Advanced Topics in
Computer Architecture

Secure Processors 2: Speculative Execution Attacks

Dr. Jonathan Woodruff

58 UNIVERSITY OF
¥ CAMBRIDGE

Computer Science & Technology
Copyright © Jonathan Woodruff, 2023

Story of Transient Execution Vulnerabilities

= Big surprise in 2017/18!

= Discovered concurrently by Jann Horn from Google's Project Zero,
Werner Haas and Thomas Prescher from Cyberus Technology, and
Daniel Gruss, Moritz Lipp, Stefan Mangard and Michael Schwarz
from Graz University of Technology

= Disclosed responsibly

* Large overheads were incurred to mitigate
= Up to 17% recorded in Amazon for Meltdown mitigation
= Core i7 8086K: mean 17% overhead for microcode Spectre mitigation

* This is much more overhead than anyone had previously endured for
a side-channel attack against general computation
What is different?

Introduction

* Introduction to transient execution attacks (Meltdown & Spectre)

= |ntroduction to defences

* Introduction to testing for transient execution vulnerabilities
and verification of transient execution vulnerability defences

Transient Execution Attacks

= Transient execution definition:

Speculative execution which has failed and is “squashed” in the pipeline.

= Attacks can leak the result of illegal behaviour during transient execution

= Two stages of transient execution attacks:
= Trigger illegal behaviour that produces secret value

= Exfiltrate via side-channel

= Encode in micro-architectural state

= Decode in architectural state

= Classes of transient execution attacks:

= Meltdown — leverage transient execution
due to exception/fault

= Spectre — leverage transient execution
due to failed prediction

microarchitec-
tural buffer

Spectre-type

prediction

Transient
cause?

fault

%)

Sfault type

Meltdown-type 1€

@ preface @ trigger instruction ‘)’ @ fixup
il i [@ transient instructions } E
A" =Emuem |
b | < %
: {] @ reconstruct

architectural : transient execution i architectural
time

»

Figure 2: High-level overview of a transient execution attack
in 5 phases: (1) prepare microarchitecture, (2) execute a trig-
ger instruction, (3) transient instructions encode unauthorized
data through a microarchitectural covert channel, (4) CPU
retires trigger instruction and flushes transient instructions,

(5) reconstruct secret from microarchitectural state. 7

From: Canella, Claudio, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin
Von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. "A systematic evaluation of transient execution attacks and defenses." In
28th USENIX Security Symposium (USENIX Security 19), pp. 249-266. 2019.

Transient Execution: Definition

04: 1dbu (r1) oc[Rn 1 [Ds 1 2 [Is[cm 1 2 6
= Pipelines speculate to achieve| @ :: T
parallelism D OCECEE——— |« mispredicted branch
capeq LEfoclmn 1 Jos 1 2 5 [1s]
i i i o SRS CES— ¥
* That instructions will not trap Lelocmm s 12
nd [Efoc[mn 1 [1s]
* Branch prediction i STSTENrear
= Store/load independence e FAP R
tore/load | oy [
= Many others... SO .
th r3,128(rs) _
- : Lo —
= Failed speculation must be — Flushed instructions
detected, and “all” effects o ———
squashed to avoid corrupting | - SEE
architectural state “ s
11 LEoc]
* Transient execution = failed | = —
speculation s SRR T
ijl 6(r9) F| 1 ;slis i:]:m i
br 004da0 I Is[cm 1 2
0: 1ldq o(r3) EJoc[rn 1 J1s[em 1 2 3
1da (r1) LEfocrn 1 Jos 1 2 J1s[em 1 |

From: Ryota Shioya. "Visualizing the out-of-order CPU model." In 2018 ASPLOS Learning Gem5 Tutorial. IEEE, 2018.

Transient execution affects timing !

Stages of Transient Execution Attacks

= Access secret in transient execution
= Example: Meltdown-US loads
kernel memory from user space

= Example: Spectre PHT can
perform out-of-bounds load

= Exfiltrate secret through side channel

= Example: cache
* Encode: Perform secret-dependent cache-line load of array
* Decode: Measure time to load array elements

= Example: variable-delay arithmetic
* Encode: Perform variable-delay arithmetic using the secret
* Decode: Measure time spent in transient execution

Advanced Encryption Standard
(AES) process

Cache

Spy process
. R Y)

Figure 1. In a Prime+Probe attack, a spy process probes
the cache by monitoring timing of accesses to its

own memory. As the target process encrypts, it evicts
portions of the attacker’s memory from the cache,
resulting in longer access times. The access times

for the individual regions of the attacker’s memory
correspond to which tables the encryption process
accessed, and thus the target’s key.

From: Lawson, Nate. "Side-channel attacks on cryptographic software." IEEE
Security & Privacy 7, no. 6 (2009): 65-68.

Classes of Transient Execution Attacks

if (x < arrl_size)
Branch takes a long time
to resolve, instructions
executed speculatively

= Spectre: misprediction
= Example: pattern history table

* Train branch direction predictor that bounds
check will not fail (for example)

= Call with an enormous offset to anywhere in
the address space

= Ensure that the misprediction is not noticed
. . . Fig. 12: CPU pipeline trace for Spectre showing loads dispatched during speculation. The bright instructions are
unti I the secret Is read Into the core executed and committed. The darkened/shaded instructions are flushed due to misspeculation. Loads are still

. dispatched.
= Example: Store-to-load forwarding
. 'I':rom: Verme:, Tarunesh, Achillt?as Anast.asopoulos, and Todd Austin.
* Train the store aliasing predictor that a load is independent of an earlier store [T frer fne Caches Youre Looving For: Stochasic Channels

on Randomized Caches." In 2022 IEEE International Symposium on

(the common Case) Secure and Private Execution Environment Design (SEED), pp. 37-48.

IEEE, 2022.

* Load from a recently stored location such that the load speculatively overtakes the store
= Ensure the store address resolution is delayed so that the old value is loaded into the core

and addresses to read

Determining secret
during speculation

(%2}
o
@©
(]
=
°
()
<
(]
=
©
aQ
2
o

= Meltdown: exceptions/faults

= Example Meltdown-US: user-space/kernel page table violation
= Attempt load of kernel privilege page (as marked in page table) at user privilege
= Ensure that the exception pipeline flush is delayed until the value is loaded into the core

Defenses Against Transient Execution Attacks

= Software

= Don’t use feature that enables speculation
Discussion Question: How to work around Meltdown-US?
Hint: why does translation succeed at all?
= Speculation barriers
Discussion Question: Where might we put barriers to avoid Meltdown-US?
= Eliminate unsafe speculative paths

Discussion Question: How might we make a
bounds-check conditional branch safe in any case?

TES X "o SR IO S e)
y = array2[arrayl[x] * 4096];

From: Kocher, Paul, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg et
al. "Spectre attacks: Exploiting speculative execution." Communications of the ACM 63, no. 7 (2020): 93-101.

* Hardware
= Can we limit speculation in “risky” circumstances?
= Can we define domains for safe speculation?

Testing Transient Execution Attack Defenses

= Can we know if a processor is vulnerable to transient execution
attacks?
= Can we automatically test an existing processor?
= Can we test an in-development design?

= Approaches
= Can we automatically discover vulnerabilities with randomized sequences and
some sort of expectation?
What behaviour should be expected? Should this be specified for all implementations?

= Can we statically check a hardware design to discover where “secret” state is
exposed in transient execution?

= A lot of ideas floating round, and lots of things to try!

Papers for this week

= Spectre attacks: Exploiting speculative execution

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,VWerner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz ,

Yuval Yarom
2019 IEEE Symposium on Security and Privacy
= Speculative taint tracking: A comprehensive protection for

speculatively accessed data
Yu, J.,Yan, M., Khyzha, A., Morrison, A., Torrellas, |. and Fletcher, C.WV.
2019 International Symposium on Microarchitecture

= Revizor:Testing black-box CPUs against speculation contracts

Oleksenko, O., Fetzer, C., Kopf, B. and Silberstein, M.

2022 Conference on Architectural Support for Programming Languages and
Operating Systems

https://meltdownattack.com/spectre.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f19/www/papers/micro19-yu.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/15740-f19/www/papers/micro19-yu.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2022/03/Revizor.pdf

