Dicoute Matremestes, Letme 14.

Additive Structure of Matrices

Let m, n be two $(m \times n)$-matrices.
The matrix sum

$$
\begin{aligned}
& M+N \in M_{a t}(m, n) \\
& (M+N)_{i, j}=M_{i, j}+N_{i, j}
\end{aligned}
$$

The zero matrix

$$
\begin{aligned}
& 0 \in \operatorname{Mat}(m, n) \\
& \bigcup_{i, i,}=0
\end{aligned}
$$

$$
\begin{aligned}
& M+0=M \\
& 0+M=M
\end{aligned}
$$

For $M_{1} N$ we have $M+N=N+M$
For $L_{1} M_{1} N$ we have $L+(M+N)=(L+M)+N$
Proof. To slow $M+0=M$, we check for all $i \in[m]_{1} j \in[n]$

$$
\begin{equation*}
(M+0)_{i, j}=M_{i, j}+0_{i, j}=M_{i, j}+0=M_{i, j} \tag{四}
\end{equation*}
$$

Thm: $M, N \in M_{a t}(m, n)$

$$
{\underset{\sim e l}{\mathbb{B}}}(M+N)=\operatorname{ral}_{13} M \cup \underline{\mathrm{ral}}_{13} N
$$

Morover, ree $D=\varnothing$.
Proof : : (rel $\left.{ }_{1 B}(M+N)\right) j \Leftrightarrow(M+N)_{i, j}=1 \quad$ (truc)

$$
\begin{aligned}
& \Leftrightarrow M_{i j}+N_{i j}=1 \\
& \Leftrightarrow m_{i j} V N_{i j}=\text { true } \\
& \Leftrightarrow i \operatorname{ral} M_{j} V i \operatorname{rul} N_{j} . \\
& \Leftrightarrow i(\operatorname{rel} M \cup \operatorname{rel} N)_{j} .
\end{aligned}
$$

Directed graphs

Definition 130 A directed graph (A, R) consists of a set A and a relation R on A (i.e. a relation from A to A).

$R: A \rightarrow A$
 $R \in \operatorname{Re}(A)$

Corollary 132 For every set A, the structure

$$
\left(\operatorname{Rel}(\mathcal{A}), \operatorname{id}_{\mathcal{A}}, \circ\right)
$$

is a monoid.

Definition 133 For $R \in \operatorname{Rel}(A)$ and $n \in \mathbb{N}$, we let

$$
R^{\circ n}=\underbrace{R \circ \cdots \circ R}_{n \text { times }} \in \operatorname{Rel}(A)
$$

be defined as id_{A} for $\mathrm{n}=0$, and as $\mathrm{R} \circ \mathrm{R}^{\circ \mathrm{m}}$ for $\mathrm{n}=\mathrm{m}+1$.

Paths

Proposition 135 Let (A, R) be a directed graph. For all $n \in \mathbb{N}$ and $s, t \in A, s R^{\circ n} t$ ff there exists a path of length n in R with source s and target t .

PROOF: By induction on n, we prove $P(n)$

$$
P(n)=\forall s, t \in A . s R^{e n} t \Leftrightarrow s m^{n} t
$$

1) Went $P(0)$.

$$
P(0) \equiv \forall s, t \in A \cdot \underset{\frac{s i d_{A}}{s=t}}{s R^{00} t} \leftrightarrow \underbrace{s m s t}_{s=t} \text { : }
$$

By induction on n, we pore $P(n)$

$$
P(n)=\forall s, t \in A . \quad s R^{a n} t \Leftrightarrow s m^{n} t
$$

2) Sudnactive step. Aosemue $P(n)$ to prove $P(n+1)$ bolls. Fix sit A, we mots shows $s R^{0(n+1)}+\Longleftrightarrow s m_{3}^{n+1}+$

$$
\begin{aligned}
& \begin{array}{l}
\text { III } \\
s\left(R_{I I \prime} R^{0 n}\right) t \\
\exists u \in A \cdot s R u \cap \underbrace{u R^{0 n}}_{\text {III }}+ \\
\exists u m s^{n} t
\end{array}
\end{aligned}
$$

Summing up:

$$
\begin{aligned}
& \text { We mast show }\binom{\exists n}{S R_{n} \wedge n \leadsto M^{n} t} \Leftrightarrow s \sim^{n+1} t \\
& s \min _{n} \operatorname{man}^{n} t \mapsto s \operatorname{mol}^{n+1}+.
\end{aligned}
$$

Definition 136 For $R \in \operatorname{Rel}(A)$, let

$$
R^{\circ *}=\bigcup\left\{R^{\circ n} \in \operatorname{Rel}(A) \mid n \in \mathbb{N}\right\}=\bigcup_{n \in \mathbb{N}} R^{\circ n}
$$

Corollary 137 Let (A, R) be a directed graph. For all $s, t \in A$, $s R^{\circ *} t$ iff there exists a path with source s and target t in R. Then $A=[n]$. Then we have $R^{0 x}=\bigcup R^{0 k}$.

A has no more than n elements!

The $(n \times n)$-matrix $M=\operatorname{mat}(R)$ of a finite directed graph $([n], R)$ for n a positive integer is called its adjacency matrix.

The adjacency matrix $M^{*}=\operatorname{mat}\left(\mathrm{R}^{\circ *}\right)$ can be computed by matrix multiplication and addition as M_{n} where

$$
\left\{\begin{aligned}
M_{0} & =I_{n} \\
M_{k+1} & =I_{n}+\left(M \cdot M_{k}\right)
\end{aligned}\right.
$$

This gives an algorithm for establishing or refuting the existence of paths in finite directed graphs.

$$
\begin{aligned}
& M_{0}=I^{n} \\
& M_{1}=I^{n}+M \cdot M_{0}=I^{n}+M \cdot I^{n}=I^{n}+M \\
& M_{2}=I^{n}+M \cdot M 1=I^{n}+M \cdot\left(I^{n}+M\right)=I^{n}+M \cdot I^{n}+\overbrace{M} \cdot M \\
&=I^{n}+M+M^{2}
\end{aligned}
$$

In general $M_{n}=\sum_{k \leqslant n} M^{k}$.
(Let $M=$ mut R)
Time \quad mat $\left(R^{\circ x}\right)=\left(M_{n}\right)$
Proof.

$$
\begin{aligned}
\operatorname{mat}\left(R^{*}\right) & =\operatorname{mat}\left(\bigcup_{l \in n} R^{0 k}\right) \\
& =\sum_{k \leqslant n} \underline{\operatorname{mant}}\left(R^{0 k}\right) \\
& =\sum_{l e \leqslant n}(\operatorname{mat} R)^{k k}=M_{n}
\end{aligned}
$$

Preorders

Definition 138 A preorder (P, \sqsubseteq) consists of a set P and a relation \sqsubseteq on P (i.e. $\sqsubseteq \in \mathcal{P}(\mathrm{P} \times \mathrm{P})$) satisfying the following two axioms.

- Reflexivity.

$$
\forall x \in \mathrm{P} . x \sqsubseteq x
$$

- Transitivity.

$$
\forall x, y, z \in P .(x \sqsubseteq y \wedge y \sqsubseteq z) \Longrightarrow x \sqsubseteq z
$$

Examples:

- (\mathbb{R}, \leq) and (\mathbb{R}, \geq).
- $(\mathcal{P}(A), \subseteq)$ and $(\mathcal{P}(A), \supseteq)$. \quad space, $\left(\boldsymbol{O}(\mathbf{x})_{\boldsymbol{2}} \subseteq\right)$
- ($\mathbb{Z}, \mid)$.

Def. Total $\Leftrightarrow \quad \forall x i y+A, x \leq y$ vg $\leq x$
Def. A portion order 3 a prowler satitiong anturyundy: $\forall x, y \in A . \quad(x \in y \wedge y \in x) \Rightarrow x=y$ - 400 -

Theorem 140 For $R \subseteq A \times A$, let

$$
\mathcal{F}_{\mathrm{R}}=\{\mathrm{Q} \subseteq \mathrm{~A} \times \mathrm{A} \mid \mathrm{R} \subseteq \mathrm{Q} \wedge \mathrm{Q} \text { is a preorder }\}
$$

Then, (i) $\mathrm{R}^{\circ *} \in \mathcal{F}_{\mathrm{R}}$ and (ii) $\mathrm{R}^{\circ *} \subseteq \bigcap \mathcal{F}_{\mathrm{R}}$. Hence, $\mathrm{R}^{\circ *}=\bigcap \mathcal{F}_{\mathrm{R}}$.
Proof: We med to pore $\cap F_{R} \subseteq R^{0 *} \wedge R^{0 \times} \subseteq \cap F_{R}$
To show $\cap r_{R} \subseteq R^{o *}$, we will we trefout that $R^{0 \pi} \in \vec{r}_{R}$
$\mid a n_{R}^{2} b \Rightarrow a R^{0 *} b$
($\forall Q$ pronto counting $R, a b$)
But $R^{2 *} \subset \mathcal{F}_{R}$; so a $R^{0 \times} b$ s
To slow $R^{0 \times \pi} \in T_{R}$, we new

1) $R \subseteq R^{0+}: b / c R^{0+}$ combines paris of loath 1

We hare shown that $n_{R}^{2} \subseteq R^{0 *}$.
nead: $R^{0 *} \leq \cap_{s R}$.

$$
a R^{R_{0}^{* *}} b \Rightarrow \frac{a \Pi_{\nabla_{R}} b}{\forall Q \supseteq R, R \text { preombr. a } Q b}
$$

Spx a $R^{0 *} b$, and fix $Q \geq R$ rebe. 1 trums. to shov a $Q b$ \#

1) Bate con $(n=0)$. Tunt mass $a=b$. Nead toshow $a a b^{\prime \prime}$ use reblesinty of a.
2) Sudurive step.
 By asmpotion re hase a Qc.

B traustinty if a, we a $Q b$, B

