Clustering

Matrices, Spectrum and Structure

A Simplified Clustering Problem

A Simplified Clustering Problem

Partition the graph into connected components so that any pair of vertices in the same component is connected, but vertices in different components are not.

We could obviously solve this easily using DFS/BFS, but let's see how we can tackle this using the spectrum of L!

Example 2

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
& \mathbf{L}=\left(\begin{array}{ccccccc}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

Example 2

Question: What are the Eigenvectors with Eigenvalue 0 of \mathbf{L} ?

Solution:

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ccccccc}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right) \\
& \mathbf{L}=\left(\begin{array}{ccccccc}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 1 & -\frac{1}{2} & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -\frac{1}{2} & 0 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{2} & 1 & -\frac{1}{2} \\
0 & 0 & 0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 1
\end{array}\right)
\end{aligned}
$$

- Two smallest eigenvalues are $\lambda_{1}=\lambda_{2}=0$.
- The corresponding two eigenvectors are:

Thus we can easily solve the simplified clustering prob-
lem by computing the eigenvectors with eigenvalue 0
$f_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right), \quad f_{2}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right), \quad f_{2}=\left(\begin{array}{c}-1 / 3 \\ -1 / 3 \\ -1 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right)$ Next Lecture: A fine-grained $\begin{gathered}\text { approach works even if the } \\ \text { clusters are sparsely connected! }\end{gathered}$

Proof of Lemma, 2nd statement (non-examinable)

> Let us generalise and formalise the previous example!

Proof (multiplicity of 0 equals the no. of connected components):

1. (" $\Longrightarrow " c c(G) \leq \operatorname{mult}(0))$. We will show:
G has exactly k connected comp. $C_{1}, \ldots, C_{k} \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

- Take $\chi c_{i} \in\{0,1\}^{n}$ such that $\chi c_{i}(u)=\mathbf{1}_{u \in C_{i}}$ for all $u \in V$
- Clearly, the $\chi_{c_{i}}$'s are orthogonal
- $\chi_{c_{i}}^{\top} \mathbf{L} \chi c_{i}=\frac{1}{d} \cdot \sum_{\{u, v\} \in E}\left(\chi c_{i}(u)-\chi c_{i}(v)\right)^{2}=0 \Rightarrow \lambda_{1}=\cdots=\lambda_{k}=0$

2. (" $\Longleftarrow " c c(G) \geq \operatorname{mult}(0))$. We will show:
$\lambda_{1}=\cdots=\lambda_{k}=0 \Rightarrow G$ has at least k connected comp. C_{1}, \ldots, C_{k}

- there exist f_{1}, \ldots, f_{k} orthonormal such that $\sum_{\{u, v\} \in E}\left(f_{i}(u)-f_{i}(v)\right)^{2}=0$
- $\Rightarrow f_{1}, \ldots, f_{k}$ constant on connected components
- as f_{1}, \ldots, f_{k} are pairwise orthogonal, G must have k different connected components.

