Notes for Programming in C Lab Session #8

November 6, 2025

1 Introduction

The purpose of this lab session is to write matrix manipulation code to see how different memory access
patterns can affect performance.

2 Overview

A matrix is a rectangular array of numbers, and also one of the fundamental concepts of mathematics.
Matrices can represent linear transformations between vector spaces, extensive-form games in game theory,
graph connectivity in graph theory, the systems of differential equations arising in control theory, just to list
a few applications. As a result, high-performance implementations of matrices and operations on them are
of great importance to a wide variety of scientific and engineering domains.

In this lab, we will work use the following datatype for matrices:

typedef struct matrix matrix_t;
struct matrix {

int rows;

int cols;

double =xelts;
}i

Here, a matrix is represented by a structure containing a number of rows, a number of columns, and an
array of doubles e1ts containing the elements of the array. As programmers, we immediately face a choice
in how to represent arrays. An array is a two-dimensional object like:

1 2 3
|4 5 6
A:789
10 11 12

However, a C array is one-dimensional. So we have to decide how to place the 12 elements of the 4 x 3
matrix A in memory. In C, it is typical to represent arrays in row-major order. This means that the elts array
will have the following shape:

elts—|1[2[3[4[5[6]7[8]9]10]11]12]

So the elts array stores the rows of A one after another in memory.!
As a result, if we have a matrix B of size r x ¢, and we want to find B(i, j) — the j-th column of the i-th
row will be the (i x ¢) + j-th element of the array.

1The choice of row-major order is purely conventional; historically Fortran has made the opposite choice!



One of the most important matrix operations is matrix multiplication. Given an n x m matrix A, and an
m x o matrix B, we define the following n x o matrix A x B as the product:

(Ax B)(i,j)= Y A(i,k)x B(k,j)
ke{0...n}

In the calculation of A(z, j), we will touch the following entries:

A e A
. (0,0) . (, 1) B(O,O)

[A.e/;u) R ;4(13,”7'1)) X

: : b
A(n—l,O) A(n—l,m—l) (m—1,0)

Note that we are accessing the elements of A(; ;) in a row-wise order, but accessing the elements of B;,
in a column-wise order. As a result, we risk a cache miss on each access to B!

However, if B were transposed — i.e., if rows and columns were interchanged — then we would be ac-
cessing the elements of BB in a row-wise order as well. In equational form, we can make the following
observation (writing B” for the transpose of B):

(AxBT)(i,j) = Y. A(i,k)x B"(k,j)
ke{0...n}

> A(ik) x B(j, k)

ke{0...n}

By making use of the observation that BT (k, j) = B(j, k), we can replace a column-wise traversal with a
row-wise traversal.

So in this exercise, you will implement naive multiplication, transpose, and transposed multiplication,
and compare the performance of naive multiplication to building a transpose and then doing a transposed
multiplication.

3 Instructions

1.

2
3
4.
5

Download the 1ab8.tar.gz file from the class website.

. Extract the file using the command tar xvzf lab8.tar.gz.

. This will extract the 1ab8/ directory. Change into this directory using the cd 1ab8/ command.

In this directory, there will be files 1ab8.c, matrix.h,and matrix.c.

. There will also be a file Makefile, which is a build script which can be invoked by running the

command make (without any arguments). It will automatically invoke the compiler and build the
lab8 executable.

There is a test routine to check if you have implemented matrix multiplication probably works, to-
gether with expected correct output in the 1ab8. c file.

Once it works, run the timing functions on your two matrix multiplication routines to see which one
is faster.



4 The Types and Functions to Implement

matrix_t matrix_create (int rows, int cols);

Given integer arguments rows and cols, return a new matrix of size rows X cols. Initializing the
elements of the array is optional, but may help you debug.

void matrix_free (matrix_t m);

Deallocate the storage associated with the matrix m.

void matrix_print (matrix_t m);

You don’t have to implement this — it comes for free to help you test your code.

double matrix_get (matrix_t m, int r, int c);

Return the value in the r-th row and c-th column of m.

void matrix_set (matrix_t m, int r, int ¢, double d);

Modify the value in the r-th row and ¢-th column of m to d.

matrix_t matrix_multiply (matrix_t ml, matrix_t m2);

Given an n x m matrix m1 and an m x k matrix m2, return the n x k matrix that is the matrix product
of m1 and m2.

You should be able to implement this with a simple triply-nested for-loop.

matrix_t matrix_transpose (matrix_t m);

Given an n X m matrix m as an argument, return the m x n transposed matrix. (That is, if A is the
argument and B is the return value, then A(, j) = B(j,1).)

matrix_t matrix_multiply_transposed(matrix_t ml, matrix_t m2);

Given an n x m matrix m1 and an k x m matrix m2, return the n x k matrix that corresponds to m1
times the transpose of m2.

matrix_t matrix_multiply_ fast(matrix_t ml, matrix_t m2);

This function should also implement matrix multiplication, but do it by constructing the transpose of
m2, and then passing that to matrix_multiply_fast. Don’t forget to free the transposed matrix
when you are done!



