Natural Numbers and mathematical induction

We have mentioned in passing that the natural numbers are generated from zero by succesive increments. This is in fact the defining property of the set of natural numbers, and endows it with a very important and powerful reasoning principle, that of Mathematical Induction, for establishing universal properties of natural numberś.

Principle of Induction

Let $P(m)$ be a statement for m ranging over the set of natural numbers \mathbb{N}.
If BASE CASE

- the statement $P(0)$ holds, and

INDUCTINE STEP

- the statement

$$
\forall n \in \mathbb{N} \cdot(P(n) \Longrightarrow P(n+1))
$$

also holds
then

- the statement

$$
\forall \mathfrak{m} \in \mathbb{N} . \mathrm{P}(\mathrm{~m})
$$

holds.

Binomial Theorem
Theorem 29 For all $\mathrm{n} \in \mathbb{N}$,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} \cdot x^{n-k} \cdot y^{k} .
$$

PROOF: By induction we show:

$$
P(n)=\operatorname{def}\left[(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} \cdot y k\right]
$$

BABE CASE $(n=0)$: ThAt is,

$$
(x+y)^{0} \stackrel{?}{=} \sum_{k=0}^{0}\binom{0}{k} x_{1}^{0-k} y^{k}
$$

INDucTiLE STEP: Let $n \in \mathbb{N}$.
Assume:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \quad\binom{\text { Induction }}{\text { forpotiesis }}
$$

RIP:

$$
(x+y)^{n+1} \stackrel{?}{=} \sum_{k=0}^{n+1}\binom{n+1}{k} x^{n+1-k} y^{k}
$$

We hare:

$$
\begin{aligned}
(x+y)^{n+1} & =(x+y) \cdot(x+y)^{n} \\
& =(x+y) \cdot \sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \quad \text { by IH }
\end{aligned}
$$

$$
\begin{aligned}
& (x+y) \cdot \sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k} \quad b y I H \\
& =\sum_{k=0}^{n}\binom{n}{k} x^{n-k+1} y^{k}+\sum_{k=0}^{n}\binom{n}{k} x^{n-k} \cdot y^{k+1} \\
& =x^{n+1}+\sum_{k=1}^{n}\binom{n}{k} x^{n-k+1} y^{k}+\sum_{k=0}^{n-1}\binom{n}{k} x^{n-k} y^{k+1}+y^{n+1} \\
& =x^{n+1}+\sum_{k=1}^{n}\binom{n}{k} x^{n-k+1} y^{k}+\sum_{k=1}^{n}\binom{n}{k-1} x^{n-k+1} y^{k}+y^{n+1} \\
& =x^{n+1}+\sum_{k=1}^{n}\left[\binom{n}{k}+\binom{n}{k-1}\right] \underbrace{2} x^{(n+1)-k} y^{n+1} \begin{array}{l}
n+y^{n+1} \\
k
\end{array})
\end{aligned}
$$

Principle of Induction from basis ℓ

Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If

- $P(\ell)$ holds, and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .(\mathrm{P}(\mathrm{n}) \Longrightarrow \mathrm{P}(\mathrm{n}+1))$ also holds then
- $\forall \mathrm{m} \geq \ell$ in $\mathbb{N} . \mathrm{P}(\mathrm{m})$ holds.

Principle of Strong Induction

from basis ℓ and Induction Hypothesis $P(m)$.
Let $\mathrm{P}(\mathrm{m})$ be a statement for m ranging over the natural numbers greater than or equal a fixed natural number ℓ. If both

- $P(\ell)$ and
- $\forall \mathrm{n} \geq \ell$ in $\mathbb{N} .((\forall \mathrm{k} \in[\ell . . \mathrm{n}] . \mathrm{P}(\mathrm{k})) \Longrightarrow \mathrm{P}(\mathrm{n}+1))$
hold, then
- $\forall \mathfrak{m} \geq \ell$ in $\mathbb{N} . P(\mathfrak{m})$ holds.

Fundamental Theorem of Arithmetic
Proposition 95 Every positive integer greater than or equal 2 is a prime or a product of primes.
Proof: We show
$\forall n \geqslant 2$ in \mathbb{N}. n is prime or a product of primes. by strong induction from basis 2.
BARE CASE: tholds because 2 is prime.
INDUCTIVE STEP: Let $n \geqslant 2$ in N.
Assume every $2 \leqslant k \leqslant n$ is a prime or a product of primes

RIP: $n+1$ is a prime or a product of primes. CAsE: $n+1$ is prime - Then ne are done CASE: $n+1$ is composite
$a \cdot b$ for $2 \leqslant a, b \leqslant n$
By (IH), a is a prime or aproduet of primes and b is a prime or a product of primes. $S_{\theta, n+1}=a \cdot b$ is a product of primes.

Theorem 96 (Fundamental Theorem of Arithmetic) For every positive integer n there is a unique finite ordered sequence of primes $\left(p_{1} \leq \cdots \leq \overline{\left.\overline{p_{\ell}}\right) \text { with }} \overline{\overline{\ell \in \mathbb{N}}}\right.$ such that

$$
n=\prod\left(p_{1}, \ldots, p_{\ell}\right)
$$

Proof:
The product of $p_{1}, \ldots, p e$
In particular, $\pi()=1$
We naut to show That

$$
\begin{aligned}
& \pi\left(p_{1}, \ldots, p_{l}\right)=\pi\left(q_{1}, \ldots, q_{k}\right) \stackrel{?}{\Longrightarrow} l=k \text { and } \\
& p_{1} \leq p_{2} \leq \ldots \leq p l \quad q_{1} \leq q_{2} \leq \ldots \leq q_{k} \quad p_{i}=q_{i} \\
& \text { primes } \\
& \text { primes }
\end{aligned}
$$

Assume

$$
\begin{gathered}
\pi\left(p_{1}, \ldots, p_{l}\right)=\pi\left(q_{1}, \ldots, q_{k}\right) \\
p_{1} \leq p_{2} \leq \cdots \leq p_{l} \quad q_{1} \leq q_{2} \leq \ldots \leq q_{k} \\
\text { primes }
\end{gathered}
$$

$p_{1} \mid \pi\left(q_{1}-q_{k}\right) \Rightarrow p_{1}=q_{i}$ for some i

$$
\left.\begin{array}{rl}
& \Rightarrow q_{1} \leq p_{1} \\
q_{1} \mid \pi\left(p_{1}-p l\right) & \Rightarrow q_{1}=p_{j} \quad \text { for sone } j \\
& \Rightarrow p_{1} \leqslant q_{1}
\end{array}\right] \Rightarrow q_{1}=p_{1}
$$

Therefore

$$
\pi\left(p_{2}, \ldots, p_{e}\right)=\pi\left(q_{2}-q_{k}\right)
$$

and iterating the argument we are dore.

Euclid's infinitude of primes
Theorem 99 The set of primes is infinite.
Proof: Proceed by contra diction.
Let

$$
p_{1}, p_{2}, \ldots, p_{N}
$$

be the finite umber of primes.
Consider $\pi\left(p_{1}, p_{2}, \ldots, p_{N}\right)+1$
which is not a prime.
Then There is some pi| $\pi\left(p_{1}-p_{w}\right)+1$ And 1 is on int. linear of pi and $\pi\left(p_{1}-p_{N}\right)$.

Therefore

$$
\begin{gathered}
\operatorname{gcd}\left(p_{i}, \pi\left(p_{1}-p_{N}\right)\right)=1 \\
p_{i}
\end{gathered}
$$

