R265: Advanced Topics in Computer Architecture

Seminar 7: HW accelerators and accelerators
for machine learning

Robert Mullins

This lecture

 Computer architecture trends

 Hardware accelerators
e Design choices and trade-offs

* Hardware accelerators for machine learning
e Challenges

Trends in Computer Architecture

Time

Early computers

Gains from bit-level parallelism

Pipelining and superscalar issue

+ Instruction-level parallelism

Multicore / GPUs

+ Thread-level parallelism / data-level
parallelism

Greater integration (large SoCs),
heterogeneity and specialisation

+ Accelerator-level parallelism

Note: Memory hierarchy developments have also been significant. The
memory hierarchy typically consumes a large fraction of the transistor
budget.

Power limited design

* Today we often need to look beyond general-purpose programmable
processors to meet our design goals

* We trade flexibility for efficiency
e Optimise for a narrower workload

* These “accelerators” can be 10-1000x better than a general-purpose
solution in terms of power and performance

Specialisation

What does specialisation allow us to do?

Remove infrequently used parts of the processor
Tune instruction set for common operations or replace with hardwired control

Exploit forms of parallelism abundant in the application(s) — we often see a
specialised processing element and local memory reproduced many times.

 Can we also accelerate irregular programs?
Instantiate specialised memories and tune their widths and sizes
Provide specialised interconnect between components

Optimise data-use patterns
* Memory hierarchies, tiling, exploit opportunities for multi-cast/broadcast

Specialisation

FAdd
Cache (64 bit)
16 bit 0.4pJ
8KB 10pJ
32 bit 0.9pJ
32KB 20pJ
FMult
1MB 100pJ
16 bit 1pJ
DRAM 1.3-2.6nJ
32 bit 4pJ

Instruction Energy Breakdown (Total 70pJ)

25pJ 6pJ Control

T !

Reg File Add
Access

I-cache access

Data assumes a 45nm process @0.9V, source: “Computing’s energy problem (and
what we can do about it)”, Mark Horowitz, ISSCC 2014

Emma Wan
pp e O |@Harvard " "DDR logic DDR logic

e 2019
e 40+ accelerators

system cache
slices (x4) GPU cores (x4)
and shared logic

Neural Engine
(cores x8)
' Big cores (x2)

little cores (x4) Tech
_ Insights

DDR lgic » I:I DDR logic

Design-space continuum

Performance and power savings

Dedicated
hardware

Reconfigurable
hardware

Configurable
processor

Domain-
specific

processor /
General-

purpose
processor

A 4

Flexibility

Figure 1. Embedded SoC design-space continuum trades the performance and power sav-

ings of dedicated hardware for the flexibility of software-based solutions.

Reproduced from “configurable
processors for embedded
computing”, Dutt and Choi, IEEE
Computer, vol 36, issue 1, 2003,
pp. 120-123

Configurable processors (Tensilica/Cadence

Xtensa LX Block Diagram

v I

Processor Controls [P Instruction Fetch / PC Instruction RAMs
Trace — TRACE Port Instruction ROM
JTAG 4| JTAG Tap Control Extended Instruction Instruction Instruction ||nstruction
Align, Decode, Dispatch | |[Decode/Dispatch | Mmu
On Chip Debug 2 T = " £ 7 2 3 Cache
Exception Support -
Excention Handlin User User Base Register External Interface
ol Defined Defined File
g Register Register Base ALU Xtensa
Data Address Files Files Processor
Watch Registers MAC 16 DSP Interface
: 4> PIF
In\j\;n:c:c;qn A.d<t:|ress User User MUL 16/32 Control
atch Registers q -]
J Defined Defined |l Fioating Point -
P Interrupt Control Execution Execution Write
Interrupts . .
Timers Units and Units User Defined Buffer
User Defined _ _ | Interfaces Execution Unit Q
Queues and Wires
Vectra Data Data
Vectra DSP DSP Vectra DSP MMU Cache
User Defined Data Data YT
B ISA Feat [¢)
D cas::' bTa :re . Load/Store Units Load/Store e
on' igurable %mctlon Unit Data RAMs
Optional Function * r * y Xt
Optional & Configurable Lo(-.;r:a
User Defined Features (TIE) v M
New Xtensa LX Features Interface

5 HOT CHIPS e AUG 2004

Dynamically specialised execution resources
(DYSER, I[EEE Micro 2012)

Fetch Decode Execute Memory | Writeback
>
Instruction Execution ,
cache [| Decode pipelina 5 > Dyser Region

_ | e

§":_ Shl

= 1.9 Data
Register T @ q 2 cache
Q >
3 [FU FU g Configuration
s Noie) N\lEr e
=
3 / | &
- FU U 2
Elswiches S \ o
[FU]Functional unit |
Paralleli
-Swﬁm Dynamic Specialized |
enhancements Execution Resources =

(a)

Quasi-Specific cores (QSCOREs) [Micro 2011]

Area budget available for
specialization

—

(System
< Workload Set
-———~_] T
Source Code
¥

N ————

Hotspot Identification

I

Energy-intensive
Code Regions

¥

QsCoRE Design
Flow

I ‘.
QsCoRE Specification ",

L

QsCore-CPU
Integration

T T =

]----QSCORES

CPU

A T —
e '(Energy-lntensive <
-~ Code Regions)
N J _-/

——

" Create Dependence ")
Graphs

¢/~ SelectBest ™\
\._QsCore Set__/

_\--

Similar Code

i ?
Yes™ Regions Present?

¢~ Merge Similar <
__ Components _/ No

QsCore Design

\
Generation 7~ Merge Matched ™

\.__ Expression /

__Dependence Graphs

¥
Sequentialize Program)

(b)

QSCOREs generated
using C-to-HW compiler

Compiler builds HW
datapath and control
state machine based on
data and control flow
graphs

Some degree of
configurability allows a
single QSCORE to
execute similar code
segments

Memory operations
access same data cache
as GPP

Hardware accelerators for machine learning

Modern Deep CNN: 5 — 1000 Layers 1 -3 Layers
A

Low-Level Mid-Level High- Level Class
Features = - Features L Features >

ayer Scores
“s "’ \\

Non-linearity Normalization Pooling Fully Non-linearity

Connected
- = =
B - A= :
L |
Optional

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12

Hardware accelerators for machine learning

Input Fmaps

Output Fmaps

Filters

Reproduced from: Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient processing of deep neural networks: A
tutorial and survey. Proceedings of the IEEE, vol. 105, no. 12

Data reuse patterns

* Memory access is likely bottleneck — very large volumes of data
* Weights, activations, and gradients if training

* How can we avoid this?
* Make best use of local memory (reuse data values)
* Broadcast data values
* Careful data tiling to maximise benefits of multi-level memories

* Need to select a particular “dataflow”

Example dataflow: output stationary

* Broadcast filter weights
* Reuse activations

Hardware accelerators for machine learning

* loT

* Mobile

* Edge

* Server (training)

* PIM or CIM proposals

e DRAM, SRAM, memrisistor-based memories

* Analog neural networks, neuromorphic (spiking) designs....

Challenges

* Workload can vary

* Already many different types of network and associated optimisations
* e.g.sparse vs. dense, convolutional layers vs. fully-connected layers etc.

* Problem size and required performance may differ
* We see the use of “tiny”, “small” and “big” NPUs (as we do for processors)

* Workload is still evolving
 New network types being developed
* more dynamic/conditional behaviours etc., networks of networks?

* Add flexibility to our accelerator?
» Risk is that flexibility reduces performance and efficiency

* We can instantiate multiple accelerators optimised for different cases
(but will make design larger or reduce peak performance)

 Computer architecture is always a trade-off!

Challenges

e NPU architectures?

 How are PEs connected (i.e. local interconnect)
How much local buffering or SRAM?
Monolithic vs. tiled?

Heterogeneous HW?

Support for different network types?

e Support for dynamic network behaviours?

* An interesting co-design problem
e Search for the best neural network architecture and hardware together

Machine
learning
accelerators:
peak perf. vs
peak power

(Reuther et. al 2020)

107

—
o
o

—

o
o
T

Perceiv% 3
Yy
AlSt

-

o
w
|

o)

Peak Performance (GOps/sec)

’
’
’
”
’
’

V?\ /Sl'rmeNorthv
©' - PuDianNao {2

«e‘(@ Sr Dianr)laﬂ/
LA Ken?r/y,t V(n ron
Syntiant ShiDianNao

Cerebras’ '
%G X T

Corna

Data Center
Systems

LI LYITN
jadyig %aDnanNao xXeond180
alray Brainwave

lo-
Ia%t'V9 ?ruo rt ,

/. <'?(alray
,ﬁetsor@
uFlow

Green

us

\/
Waves

Peak Power (W)

Final thoughts

* How do accelerators and GPPs communicate and share memory? Are
they coherent? Can processors share a large pool of accelerators?

* When we add accelerators to our system does this change the
workload of our general-purpose cores?

* Specialisation isn’t immune to the concept of diminishing returns?

[1] “The Accelerator Wall: Limits of Chip Specialization”, HPCA 2019

