Important mathematical jargon: Sets

Very roughly, sets are the mathematicians' data structures. Informally, we will consider a set as a (well-defined, unordered) collection of mathematical objects, called the elements (or members) of the set.

Set membership

The symbol ' \in ' known as the set membership predicate is central to the theory of sets, and its purpose is to build statements of the form

$$
x \in A
$$

that are true whenever it is the case that the object x is an element of the set A, and false otherwise.

Defining sets

The set $\left|\begin{array}{c}\text { of even primes } \\ \text { of booleans } \\ {[-2.3]}\end{array}\right|$ is $\left|\begin{array}{c}\{2\} \\ \{\text { true }, \text { false }\} \\ \{-2,-1,0,1,2,3\}\end{array}\right|$

Set comprehension

The basic idea behind set comprehension is to define a set by means of a property that precisely characterises all the elements of the set.

Notations:

$$
\{x \in A \mid P(x)\} \quad, \quad\{x \in A: P(x)\}
$$

Set equality

Two sets are equal precisely when they have the same elements

Examples:

- $\{x \in \mathbb{N}: 2 \mid x \wedge x$ is prime $\}=\{2\}$
- For a positive integer m,

$$
\{x \in \mathbb{Z}: \mathfrak{m} \mid x\}=\{x \in \mathbb{Z}: x \equiv 0(\bmod \mathfrak{m})\}
$$

$-\{d \in \mathbb{N}: d \mid 0\}=\mathbb{N}$

Equivalent predicates specify equal sets:

$$
\{x \in A \mid P(x)\}=\{x \in A \mid Q(x)\}
$$

jiff

$$
\forall x . \mathrm{P}(\mathrm{x}) \Longleftrightarrow \mathrm{Q}(\mathrm{x})
$$

NB:
Let $a \in A$, Then

$$
a \in\{x \in A \mid P(x)\} \Leftrightarrow P(a)
$$

Equivalent predicates specify equal sets:

$$
\{x \in A \mid P(x)\}=\{x \in A \mid Q(x)\}
$$

iff

$$
\forall x \cdot \mathrm{P}(x) \Longleftrightarrow \mathrm{Q}(\mathrm{x})
$$

Example: For a positive integer m,
$\left\{x \in \mathbb{Z}_{\mathrm{m}} \mid x\right.$ has a reciprocal in $\left.\mathbb{Z}_{\mathrm{m}}\right\}$
$\left\{x \in \mathbb{Z}_{m} \mid 1\right.$ is an integer linear combination of m and $\left.x\right\}$

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set comprehension as follows

$$
D(n)=\{d \in \mathbb{N}: d \mid n\}
$$

Example 67

1. $D(0)=\mathbb{N}$
2. $\mathrm{D}(1224)=\left\{\begin{array}{c}1,2,3,4,6,8,9,12,17,18,24,34,36,51,68, \\ 72,102,136,153,204,306,408,612,1224\end{array}\right\}$

Remark Sets of divisors are hard to compute. However, the computation of the greatest divisor is straightforward. :)

Going a step further, what about the common divisors of pairs of natural numbers? That is, the set

$$
\mathrm{CD}(\mathrm{~m}, \mathrm{n})=\{\mathrm{d} \in \mathbb{N}: \mathrm{d}|\mathrm{~m} \wedge \mathrm{~d}| \mathrm{n}\}
$$

for $m, n \in \mathbb{N}$.
NB: $\quad C D(m, m)=D(m)$

$$
\left.\begin{array}{rl}
d \mid m \text { and } d \mid n \Rightarrow & d \text { divides any } \\
& \text { integer linear } \\
d|m \Rightarrow d| i \cdot m\} \\
d|n \Rightarrow d| j \cdot n
\end{array}\right\} \Rightarrow d \mid i m+j \cdot n \text { combination of } \quad \begin{aligned}
& m \text { and } n
\end{aligned}
$$

Going a step further, what about the common divisors of pairs of natural numbers? That is, the set

$$
C D(m, n)=\{d \in \mathbb{N}: d|m \wedge d| n\}
$$

for $m, n \in \mathbb{N}$.

Example 68

$$
\mathrm{CD}(1224,660)=\{1,2,3,4,6,12\}
$$

Since $C D(n, n)=D(n)$, the computation of common divisors is as hard as that of divisors. But, what about the computation of the greatest common divisor?

Lemma 71 (Key Lemma) Let m and m^{\prime} be natural numbers and let n be a positive integer such that $\mathrm{m} \equiv \mathrm{m}^{\prime}(\bmod \mathfrak{n})$. Then,

$$
C D(\mathfrak{m}, \mathfrak{n})=C D\left(\mathfrak{m}^{\prime}, \mathfrak{n}\right) .
$$

Proof:

$$
\begin{aligned}
& \text { OOF: find } m^{\prime \prime} \text { s.t } m^{\prime \prime} \equiv m^{\prime}(m \text { od } n) \\
& \underline{C D}(m, n)=\frac{C D}{3}\left(m^{\prime}, n\right)^{\prime}=\underline{C D}\left(m^{\prime \prime}, n\right)=\cdots \\
& \text { find } m^{\prime} \text { s.t } m^{\prime} \equiv m(m \text { rd } n) \\
& =\frac{C D}{\zeta}\left(m^{\prime \prime}, n^{\prime}\right)=\cdots=D(k) \\
& \text { find } n^{\prime} \equiv n\left(m o d m^{\prime \prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C D(m, n)=C D(, n) \\
& 3 \\
& m^{\prime} \text { s.t. } m^{\prime} \equiv m(\operatorname{mrd} n) \\
& m^{\prime}=\operatorname{rem}(m, n) \quad C D(m, n)=C D\left(m^{\prime}, r\right) \\
& \text { I with } m^{\prime}<m \\
& m^{\prime}=m+i \cdot n \\
& m^{\prime}=m-n \\
& m^{\prime}=m+n \sim C D(m, n)=C D(m+n, n)
\end{aligned}
$$

$$
\begin{aligned}
& m \equiv m^{\prime}(\bmod n) \Leftrightarrow m-m^{\prime}=k n \\
& \underline{C D}(m, n)=\mathbb{C D}\left(m^{\prime}, n\right) \quad(*)\| \|^{\prime} \text { is an int. linear } \\
\Leftrightarrow & {\left[\forall d \in \mathbb{N} .(d|m \wedge d| n) \Leftrightarrow\left(d\left|m^{\prime} \wedge d\right| n\right)\right] }
\end{aligned}
$$

Let $d \in \mathbb{N}$.
(\Rightarrow) Assume d / m and d / n.
RTP: $d / m^{\prime} \quad$ RTP:d/n Beccuse (*)
(\Leftarrow) Analogons.

Lemma 73 For all positive integers m and n,

$$
\mathrm{CD}(\mathrm{~m}, n)= \begin{cases}\mathrm{D}(\mathfrak{n}) & , \text { if } \mathfrak{n} \mid \mathrm{m} \\ \mathrm{CD}(\mathrm{n}, \operatorname{rem}(\mathrm{~m}, \mathfrak{n})) & , \text { otherwise }\end{cases}
$$

Since a positive integer n is the greatest divisor in $D(n)$, the lemma suggests a recursive procedure:

$$
\operatorname{gcd}(m, n)= \begin{cases}n & , \text { if } n \mid m \\ \operatorname{gcd}(n, \operatorname{rem}(m, n)) & , \text { otherwise }\end{cases}
$$

for computing the greatest common divisor, of two positive integers m and n. This is

Euclid's Algorithm

$$
\operatorname{gcd}
$$

fun $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$
$=$ let
$\operatorname{val}(\mathrm{q}, \mathrm{r})=\operatorname{divalg}(\mathrm{m}, \mathrm{n})$
in
if $r=0$ then n
else $\operatorname{gcd}(\mathrm{n}, \mathrm{r})$
end

Example $74(\operatorname{gcd}(13,34)=1)$

$$
\begin{aligned}
\operatorname{gcd}(13,34) & =\operatorname{gcd}(34,13) \\
& =\operatorname{gcd}(13,8) \\
& =\operatorname{gcd}(8,5) \\
& =\operatorname{gcd}(5,3) \\
& =\operatorname{gcd}(3,2) \\
& =\operatorname{gcd}(2,1) \\
& =1
\end{aligned}
$$

NB If gcd terminates on input $(\mathfrak{m}, \mathfrak{n})$ with output $\operatorname{gcd}(m, n)$ then $\mathrm{CD}(\mathrm{m}, \mathfrak{n})=\mathrm{D}(\operatorname{gcd}(\mathrm{m}, \mathfrak{n}))$.

NB: gad \sim with rem.
with subotication
Proposition 75 For all natural numbers \mathfrak{m}, n and a, b, if $\mathrm{CD}(\mathfrak{m}, \mathfrak{n})=\mathrm{D}(\mathrm{a})$ and $\mathrm{CD}(\mathfrak{m}, \mathfrak{n})=\mathrm{D}(\mathrm{b})$ then $\mathrm{a}=\mathrm{b}$.

Then $D(a)=D(b)$
But $a \in D(a)$ so $a \in D(b)$; ie. $a \mid b$?
$b \in D(b)$ so $b \in D(a)$; i.e $b \mid a \int a=b$

Proposition 75 For all natural numbers m, n and a, b, if $\mathrm{CD}(\mathrm{m}, \mathrm{n})=\mathrm{D}(\mathrm{a})$ and $\mathrm{CD}(\mathrm{m}, \mathfrak{n})=\mathrm{D}(\mathrm{b})$ then $\mathrm{a}=\mathrm{b}$.

Proposition 76 For all natural numbers m, n and k, the following statements are equivalent:

1. $C D(m, n)=D(k)$.
2. $\mathrm{k}_{\mathrm{m}}|\mathrm{m} \wedge \mathrm{k}| \mathrm{n}$, and

- for all natural numbers $\mathrm{d}, \mathrm{d}|\mathrm{m} \wedge \mathrm{d}| \mathrm{n} \Longrightarrow \mathrm{d} \mid \mathrm{k}$.

Definition 77 For natural numbers m, n the unique natural number k such that

- $\mathrm{k}|\mathrm{m} \wedge \mathrm{k}| \mathrm{n}$, and
- for all natural numbers $\mathrm{d}, \mathrm{d}|\mathrm{m} \wedge \mathrm{d}| \mathrm{n} \Longrightarrow \mathrm{d} \mid \mathrm{k}$. is called the greatest common divisor of m and n, and denoted $\operatorname{gcd}(m, n)$.

Theorem 78 Euclid's Algorithm ged terminates on all pairs of positive integers and, for such m and n , the positive integer $\operatorname{gcd}(m, n)$ is the greatest common divisor of m and n in the sense that the following two properties hold:
(i) both $\operatorname{gcd}(\mathfrak{m}, n) \mid m$ and $\operatorname{gcd}(m, n) \mid n$, and
(ii) for all positive integers d such that $\mathrm{d} \mid \mathrm{m}$ and $\mathrm{d} \mid \mathrm{n}$ it necessarily follows that $\mathrm{d} \mid \operatorname{gcd}(\mathrm{m}, \mathfrak{n})$.

Proof: Partial correctness.

$$
C D(m, n)=\underline{D}(\operatorname{gcd}(m, n)) \Rightarrow(i) \&(i i) \text { by Prop } 76 .
$$

TERMINATION?

