
R265: Advanced Topics in Computer Architecture

Seminar 1: Trends in Computer Architecture
Simon Moore

Based on slides from Robert Mullins

Introduction

• 1 operation per second to 100 TOPS in less than 100 years
• What challenges do computer architects face?
• An advanced exploration of key areas in computer architecture:
• State-of-the-art Processor Design (Simon Moore)
• Memory system design (Tim Jones)
• Reliability (Tim Jones)
• Specification and verification (Jonathan Woodruff)
• 2 x Hardware security (Jonathan Woodruff + Simon Moore)
• HW accelerators and HW accelerators for ML (Tim Jones)

From sensors and smartphones to servers

An area optimised
microcontroller core
(e.g. Arm Cortex-M0)

1 square represents
the area of this core

High-performance
32-bit core
(e.g. Arm Cortex-M7)
Used in automotive,
sensor hub and other
embedded applications.

High-performance
processor (e.g. Arm
Cortex-A73). For
mobile and consumer
devices.

Mid-range 64-bit
processor (e.g. Arm
Cortex-A55). For
smartphones, TVs,
network infrastructure,
…

1 laptop or server class
processor (e.g. A76 core with
512KB of L2 cache)

13X

1X

1380X

130X

520X

Module convenors

Simon Moore Timothy Jones Jonathan Woodruff

Seminar format

• Student presentations x 3 (15 minutes each + 5 mins questions)
• Broader discussion of reading group topics (~30 minutes)
• Scene setting lecture for following week’s topic (~20 minutes)

Assessment

• See https://www.cl.cam.ac.uk/teaching/2223/R265/
• Nothing for first week
• For week 2-8:
• Each week, you will submit either an essay or presentation

(submit via the R265 Moodle site)
• Essays and presentations are marked and feedback will be provided, you will

see an indication of the range of the mark (e.g. pass, merit, distinction).
• The lowest mark is dropped and the remainder are scaled to give a final mark

out of 100

https://www.cl.cam.ac.uk/teaching/2223/R265/

Weekly essays

• Around 1500 words (1450-1650)
• Write an essay on two of the reading group papers
• Introduce the challenges the papers tackle, describe and clarify the important

concepts, identify the key contributions the papers make.
• Critique the work, e.g. discuss cost, trade-offs and limitations, identify the

strengths, weaknesses and any flaws in the work. Perhaps discuss how the ideas
have been evaluated and questions that remain. Compare to and discuss relevant
related work.
• What open questions and research questions remain? Do you have sound ideas

for future work? Discuss relevant trends and future challenges.
• “Essays will be assessed for technical content, clarity, accurate critique, linkage of

related work and sound proposals for future development.”
• Note 3-4 interesting ideas or questions to help stimulate our group discussion
• Do try to read around the subject, it is an opportunity to learn/explore.

Presentations

• 15 minutes + 5 minutes for questions
• Your presentations will be based on one of the papers from the

reading group material or other work related to the week’s theme
• Your chosen paper(s) must be agreed with the module convenor in

advance
• You do not need to submit an essay when you will be presenting.

Slides should be submitted via Moodle
• No more than 12 slides please
• Keep your slides simple (and text to a minimum)

Trends in Computer Architecture

Early computers Gains from bit-level parallelism
Pipelining and superscalar issue + Instruction-level parallelism

Multicore / GPUs + Thread-level parallelism / data-level
parallelism

Greater integration (large SoCs),
heterogeneity and specialisation + Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The
memory hierarchy typically consumes a large fraction of the transistor
budget.

Time

Historical performance gains

Source: Jeff Preshing

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

Historical performance gains

• From 1985-2002 microprocessor performance improved by ~800 times
• How was this possible?

• The “iron law” of processor performance:

Time = instructions x Clocks Per Instruction (CPI) x clock period
executed

Technology scaling: faster transistors

• From 1985-2002 we saw ~7 new
process generations

• Scaling provides smaller and faster
transistors. Performance improves
~1.4x per generation so for 7
generations we have: ~10x faster
logic gates

Year

Source: Stanford CPU DB

Fe
at

ur
e

Si
ze

 (u
m

)

A shorter critical path

• We can also try to reduce the number
of gates on our critical path:

• This can be done by inserting
additional registers to break complex
logic into different “pipeline” stages

• Advances were also made that
improved circuit-level design
techniques

• The length of our critical paths
reduced by ~10x (1985-2002)

Source: Stanford CPU DB

Year

Cr
iti

ca
l p

at
h

le
ng

th
 (F

O
4

de
la

ys
)

Historical performance gains

Clock period
• Clock frequency improved quickly

between 1985 and 2002:
• ~10x from faster transistors, and
• ~10x from pipelining and circuit-

level advances.
• So overall, ~100X of the total 800X

gains came from reduced clock
periods

Source: Stanford CPU DB

Year

Cl
oc

k
Fr

eq
ue

nc
y

(M
Hz

)

Instruction count

• Increased datapath width (e.g. 16-bit to 32-bit to 64-bit)
• Larger register files (fewer load/store instructions)
• More complex instructions?
• SIMD instructions

Clocks Per Instruction (CPI)

• Early machines were limited by transistor count. As a result they often
required multiple clock cycles to execute each instruction (CPI >> 1)

• As transistor budgets improved we could aim to get closer to a CPI of 1
• This is easy if we don’t care at all about clock frequency
• Designing a high-frequency design with a good CPI is much harder. We

need to keep our high-performance processor busy and avoid it stalling,
which would increase our CPI. This requires many different techniques
and costs transistors (area) and power.

Clocks Per Instruction (CPI)

• Eventually industry was also able to fetch and execute multiple
instructions per clock cycle. This reduced CPI to below 1

• When we fetch and execute multiple instructions together we often refer
to Instructions Per Cycle (IPC), which is 1/CPI

• For instructions to be executed at the same time they must be
independent.

• Again, growing transistor budgets were exploited to help find and exploit
this Instruction-Level Parallelism (ILP)

IPC and instruction count

• Of the 800x improvement in
performance (1985-2002), ~100x is
from clock frequency improvements.

• The remaining gains (~8x) were from
a reduction in instruction count,
better compiler optimisations and
improvements in IPC.

The graph to the right shows these improvements. It plots
performance (SpecInt2000 benchmark performance per MHz

for Intel processors against time)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

SpecInt2000 per MHz

Year

Moore’s Law

• Moore’s Law predicts that the
number of transistors we can
integrate onto a chip, for the same
cost, doubles every 2 years

Gordon Moore and Robert Noyce at Intel in 1970
Source: IntelFreePress

Moore’s Law

Source: Wgsimon, Wikipedia. License CC BY-SA 3.0

• Processor transistor budgets grew
quickly as microarchitectures
became more complex

• 1985 – Intel 386
275K transistors, die size =43mm2

• 2002 – Intel Pentium 4
42M transistors, die size =
217mm2

https://en.wikipedia.org/wiki/Transistor_count
https://creativecommons.org/licenses/by-sa/3.0/

Limits to single core performance

• Limits to pipelining
• Cost of interruptions grow, e.g. impact of cache misses and mispredicted

branches
• Ultimately, some components are difficult or expensive to pipeline
• There are also practical limits to distributing very high-frequency clocks,

registers represent a finite delay and we may struggle to balance logic between
pipeline stages

• Limits of Instruction-Level Parallelism (ILP)
• Large amounts of ILP are very difficult to discover and exploit efficiently
• Our returns on investment quickly diminish, i.e. we must use more power and

more transistors to expose and exploit ever smaller amounts of ILP.

Optimal pipeline depth
T = 5ns, penalty of interruption
is (S-1)

Simple pipeline design
C= 300ps (clock/register overheads)
Pipeline interruption every 6
instructions

Aggressive pipeline design
C = 100ps
Pipeline interruption every 25
instructions

Source: Robert Mullins, University of Cambridge

Limits to single core performance

• Power consumption
• Historical performance gains

have been impressive but power
consumption also grew very
quickly during the 1980s and
1990s

• This happened even with
improvements in fabrication
technology and reductions in
supply voltage

• Power quickly became, and
remains, a first order design
constraint for all significant
markets

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Dennard and Post-Dennard scaling

See “A Landscape of the New Dark Silicon Design Regime”,
Michael Taylor, IEEE Micro, Sept/Oct. 2013

Property Dennard Post-Dennard

∆ Quantity S^2 S^2

∆ Frequency S S

∆ Capacitance 1/S 1/S

∆ Power 1 S^2

∆ Util = 1/Power 1 1/S^2

For a fixed power budget, the total chip
utilisation has to fall.
Leaving us with so-called “dark silicon”

Limits to single core performance

• On-chip wiring
• Wire delays scale relatively poorly compared to logic delays
• This limits the amount of state reachable in one clock cycle
• Unfortunately, this limits the performance of large complex processors

Slowing single-core performance gains

To summarise, sustaining single core
performance gains became difficult due
to:
• The limits of pipelining
• The limits of Instruction-Level

Parallelism (ILP)
• Power consumption
• The performance of on-chip wires
As a result performance gains slowed
from 52% to 21% per year for the
highest performance processors

Source: Jeff Preshing

Year

https://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

Multicore processors

• From ~2005 multicore designs
became mainstream

• The number of cores on a single
chip increased over time

• Clock frequencies increased more
slowly

• Individual cores were designed to
be as power efficient as possible

e.g. 4 x Arm Cortex-A72 processors,
each with their own L1 caches and a
shared L2 cache

Multi-core processors

Exploiting multiple cores comes with its own set of challenges and
limitations:
• Power consumption may still limit performance
• We need to write scalable and correct parallel programs to exploit them
• Amdahl’s law
• On-chip and off-chip communication will limit performance gains
• Off-chip bandwidth is limited and may throttle our many cores
• Cores also need to communicate to maintain a coherent view of memory

Specialisation

• Today we often need to look beyond general-purpose programmable
processors to meet our design goals

• We trade flexibility for efficiency
• We remove the ability to run all programs and design for a narrow

workload, perhaps even a single algorithm
• These “accelerators” can be 10-1000x better than a general-purpose

solution in terms of power and performance

Specialisation

What does specialisation allow us to do?
• Remove infrequently used parts of the processor
• Tune instruction set for common operations or replace with hardwired control
• Exploit forms of parallelism abundant in the application(s) – we often see a

specialised processing element and local memory reproduced many times.
• Instantiate specialised memories and tune their widths and sizes
• Provide specialised interconnect between components
• Optimise data-use patterns

Specialisation

Data assumes a 45nm process @0.9V, source: “Computing’s energy problem (and
what we can do about it)”, Mark Horowitz, ISSCC 2014

Specialisation

Neural Processor Unit (NPU)Graphics Processing Unit
(GPU)

Limits to specialisation

• There are new costs associated with designing each new accelerator
• The chip, or “ASIC”, produced may only be competitive in a smaller target

market, reducing profitability
• Specialisation reduces flexibility
• The logic invested in specialised accelerators is no longer general-purpose
• Algorithm changes may render specialised hardware obsolete

• Once we’ve specialised, further gains may be difficult to achieve
• Specialisation isn’t immune to the concept of diminishing returns

Today’s System-on-Chip designs (SoCs)

• A modern mobile phone SoC
(2019) may contain more than 7
billion transistors

• It will integrate:
• Multiple processor cores
• a GPU
• a large number of specialised

accelerators
• Large amount of on-chip memory
• High bandwidth interfaces to off-

chip memory

GPU

mem interface

mem interface

mem interface

mem interface

Neural
Processor

Unit
(NPU)4 “big”

cores

4 “small”
cores

L2/L3
cache

memory

Other
accelerators

A high-level block diagram of a
mobile phone SoC

Apple A12 SoC

• 2019
• 7nm TSMC process
• 83 mm^2
• 40+ accelerators
• 2 big Arm cores,

4 little Arm cores,
GPU and NPU

State-of-the-art fabs: 7nm and beyond

• Oct 2019: TSMC ramping
7nm+ process towards
commercial availability

• Uses Extreme Ultraviolet
(EUV) lithography for
critical layers

• Will be used for AMD Zen
3, Kirin 990 5G mobile
processor:
• 10+ billion transistors
• 8 Arm cores, 5G

support, NPU, …. IBM, EUV lithography for 5nm
(NanoWire/NanoSheet – “gate-all-around” MOSFETs)

The future – the end of Moore’s Law?

• The end of Moore’s Law has been predicted many times
• Scaling has perhaps slowed in recent years but transistor density continues to

improve
• Eventually 2D dimensional scaling will have to slow
• We are ultimately limited by the number of atoms!

• Where next?
• Interesting new packaging options, e.g. chip stacking and chiplets
• Going 3D - Future designs may take advantage of multiple layers of transistors on a

single chip (monolithic 3D). Note: the gains are linear rather than exponential
• New types of memory (interesting compute in memory ideas, e.g. for ML)
• New materials and devices

Intel: Ponte Vecchio HPC GPU
• 47 functional tiles or chiplets
• They exploit TSMC (5nm and

7nm) and Intel (7nm)
processes. 5 different process
nodes in total

• Stacking exploits Through Stack
Vias (TSVs) and micro bumps

• Co-EMIB = silicon chips
embedded in package substrate
to interconnect dies

• HBM memory is again built
using die stacking techniques to
place many layers of DRAM on
top of a memory controller die

