9: Viterbi Algorithm for HMM Decoding Machine Learning and Real-world Data

Andreas Vlachos
(slides adapted from Simone Teufel)
Department of Computer Science and Technology
University of Cambridge

Last session: estimating parameters of an HMM

- The dishonest casino, dice edition.
- Two hidden states: L (loaded dice), F (fair dice).

■ You don't know which dice is currently in use. You can only observe the numbers that are thrown.

- You estimated transition and emission probabilities (Problem 1 from last time).
- We are now turning to Problem 4.

■ We want the HMM to find out when the fair dice was out, and when the loaded dice was out.

- We need to write a decoder.

Decoding: finding the most likely path

- Definition of decoding: Finding the most likely hidden state sequence X that explains the observation O given the HMM parameters $\mu=(A, B)$.

$$
\begin{aligned}
\hat{X} & =\underset{X}{\operatorname{argmax}} P(X, O \mid \mu) \\
& =\underset{X}{\operatorname{argmax}} P(O \mid X, B) P(X \mid A) \\
& =\underset{X_{1} \ldots X_{T}}{\operatorname{argmax}} \prod_{t=1}^{T} P\left(O_{t} \mid X_{t}, B\right) P\left(X_{t} \mid X_{t-1}, A\right)
\end{aligned}
$$

- Search space of possible state sequences X is $\mathrm{O}\left(N^{T}\right)$; too large for brute force search.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:
■ Optimal substructure property

- An optimal state sequence $X_{1} \ldots X_{j} \ldots X_{T}$ contains inside it the sequence $X_{1} \ldots X_{j}$, which is also optimal
- Overlapping subsolutions property
- If both X_{t} and X_{u} are on the optimal path, with $u>t$, then the calculation of the probability for being in state X_{t} is part of each of the many calculations for being in state X_{u}.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:
■ Optimal substructure property

- An optimal state sequence $X_{1} \ldots X_{j} \ldots X_{T}$ contains inside it the sequence $X_{1} \ldots X_{j}$, which is also optimal
- Overlapping subsolutions property
- If both X_{t} and X_{u} are on the optimal path, with $u>t$, then the calculation of the probability for being in state X_{t} is part of each of the many calculations for being in state X_{u}.

The intuition behind Viterbi

- Here's how we can save ourselves a lot of time.
- Because of the Limited Horizon of the HMM, we don't need to keep a complete record of how we arrived at a certain state.
■ For the first-order HMM, we only need to record one previous step.
- Just do the calculation of the probability of reaching each state once for each time step (variable δ).
■ Then memoise this probability in a Dynamic Programming table
- This reduces our effort to $O\left(N^{2} T\right)$.

■ This is for the first order HMM, which only has a memory of one previous state.

Viterbi: main data structure

- Memoisation is done using a trellis.
- A trellis is equivalent to a Dynamic Programming table.
- The trellis is $(N+2) \times(T+2)$ in size, with states j as rows and time steps t as columns.
- Each cell j, t records the Viterbi probability $\delta_{j}(t)$, the probability of the most likely path that ends in state s_{j} at time t :

$$
\delta_{j}(t)=\max _{1 \leq i \leq N}\left[\delta_{i}(t-1) a_{i j} b_{j}\left(O_{t}\right)\right]
$$

- This probability is calculated by maximising over the best ways of going to s_{j} for each s_{i}.
- $a_{i j}$: the transition probability from s_{i} to s_{j}
- $b_{j}\left(O_{t}\right)$: the probability of emitting O_{t} from destination state s_{j}

Viterbi algorithm, initialisation

Note: the probability of a state starting the sequence at $t=0$ is just the probability of it emitting the first symbol.

Viterbi algorithm, initialisation

(5)

Viterbi algorithm, initialisation

Viterbi algorithm, initialisation

Viterbi algorithm, main step

Viterbi algorithm, main step: observation is 4

$$
x_{1}
$$

Viterbi algorithm, main step: observation is 4

$$
x_{1}
$$

Viterbi algorithm, main step, ψ

- $\psi_{j}(t)$ is a helper variable that stores the $t-1$ state index i on the highest probability path.

$$
\psi_{j}(t)=\underset{1 \leq i \leq N}{\operatorname{argmax}}\left[\delta_{i}(t-1) a_{i j} b_{j}\left(O_{t}\right)\right]
$$

- In the backtracing phase, we will use ψ to find the previous cell/state in the best path.

Viterbi algorithm, main step: observation is 4

$$
x_{1}
$$

Viterbi algorithm, main step: observation is 4

$$
x_{1}
$$

Viterbi algorithm, main step: observation is 4

$$
x_{1}
$$

Viterbi algorithm, main step: observation is 4

Viterbi algorithm, main step: observation is 3

Viterbi algorithm, main step: observation is 5

Viterbi algorithm, main step: observation is 5

Viterbi algorithm, termination

Viterbi algorithm, termination

Viterbi algorithm, backtracing

Why is it necessary to keep N states at each time step?

- We have convinced ourselves that it's not necessary to keep more than N ("real") states per time step.
- But could we cut down the table to just a one-dimensional table of T time slots by choosing the probability of the best path overall ending in that time slot, in any of the states?
- This would be the greedy choice
- But think about what could happen in a later time slot.
- You could encounter a zero or very low probability concerning all paths going through your chosen state s_{j} at time t.
- Now a state s_{k} that looked suboptimal in comparison to s_{j} at time t becomes the best candidate.
- As we don't know the future, this could happen to any state, so we need to keep the probabilities for each state at each time slot.
- But thankfully, no more.

Precision and Recall

■ So far, we have measured system success in accuracy or agreement in Kappa.

- But sometimes it's only one type of instances that we find interesting.
- We don't want a summary measure that averages over interesting and non-interesting instances, as accuracy does.
- In those cases, we use precision, recall and F-measure.
- These metrics are imported from the field of information retrieval, where the difference (in numbers) beween interesting and non-interesting examples is particularly high.
- Accuracy doesn't work well when the types of instances are unbalanced.

True positives, false negatives...

		System says:		
		L	F	Total
Truth is:	L	TP	FN	TP+FN
	F	FP	TN	FP+TN
	Total	TP+FP	FN+FP	TP+FP+FN+FP

L is the category we are interested in.

- TP are the true positives.
- The system correctly declared them as positive.
- FN are the false negatives.
- The system didn't declare them as as a positive, but should have.
- TN are the true negatives.
- The system didn't declare them as a positive, and was right.
- FP are the false positives.
- The system declared them as a positive, but shouldn't have.

Precision and Recall

	L	F	Total	
Truth is:	L	TP	FN	TP+FN
	F	FP	TN	FP+TN
	Total	TP+FP	FN+TN	TP+FP+FN+TN

- Precision of $\mathrm{L}: P_{L}=\frac{T P}{T P+F P}$
- Recall of $\mathrm{L}: R_{L}=\frac{T P}{T P+F N}$
- F-measure of L: $F_{L}=\frac{2 P_{L} R_{L}}{P_{L}+R_{L}}$
- Accuracy: $A=\frac{T P+T N}{T P+F P+F N+T N}$

Your task today

Task 8:

- Implement the Viterbi algorithm.
- Run it on the dice dataset and measure precision of $\mathrm{L}\left(P_{L}\right)$, recall of $\mathrm{L}\left(R_{L}\right)$ and F-measure of $\mathrm{L}\left(F_{L}\right)$.

Literature

- Collin's notes: http://www.cs.columbia.edu/~mcollins/ hmms-spring2013.pdf
■ Jurafsky and Martin, 3rd Edition, https://web.stanford.edu/~jurafsky/slp3/8.pdf, Chapter 8.4 (but careful, notation!)
- Smith, Noah A. (2004). Hidden Markov Models: All the Glorious Gory Details: https:
//www.cs.cmu.edu/~nasmith/papers/smith.tut04a.pdf

