Lemma 42 A positive real number x is rational ff \exists positive integers m, n :

$$
x=m / n \wedge \neg(\exists \text { prime } p: p|m \wedge p| n)
$$

Proof: (\Leftarrow) Straight forward.
(\Rightarrow) Let x be a positive rational number; so, by definition, $x=m_{0} / n_{0}$ for some positive in tegers mo and n_{0}.
RTP: The statement (t).
We proceed by con tradiction. So assume that (t) is not the case.
Equivdently, we have:
$\neg(\exists$ pos.int. $m, n . x=m / n \wedge \neg(J p \operatorname{sine} p \cdot p / m \wedge p / n))$
\Leftrightarrow 甘pos. int $m, n . \neg(x=m / n \wedge \neg$ (Jprime p.p(m^pln))
$\Leftrightarrow \forall$ pos. int $m, n . \neg(x=m / n) \vee$ (Jprimep. plmap|n)
\Leftrightarrow (2) pos.int $m, n, x=m / n \Rightarrow$ (Gprime p. p $(m \wedge p / n)$
By ustan tiation:
(3) $x=m_{0} / n_{0} \Rightarrow$ Jprime p. plmonplno

So from (1) and (3), we hare Jprime p. plmo $\wedge p l n_{0}$ Lef po be such a prine: That is $m_{0}=p_{0} . m_{l}$ and $n_{0}=p_{0} \cdot n_{1}$ for pos. int. m_{1} and n_{1}.

Then

$$
x=m_{1} / n_{1}
$$

and again
$x=m_{1 / n_{1}} \Rightarrow\left(\exists\right.$ prime $p . p / m_{1}$ and $\left.p / n_{1}\right)$
So prime p. pl ma a plo
Say palma and $p_{1} \mid n_{1}$; so That $m_{1}=p_{1} \cdot m_{2}$ and $n_{1}=p_{1} \cdot n_{2}$ for pos. int m_{2} and n_{2}.
Repeating the argument, we wave

$$
\begin{aligned}
m_{0} & =p_{0} \cdot m_{1}=p_{0} \cdot p_{1} \cdot m_{2}=\cdots=p_{0} \cdot p_{1} \cdot \ldots \cdot p_{l} \cdot m_{l+1} \\
& \geqslant 2 \quad \text { for all } l
\end{aligned}
$$

In particular for $l=$ mo, he have

$$
m_{0} \geqslant 2^{m_{0}}
$$

which is a contradiction

Numbers
 Objectives

- Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- To understand and be able to proficiently use the Principle of Mathematical Induction in its $\begin{aligned} \text { Yarious forms. }\end{aligned}$

Natural numbers

In the beginning there were the natural numbers

$$
\mathbb{N}: 0,1, \ldots, n, n+1, \ldots
$$

generated from zero by successive increment; that is, put in ML:

$$
\begin{aligned}
& \text { datatype } \\
& \qquad N=\text { zero } \mid \text { succ of } N
\end{aligned}
$$

The basic operations of this number system are:

- Addition

- Multiplication

The additive structure ($\mathbb{N}, 0,+$) of natural numbers with zero and addition satisfies the following:

- Monoid laws

$$
0+n=n=n+0, \quad(l+m)+n=l+(m+n)
$$

- Commutativity law

$$
\mathfrak{m}+\mathfrak{n}=\mathfrak{n}+\mathfrak{m}
$$

and as such is what in the mathematical jargon is referred to as a commutative monoid.

Commutative monoid laws

- Neutral element laws

- Associativity law

- Commutativity law

Monoids

Definition 43 A monoid is an algebraic structure with

- a neutral element, say e,
- a binary operation, say •,
satisfying
- neutral element laws: $e \bullet x=x=x \bullet e$

Monoids

Definition 43 A monoid is an algebraic structure with

- a neutral element, say e,
- a binary operation, say •,

satisfying

- neutral element laws: $e \bullet x=x=x \bullet e$
- associativity law: $(x \bullet y) \bullet z=x \bullet(y \bullet z)$

A monoid is commutative if:

- commutativity: $x \bullet y=y \bullet x$
is satisfied.

Also the multiplicative structure $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

- Monoid laws

$$
1 \cdot n=n=n \cdot 1, \quad(l \cdot m) \cdot n=l \cdot(m \cdot n)
$$

- Commutativity law

$$
\mathrm{m} \cdot \mathrm{n}=\mathrm{n} \cdot \mathrm{~m}
$$

The additive and multiplicative structures interact nicely in that they satisfy the

- Distributive laws

and make the overall structure $(\mathbb{N}, 0,+, 1, \cdot)$ into what in the mathematical jargon is referred to as a commutative semiring.

Semirings

Definition $44 A$ semiring (or rig) is an algebraic structure with

- a commutative monoid structure, say $(0, \oplus)$,
- a monoid structure, say $(1, \otimes)$,
satifying the distributivity laws:
- $0 \otimes x=0=x \otimes 0$
- $x \otimes(y \oplus z)=(x \otimes y) \oplus(x \otimes z),(y \oplus z) \otimes x=(y \otimes x) \oplus(z \otimes x)$

A semiring is commutative whenever \otimes is.

Cancellation

The additive and multiplicative structures of natural numbers further satisfy the following laws.

- Additive cancellation

For all natural numbers k, \mathfrak{m}, n,

$$
\mathrm{k}+\mathrm{m}=\mathrm{k}+\mathrm{n} \Longrightarrow \mathrm{~m}=\mathrm{n}
$$

- Multiplicative cancellation

For all natural numbers k, m, n,

$$
\text { if } k \neq 0 \text { then } k \cdot m=k \cdot n \Longrightarrow m=n .
$$

Definition 45 A binary operation • allows cancellation by an element c

- on the left: if $\mathrm{c} \bullet \mathrm{x}=\mathrm{c} \bullet \mathrm{y}$ implies $\mathrm{x}=\mathrm{y}$
- on the right: if $x \bullet c=y \bullet c$ implies $x=y$

Example: The append operation on lists allows cancellation by any list on both the left and the right.

Inverses

Definition 46 For a monoid with a neutral element e and a binary operation \bullet, and element x is said to admit an

- inverse on the left if there exists an element ℓ such that $\ell \bullet x=e$
- inverse on the right if there exists an element r such that $x \bullet r=e$
- inverse if it admits both left and right inverses
"cancellation: suposse x has left inverse l
Then $x \cdot y=x \cdot z \Rightarrow y=z$
Because if $x \cdot y=x \cdot z$ then
$l \cdot x \cdot y=l \cdot x \cdot z$ and 80
$e \cdot y=e \cdot z$ and weare done.

Inverses

Definition 46 For a monoid with a neutral element e and a binary operation \bullet, and element x is said to admit an

- inverse on the left if there exists an element ℓ such that $\ell \bullet x=e$
- inverse on the right if there exists an element r such that $x \bullet r=e$
- inverse if it admits both left and right inverses

Proposition 47 For a monoid (e, \bullet) if an element admits an inverse then its left and right inverses are equal.
PROOF: (\Rightarrow) By definition
(\Leftarrow) Say x has left inverse l and right inverse r.
RIP: $l=r$.

$$
l=l \cdot e=l \cdot(x \cdot r)=(l \cdot x) \cdot r=e \cdot r=r
$$

Groups

Definition 49 A group is a monoid in which every element has an inverse.

An Abelian group is a group for which the monoid is commutative.

Inverses

Definition 50

1. A number x is said to admit an additive inverse whenever there exists a number y such that $x+y=0$.
2. A number x is said to admit a multiplicative inverse whenever there exists a number y such that $x \cdot y=1$.

Extending the system of natural numbers to: (i) admit all additive inverses and then (ii) also admit all multiplicative inverses for nonzero numbers yields two very interesting results:
(i) the integers

$$
\mathbb{Z}: \ldots-n, \ldots,-1,0,1, \ldots, n, \ldots
$$

which then form what in the mathematical jargon is referred to as a commutative ring, and
(ii) the rationals \mathbb{Q} which then form what in the mathematical jargon is referred to as a field.

Rings

Definition 51 A ring is a semiring $(0, \oplus, 1, \otimes)$ in which the commutative monoid $(0, \oplus)$ is a group.

A ring is commutative if so is the monoid $(1, \otimes)$.

Fields

Definition 52 A field is a commutative ring in which every element besides 0 has a reciprocal (that is, and inverse with respect to \otimes).

