
Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

90

Regular languages are closed under complementation

Lemma. If L is a regular language over alphabet Σ, then its complement {u ∈ Σ∗ | u /∈ L} is also
regular.

Proof. Since L is regular, by definition there is a DFA M such that L = L(M). Let Not(M) be
the DFA constructed from M as indicated on Slide 92. Then {u ∈ Σ∗ | u /∈ L} is the set of
strings accepted by Not(M) and hence is regular. !

[N.B. If one applies the construction on Slide 92 (interchanging the role of accepting &
non-accepting states) to a non-deterministic finite automaton N, then in general L(Not(N)) is
not equal to {u ∈ Σ∗ | u ̸∈ L(N)} – see Exercise 4.5.]

We saw on slide 79 that part (a) of Kleene’s Theorem allows us to answer question (a) on
Slide 38. Now that we have proved the other half of the theorem, we can say more about
question (b) on that slide. In particular, it is a consequence of Kleene’s Theorem plus the above
lemma that for each regular expression r over an alphabet Σ, there is a regular expression ∼r that
determines via matching the complement of the language determined by r:

L(∼r) = {u ∈ Σ
∗ | u /∈ L(r)}

To see this, given a regular expression r, by part (a) of Kleene’s Theorem there is a DFA M such
that L(r) = L(M). Then by part (b) of the theorem applied to the DFA Not(M), we can find a
regular expression ∼r so that L(∼r) = L(Not(M)). Since
L(Not(M)) = {u ∈ Σ∗ | u /∈ L(M)}= {u ∈ Σ∗ | u /∈ L(r)}, this ∼r is the regular expression
we need for the complement of r.

91

Not(M)

Given DFA M = (Q, Σ, δ, s, F),
then Not(M) is the DFA with

" set of states = Q
" input alphabet = Σ

" next-state function = δ

" start state = s
" accepting states = {q ∈ Q | q ̸∈ F}.

(i.e. we just reverse the role of accepting/non-accepting and leave everything else the same)

Because M is a deterministic finite automaton, then u is accepted by
Not(M) iff it is not accepted by M:

L(Not(M)) = {u ∈ Σ
∗ | u ̸∈ L(M)}

92

Regular languages are
closed under intersection

Theorem. If L1 and L2 are regular languages over an
alphabet Σ, then their intersection
L1 ∩ L2 = {u ∈ Σ∗ | u ∈ L1 & u ∈ L2} is also regular.

Proof. Note that L1 ∩ L2 = Σ∗ \ ((Σ∗ \ L1)∪ (Σ∗ \ L2))

(cf. de Morgan’s Law: p & q = ¬(¬p ∨¬q)).

So if L1 = L(M1) and L2 = L(M2) for DFAs M1 and M2, then
L1 ∩ L2 = L(Not(PM)) where M is the NFAε

Union(Not(M1), Not(M2)). !

[It is not hard to directly construct a DFA And(M1, M2) from M1 and M2 such that
L(And(M1, M2)) = L(M1)∩ L(M2) – see Exercise 4.7.]

93

Regular languages are
closed under intersection

Corollary: given regular expressions r1 and r2,there is a
regular expression, which we write as r1 & r2, such that

a string u matches r1 & r2 iff it matches both r1

and r2.

Proof. By Kleene (a), L(r1) and L(r2) are regular languages and
hence by the theorem, so is L(r1)∩ L(r2). Then we can use
Kleene (b) to construct a regular expression r1 & r2 with
L(r1 & r2) = L(r1)∩ L(r2). !

94

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

95

Equivalent regular expressions
Definition. Two regular expressions r and s are said to be
equivalent if L(r) = L(s), that is, they determine
exactly the same sets of strings via matching.

For example, are b∗a(b∗a)∗ and (a|b)∗a equivalent?

Answer: yes (Exercise 2.3)

How can we decide all such questions?

96

Note that L(r) = L(s)

iff L(r) ⊆ L(s) and L(s) ⊆ L(r)
iff (Σ∗ \ L(r)) ∩ L(s) = ∅ = (Σ∗ \ L(s)) ∩ L(r)
iff L((∼r) & s) = ∅ = L((∼s) & r)
iff L(M) = ∅ = L(N)

where M and N are DFAs accepting the sets of strings matched by the
regular expressions (∼r) & s and (∼s) & r respectively.

So to decide equivalence for regular expressions it suffices to

check, given any given DFA M, whether or not it accepts some string.

Note that the number of transitions needed to reach an accepting state in a finite
automaton is bounded by the number of states (we can remove loops from longer
paths). So we only have to check finitely many strings to see whether or not L(M)
is empty.

97

The Pumping Lemma

98

Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

99

In the context of programming languages, a typical example of a regular language (Slide 64) is the
set of all strings of characters which are well-formed tokens (basic keywords, identifiers, etc) in a
particular programming language, Java say. By contrast, the set of all strings which represent
well-formed Java programs is a typical example of a language that is not regular. Slide 101 gives
some simpler examples of non-regular languages. For example, there is no way to use a search
based on matching a regular expression to find all the palindromes in a piece of text (although of
course there are other kinds of algorithm for doing this).

The intuitive reason why the languages listed on Slide 101 are not regular is that a machine for
recognising whether or not any given string is in the language would need infinitely many different
states (whereas a characteristic feature of the machines we have been using is that they have only
finitely many states). For example, to recognise that a string is of the form anbn one would need
to remember how many as had been seen before the first b is encountered, requiring countably
many states of the form ‘just_ seen_n_as’. This section make this intuitive argument rigorous and
describes a useful way of showing that languages such as these are not regular.

The fact that a finite automaton does only have finitely many states means that as we look at
longer and longer strings that it accepts, we see a certain kind of repetition—the pumping lemma
property given on Slide 102.

100

Examples of languages that are
not regular

" The set of strings over {(,), a, b, . . . , z} in which the
parentheses ‘(’ and ‘)’ occur well-nested.

" The set of strings over {a, b, . . . , z} which are
palindromes, i.e. which read the same backwards as
forwards.

" {anbn | n ≥ 0}

101

The Pumping Lemma

For every regular language L, there is a number ℓ ≥ 1
satisfying the pumping lemma property:

All w ∈ L with |w| ≥ ℓ can be expressed as a
concatenation of three strings, w = u1vu2, where u1, v
and u2 satisfy:
" |v| ≥ 1

(i.e. v ̸= ε)

" |u1v| ≤ ℓ

" for all n ≥ 0, u1vnu2 ∈ L
(i.e. u1u2 ∈ L, u1vu2 ∈ L [but we knew that anyway], u1vvu2 ∈ L,

u1vvvu2 ∈ L, etc.)

102

Proving the Pumping Lemma

Since L is regular, it is equal to the set L(M) of strings accepted by some DFA
M = (Q, Σ, δ, s, F). Then we can take the number ℓ mentioned on Slide 102 to be the number of
states in Q. For suppose w = a1a2 . . . an with n ≥ ℓ. If w ∈ L(M), then there is a transition
sequence as shown at the top of Slide 104. Then w can be split into three pieces as shown on that
slide. Note that by choice of i and j, |v| = j − i ≥ 1 and |u1v| = j ≤ ℓ. So it just remains to
check that u1vnu2 ∈ L for all n ≥ 0. As shown on the lower half of Slide 104, the string v takes
the machine M from state qi back to the same state (since qi = qj). So for any n, u1vnu2 takes
us from the initial state sM = qo to qi, then n times round the loop from qi to itself, and then
from qi to qn ∈ AcceptM . Therefore for any n ≥ 0, u1vnu2 is accepted by M, i.e. u1vnu2 ∈ L. !

[Note. In the above construction it is perfectly possible that i = 0, in which case u1 is the
null-string, ε.]

Remark. One consequence of the pumping lemma property of L and ℓ is that if there is any string
w in L of length ≥ ℓ, then L contains arbitrarily long strings. (We just ‘pump up’ w by increasing
n.) If you did Exercise 4.3, you will know that if L is a finite set of strings then it is regular. In this
case, what is the number ℓ with the property on Slide 102? The answer is that we can take any ℓ

strictly greater than the length of any string in the finite set L. Then the Pumping Lemma
property is trivially satisfied because there are no w ∈ L with |w| ≥ ℓ for which we have to check
the condition!

103

Suppose L = L(M) for a DFA M = (Q, Σ, δ, s, F).
Taking ℓ to be the number of elements in Q, if n ≥ ℓ,
then in

s = q0
a1−→ q1

a2−→ q2 · · ·
aℓ−→ qℓ

︸ ︷︷ ︸

ℓ+1 states

· · ·
an−→ qn ∈ F

q0, . . . , qℓ can’t all be distinct states. So qi = qj for some
0 ≤ i < j ≤ ℓ. So the above transition sequence looks like

s = q0
u1 ∗qi

v

∗
= qj

u2 ∗qn ∈ F

where

u1 # a1 . . . ai v # ai+1 . . . aj u2 # aj+1 . . . an

104

How to use the Pumping Lemma
to prove that a language L

is not regular

For each ℓ ≥ 1, find some w ∈ L of length ≥ ℓ so that

no matter how w is split into three, w = u1vu2,
with |u1v| ≤ ℓ and |v| ≥ 1, there is some n ≥ 0
for which u1vnu2 is not in L

⎫

⎬

⎭
(†)

105

Examples

None of the following three languages are regular:

(i) L1 # {anbn | n ≥ 0}
[For each ℓ ≥ 1, aℓbℓ ∈ L1 is of length ≥ ℓ and has property (†) on Slide 105.]

(ii) L2 # {w ∈ {a, b}∗ | w a palindrome}
[For each ℓ ≥ 1, aℓbaℓ ∈ L1 is of length ≥ ℓ and has property (†).]

(iii) L3 # {ap | p prime}
[For each ℓ ≥ 1, we can find a prime p with p > 2ℓ and then ap ∈ L3 has length ≥ ℓ and

has property (†).]

106

Using the Pumping Lemma

The Pumping Lemma (Slide 102) says that every regular language has a certain property – namely
that there exists a number ℓ with the pumping lemma property. So to show that a language L is
not regular, it suffices to show that no ℓ ≥ 1 possesses the pumping lemma property for the
language L. Because the pumping lemma property involves quite a complicated alternation of
quantifiers, it will help to spell out explicitly what is its negation. This is done on Slide 105.

Slide 106 gives some examples:

(i) For any ℓ ≥ 1, consider the string w = aℓbℓ. It is in L1 and has length ≥ ℓ. We show
that property (†) holds for this w. For suppose w = aℓbℓ is split as w = u1vu2 with
|u1v| ≤ ℓ and |v| ≥ 1. Then u1v must consist entirely of as, so u1 = ar and v = as say,
and hence u2 = aℓ−r−sbℓ. Then the case n = 0 of u1vnu2 is not in L1 since

u1v0u2 = u1u2 = ar(aℓ−r−sbℓ) = aℓ−sbℓ

and aℓ−sbℓ /∈ L1 because ℓ− s ̸= ℓ (since s = |v| ≥ 1).

(ii) The argument is very similar to that for example (i), but starting with the palindrome
w = aℓbaℓ. Once again, the n = 0 case of u1vnu2 yields a string u1u2 = aℓ−sbaℓ which
is not a palindrome (because ℓ− s ̸= ℓ).

107

(iii) Given ℓ ≥ 1, since [Euclid proved that] there are infinitely many primes p, we can certainly
find one satisfying p > 2ℓ. I claim that w = ap has property (†). For suppose w = ap is

split as w = u1vu2 with |u1v| ≤ ℓ and |v| ≥ 1. Letting r # |u1| and s # |v|, so that
|u2| = p − r − s, we have

u1vp−su2 = aras(p−s)ap−r−s = asp−s2+p−s = a(s+1)(p−s)

Now (s + 1)(p − s) is not prime, because s + 1 > 1 (since s = |v| ≥ 1) and
p − s > 2ℓ− ℓ = ℓ ≥ 1 (since p > 2ℓ by choice, and s ≤ r + s = |u1v| ≤ ℓ). Therefore
u1vnu2 /∈ L3 when n = p − s.

Remark. Unfortunately, the method on Slide 105 cannot cope with every non-regular language.
This is because the pumping lemma property is a necessary, but not a sufficient condition for a
language to be regular. In other words there do exist languages L for which a number ℓ ≥ 1 can
be found satisfying the pumping lemma property on Slide 102, but which nonetheless, are not
regular. Slide 109 gives an example of such an L.

108

Example of a non-regular language
with the pumping lemma property

L # {cmanbn | m ≥ 1 & n ≥ 0}∪ {ambn | m, n ≥ 0}

satisfies the pumping lemma property on Slide 102 with
ℓ = 1.

[For any w ∈ L of length ≥ 1, can take u1 = ε, v = first letter of w,

u2 = rest of w.]

But L is not regular – see Exercise 5.1.

109

