
Finite Automata
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We will be making use of mathematical models of physical systems called finite state machines –
of which there are many different varieties. Here we use one particular sort, finite automata
(singular: finite automaton), to recognise whether or not a string is in a particular language. The
key features of this abstract notion of machine are as follows and are illustrated by the example on
Slide 44.

! There are only finitely many different states that a finite automaton can be in. In the
example there are four states, labelled q0, q1, q2, and q3.

! We do not care at all about the internal structure of machine states. All we care about is
which transitions the machine can make between the states. A symbol from some fixed
alphabet Σ is associated with each transition: we think of the elements of Σ as input
symbols. Thus all the possible transitions of the finite automaton can be specified by
giving a finite graph whose vertices are the states and whose edges have both a direction
and a label (an element of Σ). In the example Σ = {a, b} and the only possible transitions
from state q1 are

q1
b
−→ q0 and q1

a
−→ q2.

In other words, in state q1 the machine can either input the symbol b and enter state q0,
or it can input the symbol a and enter state q2. (Note that transitions from a state back

to the same state are allowed: e.g. q3
a
−→ q3 in the example.)

! There is a distinguished start state (also known as the initial state). In the example it is
q0. In the graphical representation of a finite automaton, the start state is usually
indicated by means of a unlabelled arrow.
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! The states are partitioned into two kinds: accepting states (also know as final states) and
non-accepting states. In the graphical representation of a finite automaton, the accepting
states are indicated by double circles round the name of each such state, and the
non-accepting states are indicated using single circles. In the example there is only one
accepting state, q3; the other three states are non-accepting. (The two extreme
possibilities that all states are accepting, or that no states are accepting, are allowed; it is
also allowed for the start state to be accepting.)

The reason for the partitioning of the states of a finite automaton into ‘accepting’ and
‘non-accepting’ has to do with the use to which one puts finite automata—namely to recognise
whether or not a string u ∈ Σ∗ is in a particular language (= subset of Σ∗). Given u we begin in
the start state of the automaton and traverse its graph of transitions, using up the symbols in u in
the correct order reading the string from left to right. If we can use up all the symbols in u in this
way and reach an accepting state, then u is in the language ‘accepted’ (or ‘recognised’) by this
particular automaton. On the other hand, if there is no path in the graph of transitions from the
start state to some accepting state with string of labels equal to u, then u is not in the language
accepted by the automaton. This is summed up on Slide 45.
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Example of a finite automaton

M " q0
a

b

q1

b

a q2

b

a q3

a

b

! set of states: {q0, q1, q2, q3}

! input alphabet: {a, b}

! transitions, labelled by input symbols: as indicated by the above
directed graph

! start state: q0

! accepting state(s): q3
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Language accepted
by a finite automaton M

! Look at paths in the transition graph from the start
state to some accepting state.

! Each such path gives a string of input symbols, namely
the string of labels on each transition in the path.

! The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write q
u
−→∗ q′ to mean that in the automaton there is a

path from state q to state q′ whose labels form the string u.

(N.B. q
ε
−→∗ q′ means q = q′.)
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Example of an accepted language

M " q0
a

b

q1

b

a q2

b

a q3

a

b

For example

! aaab ∈ L(M), because q0
aaab
−−→∗ q3

! abaa ̸∈ L(M), because ∀q(q0
abaa
−−→∗ q ⇔ q = q2)
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Example of an accepted language

M " q0
a

b

q1

b

a q2

b

a q3

a

b

Claim:
L(M) = L((a|b)∗aaa(a|b)∗)

set of all strings matching the

regular expression (a|b)∗aaa(a|b)∗

(qi (for i = 0, 1, 2) represents the state in the process of reading a string in which the last i
symbols read were all as)
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Determinism and non-determinism

Slide 49 gives a formal definition of the notion of finite automaton. The reason for the
qualification ‘non-deterministic’ is because in general, for each state q ∈ Q and each input symbol
a ∈ Σ, there may be no, one, or many states that can be reached in a single transition labelled a
from q; see the example on Slide 50.

We single out as particularly important the case when there is always exactly one next state for a
given input symbol in any given state and call such automata deterministic: see Slide 51. The
finite automaton pictured on Slide 52 is deterministic. But note that if we took the same graph of
transitions but insisted that the alphabet of input symbols was {a, b, c} say, then we have
specified an NFA not a DFA – see Slide 53. The moral of this is: when specifying an NFA, as well
as giving the graph of state transitions, it is important to say what is the alphabet of input
symbols (because some input symbols may not appear in the graph at all).
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Non-deterministic
finite automaton (NFA)

is by definition a 5-tuple M = (Q, Σ, ∆, s, F), where:

! Q is a finite set (of states)
! Σ is a finite set (the alphabet of input symbols)
! ∆ is a subset of Q × Σ × Q (the transition relation)
! s is an element of Q (the start state)
! F is a subset of Q (the accepting states)

Notation: write “q
a
−→ q′ in M” to mean (q, a, q′) ∈ ∆.
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Example of an NFA

Input alphabet: {a, b}.

States, transitions, start state, and accepting states as shown:

q0

a

b

a q1
a q2

a q3

a

b

For example {q | q1
a
−→ q} = {q2}

{q | q1
b
−→ q} = ∅

{q | q0
a
−→ q} = {q0, q1}.

The language accepted by this automaton is the same as for the automaton on
Slide 44, namely {u ∈ {a, b}∗ | u contains three consecutive a’s}.
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Deterministic finite automaton (DFA)
A deterministic finite automaton (DFA) is an NFA
M = (Q, Σ, ∆, s, F) with the property that for each state
q ∈ Q and each input symbol a ∈ ΣM, there is a unique

state q′ ∈ Q satisfying q
a
−→ q′.

In a DFA ∆ ⊆ Q × Σ × Q is the graph of a function Q × Σ → Q,
which we write as δ and call the next-state function.

Thus for each (state, input symbol)-pair (q, a), δ(q, a) is the unique
state that can be reached from q by a transition labelled a:

∀q′(q
a
−→ q′ ⇔ q′ = δ(q, a))
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Example of a DFA

with input alphabet {a, b}

M " q0
a

b

q1

b

a q2

b

a q3

a

b

next-state function:

δ a b
q0 q1 q0

q1 q2 q0

q2 q3 q0

q3 q3 q3
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Example of an NFA

with input alphabet {a, b, c}

M " q0
a

b

q1

b

a q2

b

a q3

a

b

M is non-deterministic, because for example {q | q0
c
−→ q} = ∅.
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ε-Transitions

When constructing machines for matching strings with regular expressions (as we will do later), it
is useful to consider finite state machines exhibiting an ‘internal’ form of non-determinism in which
the machine is allowed to change state without consuming any input symbol. One calls such

transitions ε-transitions and writes them as q
ε
−→ q′. This leads to the definition on Slide 55.

When using an NFAε M to accept a string u ∈ Σ∗ of input symbols, we are interested in
sequences of transitions in which the symbols in u occur in the correct order, but with zero or

more ε-transitions before or after each one. We write q
u
⇒ q′ to indicate that such a sequence

exists from state q to state q′ in the NFAε. Equivalently, {(q, u, q′) | q
u
⇒ q′} is the subset of

Q × Σ∗ × Q inductively defined by

axioms:
(q, ε, q)

and rules:
(q, u, q′)

(q, u, q′′)
if q′ ε

−→ q′′,
(q, u, q′)

(q, ua, q′′)
if q′ a

−→ q′′ (see Exercise 7)

Slide 56 uses the relation q
u
⇒ q′ to define the language accepted by an NFAε. For example, for

the NFAε on Slide 55 it is not too hard to see that the language accepted consists of all strings
which either contain two consecutive a’s or contain two consecutive b’s, i.e. the language
determined by the regular expression (a|b)∗(aa|bb)(a|b)∗.
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An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

Notation: write “q
ε
−→ q′ in M” to mean (q, q′) ∈ T.

(N.B. for NFAεs, we always assume ε ̸∈ Σ.)

55



Language accepted by an NFAε

M = (Q, Σ, ∆, s, F, T)

! Look at paths in the transition graph (including
ε-transitions) from start state to some accepting state.

! Each such path gives a string in Σ∗, namely the string
of non-ε labels that occur along the path.

! The set of all such strings is by definition the
language accepted by M, written L(M).

Notation: write q
u
⇒ q′ to mean that there is a path in M from state

q to state q′ whose non-ε labels form the string u ∈ Σ∗.
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An NFA with ε-transitions (NFAε)
M = (Q, Σ, ∆, s, F, T)

is an NFA (Q, Σ, ∆, s, F) together with a subset
T ⊆ Q × Q, called the ε-transition relation.

Example: q1
a q2

a q3
ε

q0

ε

ε

a

b

q7

a

bq4
b

q5
b

q6
ε

For this NFAε we have, e.g.: q0
aa
⇒ q2, q0

aa
⇒ q3 and q0

aa
⇒ q7.

In fact the language of accepted strings is equal to the set of strings
matching the regular expression (a|b)∗(aa|bb)(a|b)∗ .
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The subset construction for NFAεs

Note that every DFA is an NFA (whose transition relation is deterministic) and that every NFA is
an NFAε (whose ε-transition relation is empty). It might seem that non-determinism and
ε-transitions allow a greater range of languages to be characterised as sets of strings accepted by a
finite automaton, but this is not so. We can use a construction, called the subset construction, to
convert an NFAε M into a DFA PM accepting the same language (at the expense of increasing
the number of states, possibly exponentially). Slide 59 gives an example of this construction.

The name ‘subset construction’ refers to the fact that there is one state of PM for each subset of
the set of states of M. Given two such subsets, S and S′ say, there is a transition S

a
−→ S′ in PM

just in case S′ consists of all the M-states q′ reachable from states q in S via the ·
a
⇒ · relation

defined on Slide 56, i.e. such that we can get from q to q′ in M via finitely many ε-transitions
followed by an a-transition followed by finitely many ε-transitions.
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Example of the subset construction

M

q1

a

q0

ε

ε

a

q2

b

next-state function for PM
a b

∅ ∅ ∅

{q0} {q0, q1, q2} {q2}
{q1} {q1} ∅

{q2} ∅ {q2}
{q0, q1} {q0, q1, q2} {q2}
{q0, q2} {q0, q1, q2} {q2}
{q1, q2} {q1} {q2}

{q0, q1, q2} {q0, q1, q2} {q2}
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Theorem. For each NFAε M = (Q, Σ, ∆, s, F, T) there
is a DFA PM = (P(Q), Σ, δ, s′ , F′) accepting exactly
the same strings as M, i.e. with L(PM) = L(M).

Definition of PM:

! set of states is the powerset P(Q) = {S | S ⊆ Q} of the set
Q of states of M

! same input alphabet Σ as for M

! next-state function maps each (S, a) ∈ P(Q)× Σ to

δ(S, a) " {q′ ∈ Q | ∃q ∈ S. q
a
⇒ q′ in M}

! start state is s′ " {q′ ∈ Q | s
ε
⇒ q′}

! subset of accepting states is F′ " {S ∈ P(Q) | S ∩ F ̸= ∅}

To prove the theorem we show that L(M) ⊆ L(PM) and L(PM) ⊆ L(M).
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Proof that L(M) ⊆ L(PM)

Consider the case of ε first: if ε ∈ L(M), then s
ε
⇒ q for some q ∈ F, hence s′ ∈ F′ and thus

ε ∈ L(PM).

Now given any non-null string u = a1a2 . . . an, if u ∈ L(M), then there is a sequence of
transitions in M of the form

s
a1⇒ q1

a2⇒ · · ·
an⇒ qn ∈ F (1)

Since PM is deterministic, feeding a1a2 . . . an to it results in the sequence of transitions

s′
a1−→ S1

a2−→ · · ·
an−→ Sn (2)

where S1 = δ(s′, a1), S2 = δ(S1, a2), etc. By definition of δ (Slide 60), from (1) we deduce

q1 ∈ δ(s′, a1) = S1, hence q2 ∈ δ(S1, a2) = S2, . . . , hence qn ∈ δ(Sn−1, an) = Sn.

Therefore Sn ∈ F′ (because qn ∈ Sn ∩ F). So (2) shows that u is accepted by PM. #
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Proof that L(PM) ⊆ L(M)

Consider the case of ε first: if ε ∈ L(PM), then s′ ∈ F′ and so there is some q ∈ s′ with q ∈ F,

i.e. s
ε
⇒ q ∈ F and thus ε ∈ L(M).

Now given any non-null string u = a1a2 . . . an, if u ∈ L(PM), then there is a sequence of
transitions in PM of the form (2) with Sn ∈ F′, i.e. with Sn containing some qn ∈ F. Now since

qn ∈ Sn = δ(Sn−1, an), by definition of δ there is some qn−1 ∈ Sn−1 with qn−1
an⇒ qn in M. Then

since qn−1 ∈ Sn−1 = δ(Sn−2, an−1), there is some qn−2 ∈ Sn−2 with qn−2
an−1
⇒ qn−1. Working

backwards in this way we can build up a sequence of transitions like (1) until, at the last step,

from the fact that q1 ∈ S1 = δ(s′, a1) we deduce that s
a1⇒ q1. So we get a sequence of

transitions (1) with qn ∈ F, and hence u is accepted by M. #
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