
Lecture 3:
Goal-oriented interaction
Using cognitive theories of planning, learning and understanding to understand
user behaviour, and what they find hard.

Overview of the course

• Theory driven approaches to HCI
• Design of visual displays
• Goal-oriented interaction
• Designing efficient systems
• Designing smart systems (guest lecturer)
• Designing meaningful systems (guest lecturer)
• Evaluating interactive system designs
• Designing complex systems

A Metatheory (in first-wave HCI):
User interaction can be modelled as
search

To come in Prolog course (later this term):
problem solving using graph search

From Rice &
Beresford

Turn the problem into a graph

Encode as Prolog facts to solve

start(a).
finish(u).

route(a,g).
route(g,l).
route(l,s).
...
travel(A,A).
travel(A,C) :- route(A,B),travel(B,C).

solve :- start(A),finish(B), travel(A,B).

HCI example of a User Goal:
“How much did my use of Google
Cloud Platform cost me last month?”

What search algorithm is being used
here?

Breadth first/Depth first?

Click
targets

Click
targets

Goal

Availability

Match

Feedback

[Simplified] Cognitive Walkthrough

See:
https://www.colorado.edu/ics/sites/default/files/attached-files/93-07.pdf

For a detailed description

https://www.colorado.edu/ics/sites/default/files/attached-files/93-07.pdf

Goal

Availability

Match

Feedback

Finding your bill?

Goal

Availability

Match

Feedback

Example: Walkthrough of an API (demo)

(Macvean et al, 2016)

Goal

Availability

Match

Feedback

Example problem: Discovery

(Macvean et al, 2016)

I want to delete a file

Type “File.” and auto complete gives

There’s a conceptual
mismatch on whether file
is a static method or you
have to get a file and
then delete it

Goal

Availability

Match

Feedback

Example problem: ‘yak shaving’

(Macvean et al, 2016)

To write a line to a file
 Open a file
 Complete a future to get the file
 Convert a string to a bytebuffer
 Iterate over the bytebuffer
 Write the block
 Complete on the future for writing
 Close the file
 Complete the future for closing the file

Too many subgoals that need
completing

Example (not-examinable)

(The Factory Pattern in API Design:
A Usability Evaluation, Ellis et al)

The cost of thinking:
Heuristics and Biases

12 + 24 * 3 =

= AC + 2

“eh?”
(Example from Richard Young)

How many times should the
calculator user press AC?

Classical theories of metareasoning

● Optimal search
○ Find the best possible solution within stated constraints on resources

● Bounded rationality
○ Computation is one of the constraints

● Satisficing
○ Find a satisfactory solution within computation constraints

Neuro-economic models of reasoning

• Behavioural economics, sometimes applied as “nudge”

• Original basis in “prospect theory” (Kahneman & Tversky)
• General theory of decision making
• Construct a utility model, based on outcome of possible actions
• Weight estimated values by likelihood
• Choose action with optimal utility
• May include future value discounting

• In practice, the optimisation is more likely to involve satisficing, due
to reasoning with bounded rationality constraints
• In Kahneman’s terms “thinking fast and slow”

Bounded rationality in humans

• Apply heuristics rather than searching for optimal plan
• Availability heuristic - reason based on examples easily to hand
• Affect heuristic – base decision on emotion rather than calculating cost /

benefit
• Representativeness heuristic - judge probability based on resemblance

• Apply biases to ensure estimation error within tolerable bounds
• Loss aversion - losses hurt more than gains feel good
• Expectation bias - researchers (even in HCI) find results they expected
• Bandwagon effect - do what other people do

• And many others!

Behavioural economics in programming

• “Attention Investment theory” of abstraction use
• Automation requires abstract specification

• e.g. defining a regular expression for search and replace
• Benefit of automation is saving time and concentration in future
• But abstract specification (programming) takes time and concentration!

• and more powerful abstractions (programs) can go wrong powerfully
• User may prefer repetitive manual operations - safe and incremental

• So utility function will compare a) future saving of attention from
programming vs b) costs of concentrating on a risky strategy
• Biases such as loss aversion will apply
• Bounded rationality will apply, since deciding what to do takes even more

concentration

The limitations of goal based HCI

It assumes the user doesn’t make mistakes

• Would need a cognitive model of why error occurred
• Information loss due to cognitive limitations
• Incorrect mental model
• Misleading design

• Need description of user journey that accounts for problem
identification, diagnosis, debugging, testing, iteration etc

It assumes the user has the right goal

• Persuasive design is a field of HCI that addresses goal formation

• Applications:
• Reduce energy consumption
• Promote exercise
• Manage diet and nutrition
• Smoking cessation

• May include “nudge” to account for biases
• But most people see this as paternalistic / patronising

It assumes the user knows what the goal is

• Not true when the purpose is a cultural/aesthetic experience (third
wave HCI) - what is my “goal” in listening to a piece of music?

• Not true in “exploratory design”

• More attention to this later in the course
• Some problems can’t be decomposed into actions
• Sometimes actions have side effects

Wicked problems

Including material provided by
Steven Tanimoto

A Wicked Problem:

Slowing climate change

36
By NASA Goddard Institute for Space Studies - http://data.giss.nasa.gov/gistemp/graphs/, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=24363898

More Wicked Problems

• Stopping the spread of antibiotic-resistant diseases

• Halting nuclear proliferation

• Ending homelessness in Cambridge

• Avoiding species extinction

• Colonizing Mars

37

Rittel-Webber Characteristics 1-5 of 10

1. There is no definitive formulation of a wicked problem

2. Wicked problems have no stopping rule

3. Solutions to wicked problems are not true-or-false, but good-or-bad

4. There is no immediate and no ultimate test of a solution to a wicked
problem

5. Every solution to a wicked problem is a “one-shot operation”; because
there is no opportunity to learn by trial-and-error, every attempt counts
significantly

38

Rittel-Webber Characteristics 6-10 of 10

6. Wicked problems do not have an enumerable (or an exhaustively
describable) set of potential solutions, nor is there a well-described set
of permissible operations that may be incorporated into the plan

7. Every wicked problem is essentially unique

8. Every wicked problem can be considered to be a symptom of another
problem

9. The existence of a discrepancy representing a wicked problem can be
explained in numerous ways. The choice of explanation determines the
nature of the problem's resolution

10. The planner has no right to be wrong

39

The programming analogy challenge 2026:
Example #2: Outlook

- Think of an email as a message (duh) as in the asynchronous
model of the original object-oriented language Smalltalk

- Later OO languages implemented this as synchronous methods
and member functions

- The key question for system analysis is: what state change in the
receiver object is allowed/necessary?

- Outlook already has a state model for calendar maintenance
- Could AI-assisted parsing facilitate other automated workflows?
- Should they offer type verification, assertions, side effects,

visibility modifiers …

