Foundations of Computer Science: Lecture 2

Recursion and Complexity Recursion and Complexity

> 9th October 2023 Anil Madhavapeddy

The Practical Classes

https://www.cl.cam.ac.uk/teaching/2324/OCaml/

- Executed online in the <u>hub.cl.cam.ac.uk</u> server
- There are 5 ticks, each of which have a deadline for submission 10 days after they are issued *(except last tick, which goes into Lent term)*.

 Tick 1: released 2023-10-06
 due 2023-10-16

 Tick 2: released 2023-10-13
 due 2023-10-23

 Tick 3: released 2023-10-20
 due 2023-10-30

 Tick 4: released 2023-10-27
 due 2023-11-06

 Tick 5: released 2023-11-03
 due 2024-01-19

 $E_0 \to E_1 \to \dots \to E_n \to v$

 $E_0 \to E_1 \to \ldots \to E_n \to v$

Focus on *expressions;* ignore *side-effects* for now.

This discipline of separating expression from effects is often known as *functional programming*

We will return to side effects later in the course to make useful programs!

 $E_0 \to E_1 \to \dots \to E_n \to v$

```
# let rec power x n =
    if n = 1 then x
    else if even n then
        power (x *. x) (n / 2)
    else
        x *. power (x *. x) (n / 2)
```

 $E_0 \to E_1 \to \dots \to E_n \to v$

<pre># let rec power x n =</pre>	
if $n = 1$ then x	
else if even n then	
power (x *. x) (n /	2)
else	
x *. power (x *. x)	(n / 2)

power(2, 12) \Rightarrow power(4, 6) \Rightarrow power(16, 3) \Rightarrow 16 × power(256, 1) \Rightarrow 16 × 256 \Rightarrow 4096

<pre># let rec nsum n =</pre>
if $n = 0$ then
0
else
n + nsum (n - 1)

 $nsum 3 \Rightarrow 3 + (nsum 2)$ $\Rightarrow 3 + (2 + (nsum 1))$ $\Rightarrow 3 + (2 + (1 + nsum 0))$ $\Rightarrow 3 + (2 + (1 + 0))$

<pre># let rec nsum n =</pre>
if $n = 0$ then
0
else
n + nsum (n - 1)

 $nsum 3 \Rightarrow 3 + (nsum 2)$ $\Rightarrow 3 + (2 + (nsum 1))$ $\Rightarrow 3 + (2 + (1 + nsum 0))$ $\Rightarrow 3 + (2 + (1 + 0))$

> Nothing can progress until the final expression is calculated!

Two types of storage:

heap is a **global area** where the memory storing values bound to names are tracked *stack* is a list where function call arguments are **pushed** and return values **popped**.

Iteratively summing

#	let	rec	sumn	ning	g n	ı to	ota.] =	=
	i	f n =	= 0 t	cher	l				
		tota	al						
	e	lse							
		sum	ning	(n	_	1)	(n	+	total

let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

Iteratively summing

#	<pre>let rec summing n total =</pre>
	if $n = 0$ then
	total
	else
	summing (n - 1) (n + total)

let rec nsum n =
 if n = 0 then
 0
 else
 n + nsum (n - 1)

summing $3 \ 0 \Rightarrow$ summing $2 \ 3$ \Rightarrow summing $1 \ 5$ \Rightarrow summing $0 \ 6$ $\Rightarrow 6$ $nsum 3 \Rightarrow 3 + (nsum 2)$ $\Rightarrow 3 + (2 + (nsum 1))$ $\Rightarrow 3 + (2 + (1 + nsum 0))$ $\Rightarrow 3 + (2 + (1 + 0))$

Iteratively summing

<pre># let rec summing n total =</pre>
if $n = 0$ then
total
else
summing (n - 1) (n + total)

Extra argument total acts as the *accumulator* to keep track explicitly instead of using the stack

summing $3\ 0 \Rightarrow$ summing $2\ 3$ \Rightarrow summing $1\ 5$ \Rightarrow summing $0\ 6$ $\Rightarrow 6$

Algorithms like this are known as *iterative* or *tail recursive*

Recursion vs iteration

- Why two terms *iterative* and *tail recursive*?
 - "Iterative" normally refers to a loop: e.g. coded using while.
 - "Tail-recursion" involves the recursive function call being the last thing that expression does.
- Tail-recursion is efficient only if the compiler detects it.
 - Mainly it saves space, though iterative code can run faster.
- Do not make programs iterative unless you determine the gain is significant.

How can we analyse our programs for efficiency?

Silly summing first n integers

Recursively calls itself twice for every invocation

Silly summing first n integers

Recursively calls itself twice for every invocation

Should **assign** the result to a local variable to prevent evaluating it twice

```
# let x = 2.0 in
   let y = Float.pow x 20.0 in
   y *. (x /. y)
```

Asymptotic complexity refers to how program costs grow with increasing inputs

Usually space or time, with the latter usually being larger than the former.

Question: if we double our processing power, how much does our computation capability increase?

Time Complexity

complexity	1 second	1 minute	1 hour	gain
n	1000	60,000	3,600,000	$\times 60$
n lg n	140	4,893	200,000	×41
n^2	31	244	1,897	$\times 8$
n^3	10	39	153	$\times 4$
2^n	9	15	21	+6

complexity = milliseconds of runtime given an input of size n

Comparing Algorithms with O(n)

Formally, define f(n) = O(g(n))provided that $f(n) \leq c g(n)$

Comparing Algorithms with O(n)

Formally, define
$$f(n) = O(g(n))$$

provided that $f(n) \leq c g(n)$

Intuitively, consider the most significant term and ignore constant or smaller factors

E.g. simplify
$$3n^2 + 34n + 433 \rightarrow n^2$$

Facts about O notation

O(2g(n)) is the same as O(g(n)) $O(\log_{10} n)$ is the same as $O(\ln n)$ $O(n^2 + 50n + 36)$ is the same as $O(n^2)$ $O(n^2)$ is contained in $O(n^3)$ $O(2^n)$ is contained in $O(3^n)$ $O(\log n)$ is contained in $O(\sqrt{n})$

Common complexity classes

<i>O</i> (1)	constant
$O(\log n)$	logarithmic
O(n)	linear
$O(n \log n)$	quasi-linear
$O(n^2)$	quadratic
$O(n^3)$	cubic
$O(a^n)$	exponential (for fixed a)

Sample costs in O-notation

Function	Time	Space
npower, nsum	O(n)	O(n)
summing	O(n)	O(1)
n(n + 1)/2	O(1)	O(1)
power	$O(\log n)$	$O(\log n)$
sillySum	$O(2^n)$	O(n)

Simple recurrence relations

T(n): a cost we want to bound using O notation

Typical base case: T(1) = 1

Some *recurrences*:

$$T(n + 1) = T(n) + 1$$

$$T(n + 1) = T(n) + n$$

$$T(n) = T(n/2) + 1$$

$$T(n) = 2T(n/2) + n$$

$$O(n)$$

$$O(n)$$

$$O(\log n)$$

$$O(n \log n)$$

Therefore, recurrence relations are:

$$T(0) = 1$$
$$T(n+1) = T(n) + 1$$

Therefore, recurrence relations are:

$$T(0) = 1$$

 $T(n+1) = T(n) + 1$ $O(n$

Calls itself recursively once

Therefore, recurrence relations are:

$$T(0) = 1$$
$$T(n+1) = T(n) + n$$

Calls itself recursively once

Therefore, recurrence relations are:

$$T(0) = 1$$
$$T(n+1) = T(n) + n$$

$$O(n^2)$$

Calls itself

recursively once

Therefore, recurrence relations are:

$$T(0) = 1$$
$$T(n) = T(n/2) + 1$$

Therefore, recurrence relations are:

$$T(0) = 1$$
$$T(n) = T(n/2) + 1$$

 $O(\log n)$