Introduction to Probability

Lecture 4: More discrete distributions – Poisson, Geometric, Negative Binomial, Hypergeometric

Mateja Jamnik, Thomas Sauerwald

University of Cambridge, Department of Computer Science and Technology email: {mateja.jamnik,thomas.sauerwald}@cl.cam.ac.uk

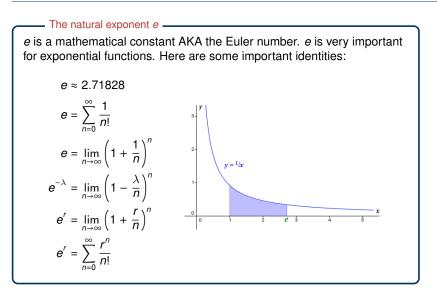
Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Preliminaries:



Binomial RV example: large n, small p

We are trying to predict footfall in a store. We know, based on previous data, that on average 8 people enter the store per hour. What is the probability of k people entering the std What if 2 people enter in the same minute?

- 1. Break an hour into minutes.
 - At each **minute**, independent Bernoulli trial with 1 for a person entering the store and 0 for nobody entering the store.
 - X is a Binomial RV: # people entering in an hour, so $\mathbf{E}[X] = np = \lambda = 8$.

$$X \sim Bin(n = 6 \text{ (What if 2 people enter in the same millisecond?)}^{k} (1 - \frac{8}{60})^{n-k}$$

- 2. Break an hour into milliseconds. 4
 - At each millisecond, independent Bernoulli trial: 1 for enter, 0 for not enter.
 - X is a Binomial RV: # people entering in an hour, so $E[X] = np = \lambda = 8$.

•
$$X \sim Bin(n = 3600000, p = \frac{\lambda}{n})$$
, so $\mathbf{P}[X=k] = {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$

- 3. Break an hour into infinitely small units.
 - At each unit, independent Bernoulli trial: 1 for enter, 0 for not enter.
 - X is a Binomial RV: # people entering in an hour, so $E[X] = np = \lambda = 8$.

•
$$X \sim Bin(n, p = \frac{\lambda}{n})$$
, thus $\mathbf{P}[\mathbf{X}=\mathbf{k}] = \lim_{n \to \infty} {\binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}}$

Computing Binomial in the limit

Poisson

Poisson discrete random variable

A Poisson RV X approximates Binomial where *n* is large, *p* is small, and $\lambda = np$ is "moderate". Thus we no longer need to know *n* and *p*, we only need to provide **rate** λ . X is the number of successes over the duration of the experiment.

 $X \sim Pois(\lambda)$

Range: $\{0, 1, 2, ...\}$ PMF: $\mathbf{P}[X = k] = \frac{\lambda^k}{k!}e^{-\lambda}$ Expectation: $\mathbf{E}[X] = \lambda$ Variance: $\mathbf{V}[X] = \lambda$

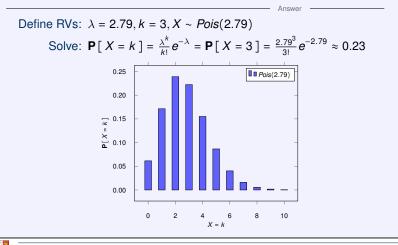
Examples: # earthquakes in a given year, # goals scored during a 90 minute football game, # misprints per page in a book, # emails per day.

Key idea: Divide time into a **large number** of small increments. Assume that during each increment, there is some **small probability** of the event happening (independent of other increments).

Earthquake example

Example

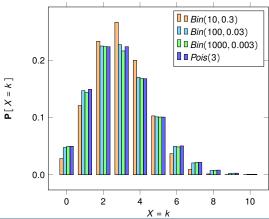
Suppose there are an average of 2.79 major earthquakes in the world each year. What is the probability of getting 3 major earthquakes next year?



Poisson paradigm

- Poisson approximates Binomial when *n* is large, *p* is small, and $\lambda = np$ is "moderate".
- Different interpretations of "moderate". Commonly accepted ranges are:
 - n > 20 and p < 0.05</p>
 - n > 100 and p < 0.1</p>

• Poisson is Binomial in the limit: $\lambda = np$ where $n \to \infty, p \to 0$.



Poisson expectation

PMF: =
$$k \in \{0, 1, 2, ..., \infty\}$$
; **P**[$X = k$] = $\frac{\lambda^k}{k!}e^{-\lambda}$

$$\mathbf{E}[X] = \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} = \sum_{k=1}^{\infty} \frac{\lambda^{k}}{(k-1)!} e^{-\lambda} =$$

$$= \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \text{ (let } i = k-1)$$

$$= \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^i}{i!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Poisson variance

$$\mathbf{E}\left[X^{2}\right] = \sum_{k=0}^{\infty} k^{2} \frac{\lambda^{k}}{k!} e^{-\lambda} = \lambda \sum_{k=1}^{\infty} k \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda} \text{ (let } i = k-1\text{)}$$

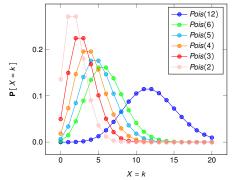
$$= \lambda \sum_{i=0}^{\infty} (i+1) \frac{\lambda^{i}}{i!} e^{-\lambda} = \lambda \left(\sum_{\substack{i=0\\same as before}}^{\infty} i \frac{\lambda^{i}}{i!} e^{-\lambda} + \sum_{\substack{i=0\\sum of PMFs=1}}^{\infty} \right) =$$

 $=\lambda(\lambda+1)$ thus

$$\mathbf{V}[X] = \mathbf{E}[X^{2}] - (\mathbf{E}[X])^{2} = \lambda(\lambda + 1) - \lambda^{2} = \lambda$$
$$\mathbf{E}[X^{k}] = \lambda \mathbf{E}[(X + 1)^{k-1}]$$

Bernoulli, Poisson, and random processes

- A Poisson process is a model for a series of discrete events where the average time between events is known, but the exact timing of events is random.
 - The arrival of an event is independent of the event before (waiting time between events is memoryless).
 - The average rate (events per time period) is constant.
 - Two events cannot occur at the same time: each sub-interval of a Poisson process is a Bernoulli trial that is either a success or a failure.
- Example: your website goes down on average twice per 60 days; calling a help centre; movements of stock price...



Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Geometric discrete random variable -

X is a geometric RV if X is a number of independent Bernoulli trials until the first success, and p is the probability of success on each Bernoulli trial.

$X{\sim}Geo(p)$

Range: {1, 2, ...} PMF: **P**[X = n] = $(1 - p)^{n-1}p$ Expectation: **E**[X] = $\frac{1}{p}$ Variance: **V**[X] = $\frac{1 - p}{p^2}$

Examples: tossing a coin (P[head] = p) until first heads appears, generating bits with P[bit = 1] = p until first 1 is generated.

PMF (E_i is the event that the *i*-th trial succeeds):

$$\mathbf{P}[X = n] = \mathbf{P}[E_1^c E_2^c \dots E_{n-1}^c E_n] =$$

=
$$\mathbf{P}[E_1^c] \mathbf{P}[E_2^c] \dots \mathbf{P}[E_{n-1}^c] \mathbf{P}[E_n] =$$

=
$$(1 - p)^{n-1} p$$

CDF (**P**[X > n] is the probability that at least the first *n* trials fail):

$$\mathbf{P}[X \le n] = 1 - \mathbf{P}[X > n] =$$

= 1 - \mathbf{P}[E_1^c E_2^c \dots E_n^c] =
= 1 - \mathbf{P}[E_1^c] \mathbf{P}[E_2^c] \dots \mathbf{P}[E_n^c] =
= 1 - (1 - \mathbf{p})^n

Die example

Example

You roll a fair 6-sided die until it comes up with # 6. What is the probability that it will take 3 rolls?

Let X be a RV for # of rolls. Probability for any # on die is $\frac{1}{6}$. Define RVs: $X \sim Geo(\frac{1}{6})$, want **P** [X = 3]. **P**[X = 3] = $(1 - p)^{n-1}p$ where $n = 3, p = \frac{1}{6}$ Solve: $= \left(1 - \frac{1}{6}\right)^{3-1} \frac{1}{6} = \left(\frac{5}{6}\right)^2 \frac{1}{6} = \frac{25}{216}$ $\mathbf{P}[X=3] = \mathbf{P}[not 6, not 6, 6] = \frac{5}{6} \frac{5}{6} \frac{1}{6} = \frac{25}{216}$ $\mathbf{P}[X = n] = \mathbf{P}[not \ 6(n-1)times, 6] = \left(\frac{5}{6}\right)^{n-1} \left(\frac{1}{6}\right)$

Intro to Probability

Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Negative binomial

 Negative binomial discrete random variable X is a negative binomial RV if X is the number of independent Bernoulli trials until r successes and p is the probability of success on each trial. $X \sim NegBin(r, p)$ Range: $\{r, r + 1, ...\}$ PMF: **P**[X = n] = $\binom{n-1}{r-1}(1-p)^{n-r}p^r$ Expectation: $\mathbf{E}[X] = \frac{r}{D}$ Variance: $\mathbf{V}[X] = \frac{r(1-p)}{p^2}$

Examples: tossing a coin until r-th heads appears, generating bits until the first r 1's are generated.

Note: Geo(p) = NegBin(1, p).

Example (not real life!)

A PhD student is expected to publish 2 papers to graduate. A conference accepts each paper randomly and independently with probability p = 0.25. On average, how many papers will the student need to submit to a conference in order to graduate?

Let *X* be # submissions required to get 2 acceptances. Thus $X \sim NegBin(r = 2, p = 0.25)$. So,

E[X] =
$$\frac{r}{p} = \frac{2}{0.25} = 8$$

Adding NegBin example

Example

Let $X \sim NegBin(m, p)$ and $Y \sim NegBin(n, p)$ be two independent RVs. Define a new RV as Z = X + Y. Find PMF of Z.

- Need to show that Z ~ NegBin(m + n, p).
- Consider the sequence of independent events tossing a coin with P[heads] = p.
- Let X be a RV for # of coin tosses until m heads are observed. Thus $X \sim NegBin(m, p)$.
- Now, continue to toss a coin after *m* heads are observed, until *n* more heads are observed. Thus, for this part of the sequence, Y ~ NegBin(n, p).
- Looking at it from the beginning we tossed independently the coin until we observed m + n heads, thus Z = X + Y and thus Z ~ NegBin(m + n, p).
- Note: if $X_1, X_2, ..., X_m$ are *m* independent Geo(p) RVs, then the RV $X = X_1 + X_2 + \cdots + X_m$ has NegBin(m, p) distribution.

Poisson discrete random variable

Geometric discrete random variable

Negative binomial discrete random variable

Hypergeometric discrete random variable

Hypergeometric

- Hypergeometric discrete random variable

X is a hypergeometric RV that samples n objects, without replacement, with i successes (random draw for which the object drawn has a specified feature), from a finite population of size N that contains exactly m objects with that feature.

$X \sim Hyp(N, n, m)$

Range:
$$\{0, 1, ..., n\}$$

PMF: $\mathbf{P}[X = i] = \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}}$
Expectation: $\mathbf{E}[X] = n\frac{m}{N}$
Variance: $\mathbf{V}[X] = n\frac{m}{N}\left(1 - \frac{m}{N}\right)\left(1 - \frac{n-1}{N-1}\right)$

Example: an urn has *N* balls of which *m* are white and N - m are black; we take a random sample **without replacement** of size *n* and measure *X*: # of white balls in the sample.

Survey sampling

Example

A street has 40 houses of which 5 houses are inhabited by families with an income below the poverty line. In a survey, 7 houses are sampled at random from this street. What is the probability that: (a) none of the 5 families with income below poverty line are sampled? (b) 4 of them are sampled? (c) no more than 2 are sampled? (d) at least 3 are sampled?

Let X: # of families sampled which are below the poverty line.

$$X \sim Hyp(N = 40, n = 7, m = 5).$$
(a) $\mathbf{P}[X = 0] = \frac{\binom{5}{0}\binom{40-5}{7-0}}{\binom{40}{7}} = \frac{\binom{35}{7}}{\binom{40}{7}} \approx 0.36$
(b) $\mathbf{P}[X = 4] = \frac{\binom{5}{4}\binom{40-5}{7-4}}{\binom{40}{7}}$
(c) $\mathbf{P}[X \le 2] = \mathbf{P}[X = 0] + \mathbf{P}[X = 1] + \mathbf{P}[X = 2]$
(d) $\mathbf{P}[X \ge 3] = 1 - \mathbf{P}[X \le 2]$

Summary of discrete RV

	Ber(p)	Bin(n,p)	$Pois(\lambda)$	Geo(p)	NegBin(r,p)	Hyp(N, n, m)
PMF	P [X=1]= <i>p</i>	$\mathbf{P}[X=k] = \binom{n}{k} p^{k} (1-p)^{n-k}$	$\mathbf{P}[X=k] = \frac{\lambda^k}{k!}e^{-\lambda}$	$ P[X = n] = (1-p)^{n-1}p $	$\mathbf{P}\left[\begin{array}{c} X = n \end{array}\right] = \\ \binom{n-1}{r-1} \left(1-p\right)^{n-r} p^{r}$	$ \begin{bmatrix} \mathbf{P}\left[X=i\right] = \\ \frac{\binom{m}{i}\binom{N-m}{n-i}}{\binom{N}{n}} \end{bmatrix} $
E [<i>X</i>]	p	np	λ	$\frac{1}{p}$	r/p	n <u>m</u>
v [<i>X</i>]	<i>p</i> (1 – <i>p</i>)	np(1 - p)	λ	$\frac{1-p}{p^2}$	$\frac{r(1-p)}{p^2}$	$n\frac{m}{N}\left(1-\frac{m}{N}\right)\left(1-\frac{n-1}{N-1}\right)$
Descr.	1 experiment with prob <i>p</i> of success	<i>n</i> independent trials with prob <i>p</i> of success	# successes over experiment duration, $\lambda = np$ rate of success	# independent trials until first success	# independent trials until r successes	# successes of drawing item with a feature (without replacement) in a sample of size <i>n</i> from a population of size <i>N</i> with <i>m</i> items with the feature

