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This lecture

 Computer architecture trends

 Hardware accelerators
e Design choices and trade-offs

* Hardware accelerators for machine learning
e Challenges



Trends in Computer Architecture

Time

Early computers

Gains from bit-level parallelism

Pipelining and superscalar issue

+ Instruction-level parallelism

Multicore / GPUs

+ Thread-level parallelism / data-level
parallelism

Greater integration (large SoCs),
heterogeneity and specialisation

+ Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The
memory hierarchy typically consumes a large fraction of the transistor
budget.




Power limited design

* Today we often need to look beyond general-purpose programmable
processors to meet our design goals

* We trade flexibility for efficiency
e Optimise for a narrower workload

* These “accelerators” can be 10-1000x better than a general-purpose
solution in terms of power and performance



Specialisation

What does specialisation allow us to do?

Remove infrequently used parts of the processor
Tune instruction set for common operations or replace with hardwired control

Exploit forms of parallelism abundant in the application(s) — we often see a
specialised processing element and local memory reproduced many times.

 Can we also accelerate irregular programs?
Instantiate specialised memories and tune their widths and sizes
Provide specialised interconnect between components

Optimise data-use patterns
* Memory hierarchies, tiling, exploit opportunities for multi-cast/broadcast



Specialisation
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Design-space continuum

Performance and power savings

Dedicated
hardware

Reconfigurable
hardware

Configurable
processor

Domain-
specific

processor /
General-

purpose
processor

A 4
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Figure 1. Embedded SoC design-space continuum trades the performance and power sav-

ings of dedicated hardware for the flexibility of software-based solutions.

Reproduced from “configurable
processors for embedded
computing”, Dutt and Choi, IEEE
Computer, vol 36, issue 1, 2003,
pp. 120-123



Configurable processors (Tensilica/Cadence
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Dynamically specialised execution resources
(DYSER, I[EEE Micro 2012)
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Quasi-Specific cores (QSCOREs) [Micro 2011]

Area budget available for
specialization
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Hardware accelerators for machine learning

Modern Deep CNN: 5 — 1000 Layers 1 -3 Layers
A

Low-Level Mid-Level High- Level Class
Features = - Features L Features >

ayer Scores
“s "’ \\

Non-linearity Normalization Pooling Fully Non-linearity

Connected
- = =
B - A= :
L |
Optional

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12



Hardware accelerators for machine learning

Input Fmaps

Output Fmaps

Filters

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12



Data reuse patterns

* Memory access is likely bottleneck — very large volumes of data
* Weights, activations, and gradients if training

* How can we avoid this?
* Make best use of local memory (reuse data values)
* Broadcast data values
* Careful data tiling to maximise benefits of multi-level memories

* Need to select a particular “dataflow”



Example dataflow: output stationary

* Broadcast filter weights
* Reuse activations



Hardware accelerators for machine learning

* loT

* Mobile

* Edge

* Server (training)

* PIM or CIM proposals

e DRAM, SRAM, memrisistor-based memories

* Analog neural networks, neuromorphic (spiking) designs....



Challenges

* Workload can vary

* Already many different types of network and associated optimisations
* e.g.sparse vs. dense, convolutional layers vs. fully-connected layers etc.

* Problem size and required performance may differ
* We see the use of “tiny”, “small” and “big” NPUs (as we do for processors)

* Workload is still evolving
 New network types being developed
* more dynamic/conditional behaviours etc., networks of networks?

* Add flexibility to our accelerator?
» Risk is that flexibility reduces performance and efficiency

* We can instantiate multiple accelerators optimised for different cases
(but will make design larger or reduce peak performance)

 Computer architecture is always a trade-off!



Challenges

e NPU architectures?

 How are PEs connected (i.e. local interconnect)
How much local buffering or SRAM?
Monolithic vs. tiled?

Heterogeneous HW?

Support for different network types?

e Support for dynamic network behaviours?

* An interesting co-design problem
e Search for the best neural network architecture and hardware together



Machine
learning
accelerators:
peak perf. vs
peak power

(Reuther et. al 2020)
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Final thoughts

* How do accelerators and GPPs communicate and share memory? Are
they coherent? Can processors share a large pool of accelerators?

* When we add accelerators to our system does this change the
workload of our general-purpose cores?

* Specialisation isn’t immune to the concept of diminishing returns?

[1] “The Accelerator Wall: Limits of Chip Specialization”, HPCA 2019



