
R265: Advanced Topics in Computer Architecture

Seminar 7: HW accelerators and accelerators
for machine learning

Robert Mullins

This lecture

• Computer architecture trends
• Hardware accelerators
• Design choices and trade-offs

• Hardware accelerators for machine learning
• Challenges

Trends in Computer Architecture

Early computers Gains from bit-level parallelism
Pipelining and superscalar issue + Instruction-level parallelism

Multicore / GPUs + Thread-level parallelism / data-level
parallelism

Greater integration (large SoCs),
heterogeneity and specialisation + Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The
memory hierarchy typically consumes a large fraction of the transistor
budget.

Time

Power limited design

• Today we often need to look beyond general-purpose programmable
processors to meet our design goals

• We trade flexibility for efficiency
• Optimise for a narrower workload
• These “accelerators” can be 10-1000x better than a general-purpose

solution in terms of power and performance

Specialisation

What does specialisation allow us to do?
• Remove infrequently used parts of the processor
• Tune instruction set for common operations or replace with hardwired control
• Exploit forms of parallelism abundant in the application(s) – we often see a

specialised processing element and local memory reproduced many times.
• Can we also accelerate irregular programs?

• Instantiate specialised memories and tune their widths and sizes
• Provide specialised interconnect between components
• Optimise data-use patterns

• Memory hierarchies, tiling, exploit opportunities for multi-cast/broadcast

Specialisation

Data assumes a 45nm process @0.9V, source: “Computing’s energy problem (and
what we can do about it)”, Mark Horowitz, ISSCC 2014

Apple A12 SoC

• 2019
• 40+ accelerators

Design-space continuum

Reproduced from “configurable
processors for embedded
computing”, Dutt and Choi, IEEE
Computer, vol 36, issue 1, 2003,
pp. 120-123

Configurable processors (Tensilica/Cadence)

Dynamically specialised execution resources
(DYSER, IEEE Micro 2012)

Quasi-Specific cores (QSCOREs) [Micro 2011]

• QS Cores (Quasi-specific cores)

QSCOREs generated
using C-to-HW compiler

Compiler builds HW
datapath and control
state machine based on
data and control flow
graphs

Some degree of
configurability allows a
single QSCORE to
execute similar code
segments

Memory operations
access same data cache
as GPP

Hardware accelerators for machine learning

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12

Hardware accelerators for machine learning

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12

Data reuse patterns

• Memory access is likely bottleneck – very large volumes of data
• Weights, activations, and gradients if training

• How can we avoid this?
• Make best use of local memory (reuse data values)
• Broadcast data values
• Careful data tiling to maximise benefits of multi-level memories

• Need to select a particular “dataflow”

Example dataflow: output stationary

• Broadcast filter weights
• Reuse activations

Hardware accelerators for machine learning

• IoT
• Mobile
• Edge
• Server (training)
• PIM or CIM proposals
• DRAM, SRAM, memrisistor-based memories

• Analog neural networks, neuromorphic (spiking) designs....

Challenges

• Workload can vary
• Already many different types of network and associated optimisations

• e.g. sparse vs. dense, convolutional layers vs. fully-connected layers etc.
• Problem size and required performance may differ

• We see the use of “tiny”, “small” and “big” NPUs (as we do for processors)
• Workload is still evolving

• New network types being developed
• more dynamic/conditional behaviours etc., networks of networks?

• Add flexibility to our accelerator?
• Risk is that flexibility reduces performance and efficiency
• We can instantiate multiple accelerators optimised for different cases

(but will make design larger or reduce peak performance)
• Computer architecture is always a trade-off!

Challenges

• NPU architectures?
• How are PEs connected (i.e. local interconnect)
• How much local buffering or SRAM?
• Monolithic vs. tiled?
• Heterogeneous HW?
• Support for different network types?
• Support for dynamic network behaviours?
• ….

• An interesting co-design problem
• Search for the best neural network architecture and hardware together

Machine
learning
accelerators:
peak perf. vs
peak power

(Reuther et. al 2020)

Final thoughts

• How do accelerators and GPPs communicate and share memory? Are
they coherent? Can processors share a large pool of accelerators?
• When we add accelerators to our system does this change the

workload of our general-purpose cores?
• Specialisation isn’t immune to the concept of diminishing returns1

[1] “The Accelerator Wall: Limits of Chip Specialization”, HPCA 2019

