Foundations of Computer Science: Lecture 2

Recursion and Complexity

Recursion and Complexity
Recursion and Complexity
Recursion and Complexity
Recursion and Complexity
Recursion and Complexity
Recursion and Complexity
Recursion and Complexity Recursion and Complexity

9th October 2023
Anil Madhavapeddy

The Practical Classes

https://www.cl.cam.ac.uk/teaching/2324/OCaml/

- Executed online in the hub.cl.cam.ac.uk server
- There are 5 ticks, each of which have a deadline for submission 10 days after they are issued (except last tick, which goes into Lent term).

Tick 1: released 2023-10-06 due 2023-10-16
Tick 2: released 2023-10-13 due 2023-10-23
Tick 3: released 2023-10-20 due 2023-10-30
Tick 4: released 2023-10-27 due 2023-11-06
Tick 5: released 2023-11-03 due 2024-01-19

Expression Evaluation

$$
E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n} \rightarrow v
$$

Expression Evaluation

$$
E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n} \rightarrow v
$$

Focus on expressions; ignore side-effects for now.

This discipline of separating expression from effects is often known as functional programming

We will return to side effects later in the course to make useful programs!

Expression Evaluation

$$
E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n} \rightarrow v
$$

```
# let rec power x n =
    if n = 1 then x
    else if even n then
        power (x *. x) (n / 2)
    else
        x *. power (x *. x) (n / 2)
```


Expression Evaluation

$$
E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n} \rightarrow v
$$

```
# let rec power x n = 
```

power $(2,12) \Rightarrow$
power $(4,6) \Rightarrow$
power $(16,3) \Rightarrow$
$16 \times \operatorname{power}(256,1) \Rightarrow$
$16 \times 256 \Rightarrow$
4096

Summing first n integers

$$
\begin{aligned}
\text { nsum } 3 & \Rightarrow 3+(\text { nsum } 2) \\
& \Rightarrow 3+(2+(\text { nsum } 1) \\
& \Rightarrow 3+(2+(1+\text { nsum } 0)) \\
& \Rightarrow 3+(2+(1+0))
\end{aligned}
$$

Summing first n integers

$$
\begin{aligned}
\text { nsum } 3 & \Rightarrow 3+(\text { nsum } 2) \\
& \Rightarrow 3+(2+(\text { nsum } 1) \\
& \Rightarrow 3+(2+(1+\text { nsum } 0)) \\
& \Rightarrow 3+(2+(1+0))
\end{aligned}
$$

Nothing can progress until the final expression is calculated!

Summing first n integers

Intermediate results are stored in the program stack which is usually of limited size.

Nothing can progress until the final expression is calculated!

Summing first n integers

Intermediate results are stored in the program stack which is usually of limited size.

Nothing can progress until the final expression is calculated!

Two types of storage:

heap is a global area where the memory storing values bound to names are tracked stack is a list where function call arguments are pushed and return values popped.

Iteratively summing

```
# let rec summing n total =
    if n = 0 then
        total
    else
        summing (n - 1) (n + total)
```

```
# let rec nsum n =
    if n = 0 then
        0
    else
        n + nsum (n - 1)
```


Iteratively summing

```
# let rec summing n total =
    if n = 0 then
        total
        else
        summing (n - 1) (n + total)
```

```
# let rec nsum n =
    if n = 0 then
        0
    else
        n + nsum (n - 1)
```

$$
\begin{aligned}
\text { nsum } 3 & \Rightarrow 3+(\text { nsum } 2) \\
& \Rightarrow 3+(2+(\text { nsum } 1) \\
& \Rightarrow 3+(2+(1+n \operatorname{sum} 0)) \\
& \Rightarrow 3+(2+(1+0))
\end{aligned}
$$

Iteratively summing

```
# let rec summing n total =
    if n = 0 then
        total
        else
        summing (n - 1) (n + total)
```

Extra argument total acts as the accumulator to keep track explicitly instead of using the stack
summing $30 \Rightarrow$ summing 23
\Rightarrow summing 15
\Rightarrow summing 06
$\Rightarrow 6$
Algorithms like this are known as iterative or tail recursive

Recursion vs iteration

- Why two terms iterative and tail recursive?
- "Iterative" normally refers to a loop: e.g. coded using while.
- "Tail-recursion" involves the recursive function call being the last thing that expression does.
- Tail-recursion is efficient only if the compiler detects it.
- Mainly it saves space, though iterative code can run faster.
- Do not make programs iterative unless you determine the gain is significant.

How can we analyse our programs for efficiency?

Silly summing first n integers

```
# let rec sillySum n =
    if n = 0 then
        0
    else
        n + (sillySum (n-1) + sillySum (n-1)) / 2
```



```
Recursively calls itself
twice for every invocation
```


Silly summing first n integers

```
# let rec sillySum n =
    if n = 0 then
        0
    else
        n + (sillySum (n-1) + sillySum (n-1)) / 2
```



```
Recursively calls itself twice for every invocation
```

Should assign the result to a local variable to prevent evaluating it twice

```
# let x = 2.0 in
    let y = Float.pow x 20.0 in
    y *. (x /. y)
```


Asymptotic complexity refers to how program costs grow with increasing inputs

Usually space or time, with the latter usually being larger than the former.

Question: if we double our processing power, how much does our computation capability increase?

Time Complexity

complexity	1 second	1 minute	1 hour	gain
n	1000	60,000	$3,600,000$	$\times 60$
$n \lg n$	140	4,893	200,000	$\times 41$
n^{2}	31	244	1,897	$\times 8$
n^{3}	10	39	153	$\times 4$
2^{n}	9	15	21	+6

complexity $=$ milliseconds of runtime given an input of size n

Comparing Algorithms with $\mathrm{O}(\mathrm{n})$

Formally, define $\quad f(n)=O(g(n))$
provided that $\quad f(n) \leq c g(n)$

Comparing Algorithms with $\mathrm{O}(\mathrm{n})$

Formally, define $\quad f(n)=O(g(n))$
provided that $\quad f(n) \leq c \quad g(n)$

Intuitively, consider the most significant term and ignore constant or smaller factors
E.g. simplify $3 n^{2}+34 n+433 \rightarrow n^{2}$

Facts about O notation

$O(2 g(n))$ is the same as $O(g(n))$
$O\left(\log _{10} n\right)$ is the same as $O(\ln n)$
$O\left(n^{2}+50 n+36\right)$ is the same as $O\left(n^{2}\right)$
$O\left(n^{2}\right)$ is contained in $O\left(n^{3}\right)$
$O\left(2^{n}\right)$ is contained in $O\left(3^{n}\right)$
$O(\log n)$ is contained in $O(\sqrt{n})$

Common complexity classes

$O(1)$	constant
$O(\log n)$	logarithmic
$O(n)$	linear
$O(n \log n)$	quasi-linear
$O\left(n^{2}\right)$	quadratic
$O\left(n^{3}\right)$	cubic
$O\left(a^{n}\right)$	exponential (for fixed $a)$

Sample costs in O-notation

Function	Time	Space
npower, nsum	$\mathrm{O}(n)$	$\mathrm{O}(n)$
summing	$\mathrm{O}(n)$	$\mathrm{O}(1)$
$n(n+1) / 2$	$\mathrm{O}(1)$	$\mathrm{O}(1)$
power	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$
sillySum	$\mathrm{O}\left(2^{n}\right)$	$\mathrm{O}(n)$

Simple recurrence relations

$T(n)$: a cost we want to bound using O notation
Typical base case: $T(1)=1$
Some recurrences:

$$
\begin{array}{rlr}
T(n+1) & =T(n)+1 & O(n) \\
T(n+1) & =T(n)+n & O\left(n^{2}\right) \\
T(n) & =T(n / 2)+1 & O(\log n) \\
T(n) & =2 T(n / 2)+n & O(n \log n)
\end{array}
$$

Mapping this to OCaml

Given ($\mathrm{n}+1$), does a constant amount of work

Then calls itself
with n

Mapping this to OCaml

Therefore, recurrence relations are:

$$
\begin{array}{r}
T(0)=1 \\
T(n+1)=T(n)+1
\end{array}
$$

Mapping this to OCaml

Given ($\mathrm{n}+1$), does a constant amount of work

Then calls itself with n

Therefore, recurrence relations are:

$$
\begin{array}{r}
T(0)=1 \\
T(n+1)=T(n)+1 \tag{n}
\end{array}
$$

Mapping this to OCaml

Mapping this to OCaml

Therefore, recurrence relations are:

$$
\begin{array}{r}
T(0)=1 \\
T(n+1)=T(n)+n
\end{array}
$$

Mapping this to OCaml

Therefore, recurrence relations are:

$$
\begin{array}{r}
T(0)=1 \\
T(n+1)=T(n)+n
\end{array}
$$

$$
O\left(n^{2}\right)
$$

Mapping this to OCaml

Calls itself
\longleftarrow recursively once

Always divides iteration count by 2

Mapping this to OCaml

Calls itself
recursively once
Always divides iteration count by 2

Therefore, recurrence relations are:

$$
\begin{array}{r}
T(0)=1 \\
T(n)=T(n / 2)+1
\end{array}
$$

Mapping this to OCaml

 if \(\mathrm{n}=1\) then x
 else if even n then
 power (x *. x) (n / 2)
 else
 x *. power (x *. x) (n / 2)
 Calls itself
\longleftarrow recursively once

Always divides iteration count by 2

Therefore, recurrence relations are:

$$
\begin{array}{r}
T(0)=1 \\
T(n)=T(n / 2)+1
\end{array}
$$

$O(\log n)$

