8: Hidden Markov Models Machine Learning and Real-world Data

Andreas Vlachos (slides adapted from Simone Teufel and Helen Yannakoudakis)

Department of Computer Science and Technology University of Cambridge

- So far we've looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.

Let us now talk about ...

- So far we've looked at (statistical) classification.
- Experimented with different ideas for sentiment detection.

■ Let us now talk about ... the weather!

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• We can use a history of weather observations: $P(w_t = Rainy | w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy)$

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?

- We can use a history of weather observations: $P(w_t = Rainy | w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy)$
- Markov Assumption (first order): $P(w_t | w_{t-1}, w_{t-2}, \dots, w_1) \approx P(w_t | w_{t-1})$

- Two types of weather: rainy and cloudy
- The weather doesn't change within the day
- Can we guess what the weather will be like tomorrow?
- We can use a history of weather observations: $P(w_t = Rainy | w_{t-1} = Rainy, w_{t-2} = Cloudy, w_{t-3} = Cloudy, w_{t-4} = Rainy)$
- Markov Assumption (first order): $P(w_t | w_{t-1}, w_{t-2}, \dots, w_1) \approx P(w_t | w_{t-1})$
- The joint probability of a sequence of observations / events can then be approximated as:

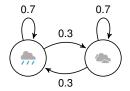
$$P(w_1, w_2, \dots, w_t) \approx \prod_{t=1}^{n} P(w_t | w_{t-1})$$

 $\begin{array}{c} {\sf Tomorrow}\\ Rainy & Cloudy\\ {\sf Today} & \begin{array}{c} Rainy \\ Cloudy \end{array} \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix} \end{array}$

Transition probability matrix

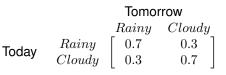
▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - のへで

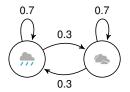
 $\begin{array}{c} {\rm Tomorrow}\\ Rainy \quad Cloudy\\ {\rm Today} \quad \begin{array}{c} Rainy \\ Cloudy \end{array} \begin{bmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{bmatrix} \end{array}$



Transition probability matrix

Two states: rainy and cloudy





Transition probability matrix

Two states: rainy and cloudy

- A Markov Chain is a stochastic process that embodies the Markov Assumption
- Can be viewed as a probabilistic finite-state automaton
- States are fully observable, finite and discrete; transitions are labelled with transition probabilities
- Models sequential problems your current situation depends on what happened in the past

Useful for modeling the probability of a sequence of events

- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)

Predictive texting

Useful for modeling the probability of a sequence of events that can be unambiguously observed

- Valid phone sequences in speech recognition
- Sequences of speech acts in dialog systems (answering, ordering, opposing)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

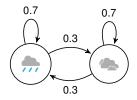
Predictive texting

- Useful for modeling the probability of a sequence of events that can be unambiguously observed
 - Valid phone sequences in speech recognition
 - Sequences of speech acts in dialog systems (answering, ordering, opposing)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Predictive texting
- What if we are interested in events that are not unambiguously observed?

Markov Model

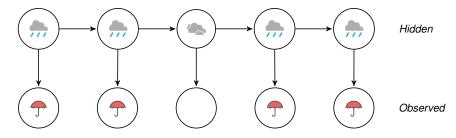


▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Markov Model: A Time-elapsed view

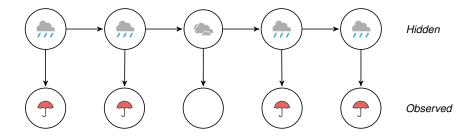


Hidden Markov Model: A Time-elapsed view



- Underlying Markov Chain over hidden states
- We only have access to the observations at each time step
- There is no 1:1 mapping between observations and hidden states
- A number of hidden states can be associated with a particular observation, but the association of states and observations is governed by probabilities
- We now have to *infer* the sequence of hidden states that corresponds to the sequence of observations

Hidden Markov Model: A Time-elapsed view



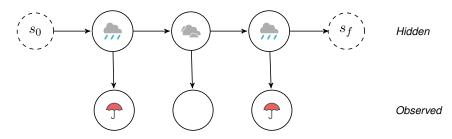
	Rainy	Cloudy
Rainy	0.7	0.3
Cloudy	0.3	0.7

 $\begin{array}{c} Umbrella & No \ umbrella \\ Rainy \\ Cloudy \end{array} \left[\begin{array}{c} 0.9 & 0.1 \\ 0.2 & 0.8 \end{array} \right]$

Transition probabilities $P(w_t|w_{t-1})$

Emission probabilities $P(o_t|w_t)$ (Observation likelihoods)

Hidden Markov Model: A Time-elapsed view – start and end states



- Could use initial probability distribution over hidden states
- Instead, for simplicity, we will also model this probability as a transition, and we will explicitly add a special start state
- Similarly, we will add a special end state to explicitly model the end of the sequence
- Special start and end states not associated with "real" observations

More formal definition of Hidden Markov Models; States and Observations

$$S_e = \{s_1, \ldots, s_N\}$$
 a set of N emitting hidden states,

- s_0 a special start state,
- s_f a special end state.
- $K = \{k_1, \dots, k_M\}$ an output alphabet of M observations ("vocabulary").
 - k_0 a special start symbol,
 - k_f a special end symbol.
 - $O = O_1 \dots O_T$ a sequence of *T* observations, each one drawn from *K*.
 - $X = X_1 \dots X_T$ a sequence of T states, each one drawn from S_e .

More formal definition of Hidden Markov Models; First-order Hidden Markov Model

1 Markov Assumption (Limited Horizon): Transitions depend only on the current state:

 $P(X_t|X_1...X_{t-1}) \approx P(X_t|X_{t-1})$

2 Output Independence: Probability of an output observation depends only on the current state and not on any other states or any other observations:

 $P(O_t | X_1 ... X_t, ..., X_T, O_1, ..., O_t, ..., O_T) \approx P(O_t | X_t)$

 a_{ij} is the probability of moving from state s_i to state s_j :

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$
$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

Special start state s_0 and end state s_f :

- Not associated with "real" observations
- *a*_{0*i*} describe transition probabilities out of the start state into state *s*_{*i*}
- a_{if} describe transition probabilities into the end state
- Transitions into start state (*a*_{*i*0}) and out of end state (*a*_{*fi*}) undefined

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

$$A = \begin{bmatrix} - & a_{01} & a_{02} & a_{03} & . & . & . & a_{0N} & - \\ - & a_{11} & a_{12} & a_{13} & . & . & . & a_{1N} & a_{1f} \\ - & a_{21} & a_{22} & a_{23} & . & . & . & a_{2N} & a_{2f} \\ - & . & . & . & . & . & . \\ - & . & . & . & . & . & . \\ - & a_{N1} & a_{N2} & a_{N3} & . & . & a_{NN} & a_{Nf} \\ - & - & - & - & - & - & - & - \end{bmatrix}$$

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

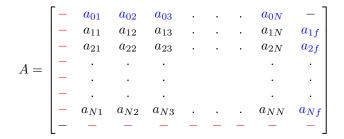
A: a state transition probability matrix of size $(N+2) \times (N+2)$.

	Γ-	a_{01}	a_{02}	a_{03}				a_{0N}	-]
	-	a_{11}	a_{12}	a_{13}				a_{1N}	a_{1f}
	-	a_{21}	a_{22}	a_{23}				a_{2N}	a_{2f}
A -	-	•	•	•				•	.
<i>7</i> 1 —	-	•	•	•				•	.
	-	•	•	•				•	•
	-	a_{N1}	a_{N2}	a_{N3}				a_{NN}	a_{Nf}
	L–	_	_	_	_	_	_	-	_]

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

A: a state transition probability matrix of size $(N+2) \times (N+2)$.



$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

A: a state transition probability matrix of size $(N+2) \times (N+2)$.

	-	a_{01}		a_{03}				a_{0N}	-]
	—	a_{11}	a_{12}	a_{13}				a_{1N}	a_{1f}
	—	a_{21}	a_{22}	a_{23}				a_{2N}	a_{2f}
A -	—	•	•	•					.
21 —	—	•	•	•					.
	—	•	•	•					.
	—	a_{N1}	a_{N2}	a_{N3}	•		•	a_{NN}	a_{Nf}
		—	_	—	—	—	—	_	-

$$a_{ij} = P(X_t = s_j | X_{t-1} = s_i)$$

$$\forall_i \sum_{j=0}^{N+1} a_{ij} = 1$$

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M + 2) \times (N + 2)$.

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

Our HMM is defined by its parameters $\mu = (A, B)$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

More formal definition of Hidden Markov Models; Emission Probabilities

B: an emission probability matrix of size $(M + 2) \times (N + 2)$.

 $b_i(k_j)$ is the probability of emitting vocabulary item k_j from state s_i :

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

Our HMM is defined by its parameters $\mu = (A, B)$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

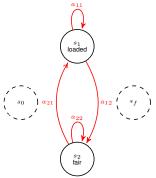
Examples where states are hidden

Speech recognition

- Observations: audio signal
- States: phonemes
- Part-of-speech tagging (assigning tags like Noun and Verb to words)

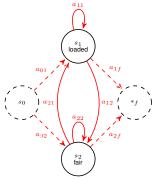
- Observations: words
- States: part-of-speech tags
- Machine translation
 - Observations: target words
 - States: source words

- Imagine a fraudulous croupier in a casino where customers bet on dice outcomes
- She has two dice a fair one and a loaded one
- The fair one has the standard distribution of outcomes $P(O) = \frac{1}{6}$ for each number 1 to 6.
- The loaded one has a different distribution
- She secretly switches between the two dice
- You don't know which dice is currently in use. You can only observe the numbers that are thrown.



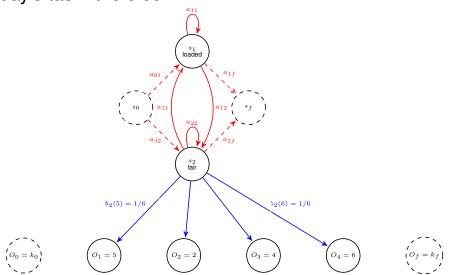
Sac

States: fair and loaded, plus special states s_0 and s_f .



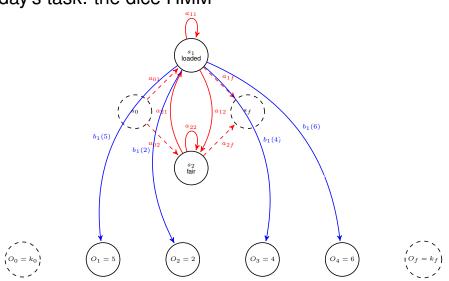
Sac

States: fair and loaded, plus special states s_0 and s_f .



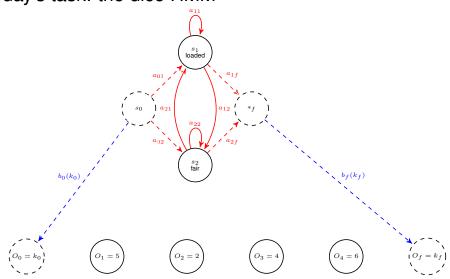
Sac

• States: fair and loaded, plus special states s_0 and s_f .



Sac

States: fair and loaded, plus special states s_0 and s_f .



Sac

States: fair and loaded, plus special states s_0 and s_f .

Fundamental tasks with HMMs

Problem 1 (Labelled Learning)

- Given a parallel observation and state sequence O and X, learn the HMM parameters A and $B \rightarrow today$
- Problem 2 (Unlabelled Learning)
 - Given an observation sequence O (and only the set of emitting states S_e), learn the HMM parameters A and B

Problem 3 (Likelihood)

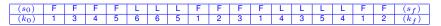
- Given an HMM $\mu = (A, B)$ and an observation sequence O, determine the likelihood $P(O|\mu)$
- Problem 4 (Decoding)
 - Given an observation sequence O and an HMM $\mu = (A, B)$, discover the best hidden state sequence $X \rightarrow \text{Task 8}$

Your Task today

Task 7:

 Your implementation performs labelled HMM learning, i.e. it has

Input: dual tape of state and observation (dice outcome) sequences X and O



■ Output: HMM parameters *A*, *B*

Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later

Parameter estimation of HMM parameters A, B

Transition matrix A consists of transition probabilities a_{ij}

$$a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim \frac{count_{trans}(X_t = s_i, X_{t+1} = s_j)}{count_{trans}(X_t = s_i)}$$

Emission matrix B consists of emission probabilities $b_i(k_j)$

$$b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim \frac{count_{emission}(O_t = k_j, X_t = s_i)}{count_{emission}(X_t = s_i)}$$

(Add-one smoothed versions of these)

Literature

- Collin's notes: http://www.cs.columbia.edu/ ~mcollins/hmms-spring2013.pdf
- Jurafsky and Martin, 3rd Edition, https: //web.stanford.edu/~jurafsky/slp3/8.pdf, Chapter 8.4 (but careful, notation!)
- Smith, Noah A. (2004). Hidden Markov Models: All the Glorious Gory Details: https://www.cs.cmu.edu/ ~nasmith/papers/smith.tut04a.pdf