Bi-implication

Some theorems can be written in the form
P is equivalent to Q
or, in other words,
P implies Q, and vice versa
or

> Q implies P, and vice versa
or
P if, and only if, Q

P iff Q
or, in symbols,

Proof pattern:

In order to prove that

$$
P \Longleftrightarrow Q
$$

1. Write: (\Longrightarrow) and give a proof of $P \Longrightarrow Q$.
2. Write: (\Longleftarrow) and give a proof of $\mathrm{Q} \Longrightarrow \mathrm{P}$.

Divisibility and congruence

Definition 12 Let d and n be integers. We say that divides n , and write $\mathrm{d} \mid \mathrm{n}$, whenever there is an integer k such that $\mathrm{n}=\mathrm{k} \cdot \mathrm{d}$.

Example 13 The statement $2 \mid 4$ is true, while $4 \mid 2$ is not.
Definition 14 Fix a positive integer m. For integers a and b, we say that a is congruent to b modulo m , and write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$, whenever $m \mid(a-b)$.

Example 15

1. $18 \equiv 2(\bmod 4)$
2. $2 \equiv-2(\bmod 4)$
3. $18 \equiv-2(\bmod 4)$

Proposition 16 For every integer n,

1. n is even if, and only if, $n \equiv 0(\bmod 2)$, and
2. n is odd if, and only if, $n \equiv 1(\bmod 2)$.

Proof: Let n integer.
$(1)(\Rightarrow n$ is even $\Rightarrow n \equiv 0(\bmod 2)$
Assume n is even; That is, $n=2 i$ for an integer i.
RIP: $n-0$ is a multiple of 2 Which in the case because $n-0=n$.
$\Leftrightarrow n \equiv 0(\bmod 2) \Rightarrow n i s$ even. Assume $n \equiv 0\left(\operatorname{mord}_{-61-}\right)$ and show n is even.

Congruence modulo m

The use of bi-implications:

> To use an assumption of the form $\mathrm{P} \Longleftrightarrow \mathrm{Q}$, use it as two separate assumptions $P \Longrightarrow Q$ and $Q \Longrightarrow P$.

Universal quantifications

- How to prove them as goals.
- How to use them as assumptions.

PLs fun $f(x)=x+1 \approx$ fun $f(y)=y+1$

Universal quantification

Universal statements are of the form
for all individuals x of the universe of discourse, the property $\mathrm{P}(\mathrm{x})$ holds
or, in other words,
no matter what individual x in the universe of discourse one considers, the property $\mathrm{P}(\mathrm{x})$ for it holds
or, in symbols,

$$
\begin{gathered}
\stackrel{N B:}{\Longrightarrow} \stackrel{\forall x \cdot P(x)}{\Leftrightarrow} \forall y \cdot P(y)
\end{gathered}
$$

Example 17

2. For every positive real number x, if \sqrt{x} is rational then so is x.
3. For every integer n, we have that n is even iff so is n^{2}.

The main proof strategy for universal statements:
To prove a goal of the form

$$
\forall x . P(x)
$$

let x stand for an arbitrary individual and prove $P(x)$.

Proof pattern:

In order to prove that

$$
\forall x . P(x)
$$

1. Write: Let x be an arbitrary individual.

Warning: Make sure that the variable x is new (also referred to as fresh) in the proof! If for some reason the variable x is already being used in the proof to stand for something else, then you must use an unused variable, say y, to stand for the arbitrary individual, and prove $P(y)$.
2. Show that $P(x)$ holds.

Scratch work:

Before using the strategy

Assumptions
Goal

$$
\forall x . P(x)
$$

After using the strategy
Assumptions
Goal
P(x) (for a new (or fresh) x)

Example:

	unprovable
Assumptions	Goal
\vdots	for all integers $n, n \geq 1$
(1) $n>0$	

(2) Let n be an integer RTP: $n \geqslant 1$

Then from (1) and (2) we hove $n \geqslant 1$.

Example:

Let k be an integer
(with k fresh/ new in the proof).
which is wot provable.

How to use universal statements

Assumptions

$$
\begin{aligned}
& \pi^{2} \geq 0 \\
& e^{2} \geq 0 \\
& 0^{2} \geq 0
\end{aligned}
$$

The use of universal statements:
To use an assumption of the form $\forall x . P(x)$, you can plug in any value, say a, for x to conclude that $P(a)$ is true and so further assume it.

This rule is called universal instantiation.

Proposition 18 Fix a positive integer m. For integers a and b, we have that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ if, and only if, for all positive integers n , we have that $n \cdot a \equiv n \cdot b(\bmod n \cdot m)$.
Proof: Let m be a positive integer.
Let a and be be arbitrary integers.
\Leftrightarrow Assume (1) $a \equiv b(m o d m) \Leftrightarrow a-b=i m$ for $\sin m i n t i$.
RIP: \forall pos.int. $n . n \cdot a \equiv n \cdot b(\bmod n \cdot m)$ Let n be an ar butrary positive integer.
RIP: $n a \equiv n b$ (m od $n m$)
That in, $n a-n b=k . n m$ for $a n$ int k.
By (1), $n(a-b)=n \cdot i \cdot m$ and so $n a-n b=$ is a mut Triple of $n \cdot m$

$$
n(a-\hat{b})
$$

(\Leftrightarrow) Assume $1 \forall$ pos. int. $n, n a \equiv n b$ (mod $n m$)
RTP. $\quad a \equiv b(\bmod m)$
Then from (1) by instantiation of n to 1 we hare

$$
1 \cdot a \equiv 1 \cdot b(\bmod 1 \cdot m)
$$

as required.

Equality in proofs

Examples:

- If $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=\mathrm{c}$ then $\mathrm{a}=\mathrm{c}$.
- If $\mathrm{a}=\mathrm{b}$ and $\mathrm{x}=\mathrm{y}$ then $\mathrm{a}+\mathrm{x}=\mathrm{b}+\mathrm{x}=\mathrm{b}+\mathrm{y}$.

Equality axioms

Just for the record, here are the axioms for equality.

- Every individual is equal to itself.

$$
\forall x . x=x
$$

- For any pair of equal individuals, if a property holds for one of them then it also holds for the other one.

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow(P(x) \Longrightarrow P(y))
$$

NB From these axioms one may deduce the usual intuitive properties of equality, such as

$$
\forall x \cdot \forall y \cdot x=y \Longrightarrow y=x
$$

and

$$
\forall x \cdot \forall y \cdot \forall z \cdot x=y \Longrightarrow(y=z \Longrightarrow x=z)
$$

However, in practice, you will not be required to formally do so; rather you may just use the properties of equality that you are already familiar with.

Conjunctions

- How to prove them as goals.
- How to use them as assumptions.

Conjunction

Conjunctive statements are of the form

$$
P \text { and } Q
$$

or, in other words,
both P and also Q hold
or, in symbols,

$$
\mathrm{P} \wedge \mathrm{Q} \quad \text { or } \quad \mathrm{P} \& \mathrm{Q}
$$

The proof strategy for conjunction:
To prove a goal of the form

$$
P \wedge Q
$$

first prove P and subsequently prove Q (or vice versa).

Proof pattern:

In order to prove

$$
P \wedge Q
$$

1. Write: Firstly, we prove P. and provide a proof of P.
2. Write: Secondly, we prove Q . and provide a proof of Q .

Scratch work:

Before using the strategy

Assumptions
 Goal

$P \wedge Q$

After using the strategy

Assumptions	Goal	Assumptions	Goal
	P		Q
\vdots		\vdots	

The use of conjunctions:

> To use an assumption of the form $\mathrm{P} \wedge \mathrm{Q}$, treat it as two separate assumptions: P and Q .

Theorem 19 For every integer n, we have that $6 \mid n$ iff $2 \mid n$ and $3 \mid n$.

Proof:
Proof: $\forall \operatorname{lnt} . n, \quad 6 \ln \Leftrightarrow(2 \ln \wedge 3 \ln)$.
Let n be an ar bitrary integer.
\Leftrightarrow RTP: $6 \ln \Rightarrow(2 \ln \wedge 3 \mid n)$
Assume : $1 / n \Leftrightarrow n=6 \mathrm{k}$ for an int k.
RIP: $21 n \wedge 31 n$

$$
\begin{aligned}
& \text { RID: } 21 n \\
& \Leftrightarrow n=2 i .
\end{aligned}
$$

RIP: $3 \ln$ Exercise.

Since by (1), $n=6 k$. Then $n=2(3 k)$ and So $21 n$.
Lemma: $(a|b \times b| c) \Rightarrow(a \mid c)$. Exerose,
\Leftrightarrow RIP: $(2 \ln A 3 \ln) \Rightarrow 6 \ln$
Assume: $2 \ln a 3 \ln$
So $2 \ln \Leftrightarrow(1) n=2 i$ for int i.
and $3 \ln \Leftrightarrow{ }^{(2)} n=3 j$ for in ${ }^{2} ;$
RIP: $6\left[n \Leftrightarrow n=6 k\right.$ for $\begin{array}{l}\text { an int } k \text {. }\end{array}$
From (1) ad (2), $2 i=3 j, \cdots$
From (1), $3 n=6 i$. From (2), $2 n=6 j$... Exarate.

Exerios $\forall n$

$$
\begin{aligned}
& =\frac{x \operatorname{cin} x}{(2 \ln \wedge 3 \ln \wedge s \mid n) \Leftrightarrow(30 \mid n)} \\
& \forall a, b, \\
& \quad(a|n \wedge b| n) \Leftrightarrow(a . b) \mid n ?
\end{aligned}
$$

