
Computer Science & Technology

Advanced Topics in
Computer Architecture

Secure Processors 2: Speculative Execution Attacks

Dr. Jonathan Woodruff

Copyright © Jonathan Woodruff, 2023



2

Story of Transient Execution Vulnerabilities

§ Big surprise in 2017/18!
§ Discovered concurrently by Jann Horn from Google's Project Zero, 

Werner Haas and Thomas Prescher from Cyberus Technology, and 
Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael Schwarz 
from Graz University of Technology

§ Disclosed responsibly

§ Large overheads were incurred to mitigate
§ Up to 17% recorded in Amazon for Meltdown mitigation
§ Core i7 8086K: mean 17% overhead for microcode Spectre mitigation

§ This is much more overhead than anyone had previously endured for 
a side-channel attack against general computation

What is different?



3

Introduction

§ Introduction to transient execution attacks (Meltdown & Spectre)

§ Introduction to defences

§ Introduction to testing for transient execution vulnerabilities
and verification of transient execution vulnerability defences



4

Transient Execution Attacks

§ Transient execution definition:
Speculative execution which has failed and is “squashed” in the pipeline.

§ Attacks can leak the result of illegal behaviour during transient execution

§ Two stages of transient execution attacks:
§ Trigger illegal behaviour that produces secret value
§ Exfiltrate via side-channel

§ Encode in micro-architectural state
§ Decode in architectural state

§ Classes of transient execution attacks:
§ Meltdown – leverage transient execution

                  due to exception/fault
§ Spectre – leverage transient execution

               due to failed prediction

the instruction stream but to dispatch them in parallel, utiliz-
ing the CPU’s execution units as much as possible and, thus,
improving the overall performance. If the required operands
of a µOP are available, and its corresponding execution unit
is not busy, the CPU starts its execution even if µOPs earlier
in the instruction stream have not finished yet. As immediate
results are only made visible at the architectural level when
all previous µOPs have finished, CPUs typically keep track
of the status of µOPs in a so-called Reorder Buffer (ROB).
The CPU takes care to retire µOPs in-order, deciding to either
discard their results or commit them to the architectural state.
For instance, exceptions and external interrupt requests are
handled during retirement by flushing any outstanding µOP
results from the ROB. Therefore, the CPU may have executed
so-called transient instructions [56], whose results are never
committed to the architectural state.
Speculative Execution. Software is mostly not linear but
contains (conditional) branches or data dependencies between
instructions. In theory, the CPU would have to stall until a
branch or dependencies are resolved before it can continue
the execution. As stalling decreases performance significantly,
CPUs deploy various mechanisms to predict the outcome of a
branch or a data dependency. Thus, CPUs continue executing
along the predicted path, buffering the results in the ROB
until the correctness of the prediction is verified as its depen-
dencies are resolved. In the case of a correct prediction, the
CPU can commit the pre-computed results from the reorder
buffer, increasing the overall performance. However, if the
prediction was incorrect, the CPU needs to perform a roll-
back to the last correct state by squashing all pre-computed
transient instruction results from the ROB.
Cache Covert Channels. Modern CPUs use caches to hide
memory latency. However, these latency differences can be ex-
ploited in side-channels and covert channels [24,51,60,67,92].
In particular, Flush+Reload allows observations across cores
at cache-line granularity, enabling attacks, e.g., on crypto-
graphic algorithms [26, 43, 92], user input [24, 55, 72], and
kernel addressing information [23]. For Flush+Reload, the
attacker continuously flushes a shared memory address using
the clflush instruction and afterward reloads the data. If the
victim used the cache line, accessing it will be fast; otherwise,
it will be slow.

Covert channels are a special use case of side-channel at-
tacks, where the attacker controls both the sender and the
receiver. This allows an attacker to bypass many restrictions
that exist at the architectural level to leak information.
Transient Execution Attacks. Transient instructions reflect
unauthorized computations out of the program’s intended
code and/or data paths. For functional correctness, it is crucial
that their results are never committed to the architectural state.
However, transient instructions may still leave traces in the
CPU’s microarchitectural state, which can subsequently be
exploited to partially recover unauthorized results [50,56,85].
This observation has led to a variety of transient execution

preface1

reconstruct5

trigger instruction 2

transient instructions 3

fixup4

time
architectural architecturaltransient execution 

Figure 2: High-level overview of a transient execution attack
in 5 phases: (1) prepare microarchitecture, (2) execute a trig-
ger instruction, (3) transient instructions encode unauthorized
data through a microarchitectural covert channel, (4) CPU
retires trigger instruction and flushes transient instructions,
(5) reconstruct secret from microarchitectural state.

attacks, which from a high-level always follow the same ab-
stract flow, as shown in Figure 2. The attacker first brings
the microarchitecture into the desired state, e.g., by flushing
and/or populating internal branch predictors or data caches.
Next is the execution of a so-called trigger instruction. This
can be any instruction that causes subsequent operations to
be eventually squashed, e.g., due to an exception or a mis-
predicted branch or data dependency. Before completion of
the trigger instruction, the CPU proceeds with the execution
of a transient instruction sequence. The attacker abuses the
transient instructions to act as the sending end of a microar-
chitectural covert channel, e.g., by loading a secret-dependent
memory location into the CPU cache. Ultimately, at the re-
tirement of the trigger instruction, the CPU discovers the
exception/misprediction and flushes the pipeline to discard
any architectural effects of the transient instructions. How-
ever, in the final phase of the attack, unauthorized transient
computation results are recovered at the receiving end of the
covert channel, e.g., by timing memory accesses to deduce
the secret-dependent loads from the transient instructions.
High-Level Classification: Spectre vs. Meltdown. Tran-
sient execution attacks have in common that they abuse tran-
sient instructions (which are never architecturally committed)
to encode unauthorized data in the microarchitectural state.
With different instantiations of the abstract phases in Fig-
ure 2, a wide spectrum of transient execution attack variants
emerges. We deliberately based our classification on the root
cause of the transient computation (phases 1, 2), abstracting
away from the specific covert channel being used to transmit
the unauthorized data (phases 3, 5). This leads to a first im-
portant split in our classification tree (cf. Figure 1). Attacks
of the first type, dubbed Spectre [50], exploit transient exe-
cution following control or data flow misprediction. Attacks
of the second type, dubbed Meltdown [56], exploit transient
execution following a faulting instruction.

Importantly, Spectre and Meltdown exploit fundamentally
different CPU properties and hence require orthogonal de-
fenses. Where the former relies on dedicated control or data
flow prediction machinery, the latter merely exploits that data
from a faulting instruction is forwarded to instructions ahead

USENIX Association 28th USENIX Security Symposium    251

From: Canella, Claudio, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin 
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel 
Gruss. "A systematic evaluation of transient execution attacks and defenses." In 
28th USENIX Security Symposium (USENIX Security 19), pp. 249-266. 2019.

Meltdown-type effects, or that serializing instructions miti-
gate Spectre Variant 1 on any CPU.

In this paper, we present a systematization of transient
execution attacks, i.e., Spectre, Meltdown, Foreshadow, and
related attacks. Using our decision tree, transient execution
attacks are accurately classified through an unambiguous nam-
ing scheme (cf. Figure 1). The hierarchical and extensible na-
ture of our taxonomy allows to easily identify residual attack
surface, leading to 6 previously overlooked transient execu-
tion attacks (Spectre and Meltdown variants) first described in
this work. Two of the attacks are Meltdown-BND, exploiting
a Meltdown-type effect on the x86 bound instruction on Intel
and AMD, and Meltdown-PK, exploiting a Meltdown-type
effect on memory protection keys on Intel. The other 4 attacks
are previously overlooked mistraining strategies for Spectre-
PHT and Spectre-BTB attacks. We demonstrate the attacks
in our classification tree through practical proofs-of-concept
with vulnerable code patterns evaluated on CPUs of Intel,
ARM, and AMD.1

Next, we provide a classification of gadgets and their preva-
lence in real-world software based on an anaylsis of the Linux
kernel. We also give a short overview on current tools for
automatic gadget detection.

We then provide a systematization of the state-of-the-art
defenses. Based on this, we systematically evaluate defenses
with practical experiments and theoretical arguments to show
which work and which do not or cannot suffice. This sys-
tematic evaluation revealed that we can still mount transient
execution attacks that are supposed to be mitigated by rolled
out patches. Finally, we discuss how defenses can be designed
to mitigate entire types of transient execution attacks.
Contributions. The contributions of this work are:
1. We systematize Spectre- and Meltdown-type attacks, ad-

vancing attack surface understanding, highlighting mis-
classifications, and revealing new attacks.

2. We provide a clear distinction between Meltdown/Spectre,
required for designing effective countermeasures.

3. We provide a classification of gadgets and discuss their
prevalence in real-world software.

4. We categorize defenses and show that most, including
deployed ones, cannot fully mitigate all attack variants.

5. We describe new branch mistraining strategies, highlight-
ing the difficulty of eradicating Spectre-type attacks.

We responsibly disclosed the work to Intel, ARM, and AMD.
Experimental Setup. Unless noted otherwise, the experi-
mental results reported were performed on recent Intel Sky-
lake i5-6200U, Coffee Lake i7-8700K, and Whiskey Lake i7-
8565U CPUs. Our AMD test machines were a Ryzen 1950X
and a Ryzen Threadripper 1920X. For experiments on ARM,
an NVIDIA Jetson TX1 has been used.
Outline. Section 2 provides background. We systematize
Spectre in Section 3 and Meltdown in Section 4. We analyze

1
https://github.com/IAIK/transientfail

Transient
cause?

Spectre-type

microarchitec-
tural buffer

Meltdown-type

fault type

Spectre-PHT

Spectre-BTB

Spectre-RSB

Spectre-STL [29]

mistraining
strategy

Cross-address-space

Same-address-space

PHT-CA-IP ï

PHT-CA-OP ï

PHT-SA-IP [48, 50]

PHT-SA-OP ï

in-place (IP) vs., out-of-place (OP)

Cross-address-space

Same-address-space

BTB-CA-IP [13, 50]

BTB-CA-OP [50]

BTB-SA-IP ï

BTB-SA-OP [13]Cross-address-space

Same-address-space RSB-CA-IP [52, 59]

RSB-CA-OP [52]

RSB-SA-IP [59]

RSB-SA-OP [52, 59]

Meltdown-NM [78]

Meltdown-AC î

Meltdown-DE î

Meltdown-PF

Meltdown-UD î

Meltdown-SS î

Meltdown-BR

Meltdown-GP [8, 35]

Meltdown-US [56]

Meltdown-P [85, 90]

Meltdown-RW [48]

Meltdown-PK ï

Meltdown-XD î

Meltdown-SM î

Meltdown-MPX [40]

Meltdown-BND ï

prediction

fault

Figure 1: Transient execution attack classification tree with
demonstrated attacks (red, bold), negative results (green,
dashed), some first explored in this work (ï / î).2

and classify gadgets in Section 5 and defenses in Section 6.
We discuss future work and conclude in Section 7.

.

2 Transient Execution

Instruction Set Architecture and Microarchitecture. The
instruction set architecture (ISA) provides an interface be-
tween hardware and software. It defines the instructions that
a processor supports, the available registers, the addressing
mode, and describes the execution model. Examples of dif-
ferent ISAs are x86 and ARMv8. The microarchitecture then
describes how the ISA is implemented in a processor in the
form of pipeline depth, interconnection of elements, execution
units, cache, branch prediction. The ISA and the microarchi-
tecture are both stateful. In the ISA, this state includes, for
instance, data in registers or main memory after a success-
ful computation. Therefore, the architectural state can be ob-
served by the developer. The microarchitectural state includes,
for instance, entries in the cache and the translation lookaside
buffer (TLB), or the usage of the execution units. Those mi-
croarchitectural elements are transparent to the programmer
and can not be observed directly, only indirectly.
Out-of-Order Execution. On modern CPUs, individual in-
structions of a complex instruction set are first decoded and
split-up into simpler micro-operations (µOPs) that are then
processed. This design decision allows for superscalar op-
timizations and to extend or modify the implementation of
specific instructions through so-called microcode updates.
Furthermore, to increase performance, CPU’s usually imple-
ment a so-called out-of-order design. This allows the CPU
to execute µOPs not only in the sequential order provided by

2An up-to-date version of the tree is available at http://transient.
fail/

250    28th USENIX Security Symposium USENIX Association



5

Transient Execution: Definition
§ Pipelines speculate to achieve 

parallelism
§ That instructions will not trap
§ Branch prediction
§ Store/load independence
§ Many others…

§ Failed speculation must be 
detected, and “all” effects 
squashed to avoid corrupting 
architectural state

§ Transient execution = failed 
speculation

Transient execution affects timing !
From: Ryota Shioya. ”Visualizing the out-of-order CPU model." In 2018 ASPLOS Learning Gem5 Tutorial. IEEE, 2018.



6

Stages of Transient Execution Attacks
§Access secret in transient execution

§ Example: Meltdown-US loads
kernel memory from user space

§ Example: Spectre PHT can
perform out-of-bounds load

§ Exfiltrate secret through side channel
§ Example: cache

§ Encode: Perform secret-dependent cache-line load of array
§ Decode: Measure time to load array elements

§ Example: variable-delay arithmetic
§ Encode: Perform variable-delay arithmetic using the secret
§ Decode: Measure time spent in transient execution

From: Lawson, Nate. "Side-channel attacks on cryptographic software." IEEE 
Security & Privacy 7, no. 6 (2009): 65-68.



7

Classes of Transient Execution Attacks

§ Spectre: misprediction
§ Example: pattern history table

§ Train branch direction predictor that bounds
check will not fail (for example)

§ Call with an enormous offset to anywhere in
the address space

§ Ensure that the misprediction is not noticed
until the secret is read into the core

§ Example: Store-to-load forwarding
§ Train the store aliasing predictor that a load is independent of an earlier store

(the common case)
§ Load from a recently stored location such that the load speculatively overtakes the store
§ Ensure the store address resolution is delayed so that the old value is loaded into the core

§ Meltdown: exceptions/faults
§ Example Meltdown-US: user-space/kernel page table violation

§ Attempt load of kernel privilege page (as marked in page table) at user privilege
§ Ensure that the exception pipeline flush is delayed until the value is loaded into the core 

Fig. 12: CPU pipeline trace for Spectre showing loads dispatched during speculation. The bright instructions are 
executed and committed. The darkened/shaded instructions are flushed due to misspeculation. Loads are still 
dispatched.

From: Verma, Tarunesh, Achilleas Anastasopoulos, and Todd Austin. 
"These Aren’t The Caches You’re Looking For: Stochastic Channels 
on Randomized Caches." In 2022 IEEE International Symposium on 
Secure and Private Execution Environment Design (SEED), pp. 37-48. 
IEEE, 2022.



8

Defenses Against Transient Execution Attacks

§ Software
§ Don’t use feature that enables speculation

Discussion Question: How to work around Meltdown-US?
Hint: why does translation succeed at all?

§ Speculation barriers
Discussion Question: Where might we put barriers to avoid Meltdown-US?

§ Eliminate unsafe speculative paths
Discussion Question: How might we make a
bounds-check conditional branch safe in any case?

§Hardware
§ Can we limit speculation in “risky” circumstances?
§ Can we define domains for safe speculation?

From: Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg et 
al. "Spectre attacks: Exploiting speculative execution." Communications of the ACM 63, no. 7 (2020): 93-101.



9

Testing Transient Execution Attack Defenses

§Can we know if a processor is vulnerable to transient execution 
attacks?
§ Can we automatically test an existing processor?
§ Can we test an in-development design?

§Approaches
§ Can we automatically discover vulnerabilities with randomized sequences and 

some sort of expectation?
What behaviour should be expected?  Should this be specified for all implementations?

§ Can we statically check a hardware design to discover where “secret” state is 
exposed in transient execution?

§A lot of ideas floating round, and lots of things to try! 



10

Papers for this week

§ Spectre attacks: Exploiting speculative execution
Paul Kocher, Jann Horn,  Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, 
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz , 
Yuval Yarom
2019 IEEE Symposium on Security and Privacy

§ Speculative taint tracking: A comprehensive protection for 
speculatively accessed data

Yu, J., Yan, M., Khyzha, A., Morrison, A., Torrellas, J. and Fletcher, C.W.
2019 International Symposium on Microarchitecture

§Revizor: Testing black-box CPUs against speculation contracts
Oleksenko, O., Fetzer, C., Köpf, B. and Silberstein, M.
2022 Conference on Architectural Support for Programming Languages and 
Operating Systems

https://meltdownattack.com/spectre.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f19/www/papers/micro19-yu.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f19/www/papers/micro19-yu.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2022/03/Revizor.pdf

