
Foundations of Computer Science:
Datatypes and Trees

Lecture 6
Anil Madhavapeddy

18th October 2024

Your class rep is: aag70! Get Involved :)

Custom Types

Exceptions

Recursive Types

Custom Types

Custom Types
• So far, our types have been basic: int, float

or bool types that are built into OCaml.

• In this lecture we introduce one of the coolest
features of ML-style languages in the form of
custom datatypes!

• We continue to improve the abstraction of
our data away from the details of its
representation.

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

number_of_wheels “bike”
- : int = 2

number_of_wheels “motorbke”
???

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

number_of_wheels “bike”
- : int = 2

number_of_wheels “Motorbike”
???

Let’s describe a vehicle
let number_of_wheels = function
 “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18

number_of_wheels “bike”
- : int = 2

number_of_wheels “motorbke”
???

How can we make illegal
states unrepresentable?

An Enumeration Type
type vehicle =
 Bike
 | Motorbike
 | Car
 | Lorry

An Enumeration Type
type vehicle =
 Bike
 | Motorbike
 | Car
 | Lorry

• We have declared a new type vehicle

• Instead of representing any string, it can only contain the
four constants defined.

• These four constants become the constructors of the
vehicle type

An Enumeration Type
type vehicle =
 Bike
 | Motorbike
 | Car
 | Lorry

• The representation in memory is more efficient than using
strings.

• Adding new types of vehicles is straightforward by
extending the definitions.

• Different custom types cannot be intermixed, unlike strings
or integers.

Declaring functions on vehicles
let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
 | Lorry -> 18
val wheels : vehicle -> int = <fun>

Declaring functions on vehicles
let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
 | Lorry -> 18
val wheels : vehicle -> int = <fun>

let wheels = function
 | “bike” -> 2
 | “motorbike” -> 2
 | “car” -> 4
 | “lorry” -> 18
val wheels : string -> int = <fun>

• The representation in memory is more efficient than using strings.

• Different custom types cannot be intermixed, unlike strings or
integers.

Declaring functions on vehicles
let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
 | Lorry -> 18
val wheels : vehicle -> int = <fun>

• Adding new types of vehicles is straightforward by
extending the definitions and fixing warnings.

let wheels = function
 | Bike -> 2
 | Motorbike -> 2
 | Car -> 4
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
Orange
val wheels : vehicle -> int = <fun>

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

Bike
Motorbike 250
Car true
Lorry 500

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

type vehicle = Bike
 | Motorbike of int (* engine size in CCs *)
 | Car of bool (* true if a Reliant Robin *)
 | Lorry of int (* number of wheels *)

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

type vehicle = Bike
 | Motorbike of int (* engine size in CCs *)
 | Car of bool (* true if a Reliant Robin *)
 | Lorry of int (* number of wheels *)

An OCaml comment
allows annotation of

source code

Declaring functions on vehicles
type vehicle = Bike
 | Motorbike of int
 | Car of bool
 | Lorry of int

• OCaml generalises the notion of enumeration types to
allow data to be stored alongside each variant.

• Even though they have different data, they are all of type
vehicle when wrapped by the constructor.

[Bike; Car true; Motorbike 450]
- : vehicle list

A finer wheel computation
let wheels = function
 | Bike -> 2
 | Motorbike _ -> 2
 | Car robin -> if robin then 3 else 4
 | Lorry w -> w

• A Bike has two wheels.

• A Motorbike has two wheels.

• A Reliant Robin has three wheels; all other
cars have four.

• A Lorry has the number of wheels stored with
its constructor.

A finer wheel computation
let is_reliant_robin = function
 | Car true -> true
 | _ -> false

Exceptions

Exceptions
• During a computation, what if something goes wrong?

• Division by zero

• Pattern matching failure

• Exception handling allows us to recover from these:

• Raising an exception abandons the current expression

• Handling the exception attempts an alternative

• Raising and handling can be separated in the source code

Exceptions
exception Failure
exception Failure

exception NoChange of int
exception NoChange of int

raise Failure
Exception: Failure.

• Each exception declaration introduces a distinct type of
exception that can be handled separately.

• Exceptions are like enumerations and can have data
attached to them.

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Install
exception
handler for
enclosing

block

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Exceptions
try
 print_endline "pre exception";
 raise (NoChange 1);
 print_endline "post exception";
 with
 | NoChange _ ->
 print_endline "handled a NoChange exception"
Line 3, characters 5-23:
Warning 21: this statement never returns (or has an unsound type.)
pre exception
handled a NoChange exception
- : unit = ()

• raise dynamically jumps to the nearest try/with
handler that matches that exception

• Unlike some languages, OCaml does not mark a function
to indicate that an exception might be raised.

Change : a recap
let rec change till amt =
 if amt = 0 then
 [[]]
 else
 match till with
 | [] -> []
 | c::till ->
 if amt < c then
 change till amt
 else
 let rec allc = function
 | [] -> []
 | cs :: css -> (c::cs) :: allc css
 in
 allc (change (c::till) (amt - c)) @
 change till amt

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Backtrack

Backtrack

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

Attempt the
solution

Remove
some change

and retry if
stuck

Change with backtracking
exception Change
 let rec change till amt =
 if amt = 0 then
 []
 else
 match till with
 | [] ->
 raise Change
 | c::till ->
 if amt < 0 then
 raise Change
 else
 try
 c :: change (c::till) (amt - c)
 with Change ->
 change till amt
exception Change
val change : int list -> int -> int list = <fun>

change [5; 2] 6
 ⇒ 5::change [5; 2] 1 with C -> change [2] 6
 ⇒ 5::(5::change [5; 2] -4) with C -> change [2] 1
 with C -> change [2] 6
 ⇒ 5::(change [2] 1) with C -> change [2] 6
 ⇒ 5::(2::change [2] -1) with C -> change [] 1
 with C -> change [2] 6
 ⇒ 5::(change [] 1) with C -> change [2] 6
 ⇒ change [2] 6
 ⇒ 2::(change [2] 4) with C -> change [] 6
 ⇒ 2::(2::change [2] 2) with C -> change [] 4
 with C -> change [] 6
 ⇒ 2::(2::(2::change [2] 0)) with C -> change [] 2
 with C -> change [] 4
 with C -> change [] 6
 ⇒ 2::(2::[2]) with C -> change [] 4
 with C -> change [] 6
 ⇒ 2::[2; 2] with C -> change [] 6
 ⇒ [2; 2; 2]

Recursive Types

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

• A data structure with multiple branching is called a tree.

• Trees are nearly as fundamental a structure as lists.

• Each node is either a leaf (empty) or a branch with a label
and two subtrees.

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

“Polymorphic”
type

Binary Trees
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

Br(1, Br(2, Br(4, Lf, Lf),
 Br(5, Lf, Lf)),
 Br(3, Lf, Lf))

int tree

“Polymorphic”
type

Binary Trees & Lists
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

type 'a mylist =
| Nil
| Cons of 'a * 'a mylist

Cons (1, Cons (2, Cons (3, Nil)))
- : int mylist

Polymorphism & Recursion
type 'a tree =
 Lf
 | Br of 'a * 'a tree * 'a tree

type shape =
| Null
| Join of shape * shape

type 'a option =
| None
| Some of 'a

Polymorphic
and Recursive

Recursive

Polymorphic

Simple Operations on Trees
(* number of branch nodes *)
let rec count = function
 | Lf -> 0
 | Br (v, t1, t2) -> 1 + count t1 + count t2
val count : 'a tree -> int = <fun>

(* length of longest path *)
let rec depth = function
 | Lf -> 0
 | Br (v, t1, t2) -> 1 + max (depth t1) (depth t2)
val depth : 'a tree -> int = <fun>

• Use pattern matching to build expressions over trees

• The invariant holds abovecount(t) ≤ 2depth(t) − 1

