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This lecture

• Computer architecture trends
• Hardware accelerators
• Design choices and trade-offs

• Hardware accelerators for machine learning
• Challenges 



Trends in Computer Architecture 

Early computers Gains from bit-level parallelism
Pipelining and superscalar issue + Instruction-level parallelism 

Multicore / GPUs + Thread-level parallelism / data-level 
parallelism

Greater integration (large SoCs), 
heterogeneity and specialisation + Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The 
memory hierarchy typically consumes a large fraction of the transistor 
budget.

Time



Power limited design

• Today we often need to look beyond general-purpose programmable 
processors to meet our design goals

• We trade flexibility for efficiency 
• Optimise for a narrower workload
• These “accelerators” can be 10-1000x better than a general-purpose 

solution in terms of power and performance



Specialisation

What does specialisation allow us to do? 
• Remove infrequently used parts of the processor
• Tune instruction set for common operations or replace with hardwired control 
• Exploit forms of parallelism abundant in the application(s) – we often see a 

specialised processing element and local memory reproduced many times.
• Can we also accelerate irregular programs?

• Instantiate specialised memories and tune their widths and sizes
• Provide specialised interconnect between components
• Optimise data-use patterns

• Memory hierarchies, tiling, exploit opportunities for multi-cast/broadcast



Specialisation

Data assumes a 45nm process @0.9V, source: “Computing’s energy problem (and 
what we can do about it)”, Mark Horowitz, ISSCC 2014



Apple A12 SoC

• 2019
• 40+ accelerators



Design-space continuum

Reproduced from “configurable 
processors for embedded 
computing”, Dutt and Choi, IEEE 
Computer, vol 36, issue 1, 2003, 
pp. 120-123



Configurable processors (Tensilica/Cadence)



Dynamically specialised execution resources 
(DYSER, IEEE Micro 2012)



Quasi-Specific cores (QSCOREs) [Micro 2011]

• QS Cores (Quasi-specific cores)

QSCOREs generated 
using C-to-HW compiler

Compiler builds HW 
datapath and control 
state machine based on  
data and control flow 
graphs

Some degree of 
configurability allows a 
single QSCORE to 
execute similar code 
segments

Memory operations 
access same data cache 
as GPP



Hardware accelerators for machine learning

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A 
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12



Hardware accelerators for machine learning

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A 
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12



Data reuse patterns

• Memory access is likely bottleneck – very large volumes of data 
• Weights, activations, and gradients if training

• How can we avoid this?
• Make best use of local memory (reuse data values)
• Broadcast data values
• Careful data tiling to maximise benefits of multi-level memories

• Need to select a particular “dataflow”



Example dataflow: output stationary

• Broadcast filter weights
• Reuse activations



Hardware accelerators for machine learning

• IoT
• Mobile
• Edge
• Server (training)
• PIM or CIM proposals 
• DRAM, SRAM, memrisistor-based memories

• Analog neural networks, neuromorphic (spiking) designs....



Challenges

• Workload can vary 
• Already many different types of network and associated optimisations

• e.g. sparse vs. dense, convolutional layers vs. fully-connected layers etc.
• Problem size and required performance may differ

• We see the use of “tiny”, “small” and “big” NPUs (as we do for processors)
• Workload is still evolving 

• New network types being developed
• more dynamic/conditional behaviours etc., networks of networks?

• Add flexibility to our accelerator?
• Risk is that flexibility reduces performance and efficiency
• We can instantiate multiple accelerators optimised for different cases

(but will make design larger or reduce peak performance)
• Computer architecture is always a trade-off!



Challenges

• NPU architectures?
• How are PEs connected (i.e. local interconnect)
• How much local buffering or SRAM?
• Monolithic vs. tiled?
• Heterogeneous HW? 
• Support for different network types?
• Support for dynamic network behaviours? 
• ….

• An interesting co-design problem
• Search for the best neural network architecture and hardware together



Machine 
learning 
accelerators:
peak perf. vs
peak power 

(Reuther et. al 2020)



Final thoughts

• How do accelerators and GPPs communicate and share memory? Are 
they coherent? Can processors share a large pool of accelerators?
• When we add accelerators to our system does this change the 

workload of our general-purpose cores?
• Specialisation isn’t immune to the concept of diminishing returns1

[1] “The Accelerator Wall: Limits of Chip Specialization”, HPCA 2019


