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Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers,
Denotational Semantics, Hoare Logic and Model Checking
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Formal Languages
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Alphabets
An alphabet is specified by giving a finite set, Σ, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

! {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 10-element set of decimal digits.

! {a, b, c, . . . , x, y, z}, 26-element set of lower-case characters of
the English language.

! {S | S ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

! N = {0, 1, 2, 3, . . .}, set of all non-negative whole numbers is
not an alphabet, because it is infinite.
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Strings over an alphabet
A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ∗ denotes the set of all strings over Σ of any finite length.

Examples:

! If Σ = {a, b, c}, then ε,

notation for the
string of length 0

a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

! If Σ = {a}, then Σ∗ contains ε, a, aa, aaa, aaaa,
etc.

! If Σ = ∅ (the empty set), then Σ∗ = {ε}.
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Notes

! There is a unique string of length zero over Σ, called the null string (or empty string) and
denoted ε, no matter which alphabet Σ we are talking about.

! We make no notational distinction between a symbol a ∈ Σ and the string of length 1
containing a. Thus we regard Σ as a subset of Σ∗.

! ∅, {ε} and ε are three different things!
! ∅ is the (unique) set with no elements,
! {ε} is a set with one element (the null string),
! ε is the string of length 0.

! The length of a string u ∈ Σ∗ is denoted |u|.

! We are not concerned here with data structures and algorithms for implementing strings
(so strings and finite lists are interchangeable concepts here).

! Warning! the symbol ∗ is highly overloaded – it means different things in different
contexts in this course. (The same comment applies to the symbol ε and, to a lesser
extent, the symbol ∅.)
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Concatenation of strings
The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ∗ are u = ab, v = ra and
w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra
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Notes

! Concatenation satisfies:

uε = u = εu

(uv)w = uvw = u(vw)

(but in general uv ̸= vu )

! |uv| = |u|+ |v|

Notation

If u ∈ Σ∗, then un denotes n copies of u concatenated together. By convention u0 = ε.
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Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ∗ a (formal)
language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ∗.
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Inductive Definitions
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Axioms and rules
for inductively defining a subset of a given set U

! axioms
a

are specified by giving an element a of U

! rules
h1 h2 · · · hn

c
are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)
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Derivations
Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u ∈ U is in the subset is by definition

a finite tree with vertices labelled by elements of
U and such that:
! the root of the tree is u (the conclusion of

the whole derivation),
! each vertex of the tree is the conclusion of a

rule whose hypotheses are the children of the
node,

! each leaf of the tree is an axiom.

13



Example

U = {a, b}∗

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb
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Inductively defined subsets
Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 14

! abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

! abaab is not in that subset (there is no derivation with that
conclusion – why?)

(In fact u ∈ {a, b}∗ is in the subset iff it contains the same number of a and b symbols.)
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Notes

! Axioms are special cases of rules – the ones where n = 0, i.e. the set of hypotheses is
empty.

! We are generally interested in inductive definitions of subsets that are infinite. An
inductive definition with only finitely many axioms and rules defines a finite subset.
(Why?) So we usually have to consider infinite sets of axioms and rules. However, those
sets are usually specified schematically: an axiom scheme, or a rule scheme is a template
involving variables that can be instantiated to get a whole family of actual axioms or rules.

For example, on Slide 14, we used the rule scheme
u

aub
where u is meant to be

instantiated with any string over the alphabet {a, b}. Thus this rule scheme stands for the

infinite collection of rules
ε

ab
,

a

aab
,

b

abb
,

aa

aaab
, etc.

! It is sometimes convenient to flatten derivations into finite lists, because they are easier to
fit on a page. The last element of the list is the conclusion of the derivation. Every
element of the list is either an axiom, or the conclusion of a rule all of whose hypotheses
occur earlier in the list.

! The fact that an element is in an inductively defined subset may be witnessed by more
than one derivation (see the example on Slide 14).

! In general, there is no sure-fire, algorithmic method for showing that an element is not in a
particular inductively defined subset.
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Example: transitive closure
Given a binary relation R ⊆ X × X on a set X, its
transitive closure R+ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (∀x, y, z ∈ X. (x, y) ∈ R+ & (y, z) ∈ R+ ⇒ (x, z) ∈ R+).

R+ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)
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Example: reflexive-transitive closure
Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 19) to prove this
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Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S ⊆ U is closed under the axioms and rules if

! for every axiom
a

, it is the case that a ∈ S

! for every rule
h1 h2 · · · hn

c
, if h1, h2, . . . , hn ∈ S, then c ∈ S.
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Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

We use a similar approach as method of proof: given a property P(u)
of elements of U, to prove ∀u ∈ I. P(u) it suffices to show

! base cases: P(a) holds for each axiom
a

! induction steps: P(h1) & P(h2) & · · · & P(hn)⇒ P(c)

holds for each rule
h1 h2 · · · hn

c

(To see this, apply the theorem with S = {u ∈ U | P(u)}.)
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Proof of the Theorem on Slide 19

I is closed under any of the axioms
a

, because a is a derivation of length 1 showing that

a ∈ I. I is closed under any of the rules
h1 · · · hn

c
, because if each hi is in I, there is a derivation

Di with conclusion hi; and then
D1 · · · Dn

c
is a derivation (why?) with conclusion c ∈ I.

Now suppose S ⊆ U is some subset closed under the axioms and rules. We can use mathematical
induction to prove

∀n. all derivations of height ≤ n have their conclusion in S (∗)

Hence all derivations have their conclusions in S; and therefore I ⊆ S, as required. "

[Proof of (∗) by mathematical induction:

Base case n = 0: trivial, because there are no derivations of height 0.

Induction step for n + 1: suppose D is a derivation of height ≤ n + 1, with conclusion c – say

D =
D1 · · · Dm

c
(some m ≥ 0). We have to show c ∈ S. Note that each Di is a derivation of

height ≤ n and so by induction hypothesis its conclusion, ci say, is in S. Since D is a well-formed

derivation,
c1 · · · cm

c
has to be a rule (or m = 0 and it is an axiom). Since S is closed under the

axioms and rules and each ci is in S, we conclude that c ∈ S. "]
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Example: reflexive-transitive closure
Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 19) to prove this, since
S ⊆ X × X being closed under the axioms & rules is the same

as it containing R, being reflexive and being transitive.
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Example using rule induction

Let I be the subset of {a, b}∗ inductively defined by the
axioms and rules on Slide 14.

For u ∈ {a, b}∗, let P(u) be the property

u contains the same number of a and b symbols

We can prove ∀u ∈ I. P(u) by rule induction:

! base case: P(ε) is true (the number of as and bs is zero!)

! induction steps: if P(u) and P(v) hold, then clearly so do
P(aub), P(bua) and P(uv).

(It’s not so easy to show ∀u ∈ {a, b}∗. P(u)⇒ u ∈ I – rule induction for I is not much help for
that.)
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NOTE:
In lecture, I claimed that the converse
to the theorem of slide 23 holds. This is true, but it 
does not seem to follow directly by induction on the 
length of the string. If you are bored, try and find a 
way to prove this converse! — JMS


