Denotational Semantics

Meven Lennon-Bertrand
Lectures for Part II CST 2023/2024

Practicalities

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.

Introduction

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?
- Programming language semantics: what is the (mathematical) meaning of a program?

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

WHY SHOULD WE CARE?

- Insight: exposes the mathematical "essence" of programming language concepts.

Why should we care?

- Insight: exposes the mathematical "essence" of programming language concepts.
- Language design: feedback from semantic concepts (monads, algebraic effects \& effect handlers...).

Why Should we care?

- Insight: exposes the mathematical "essence" of programming language concepts.
- Language design: feedback from semantic concepts (monads, algebraic effects \& effect handlers...).
- Rigour: semantics is necessary to specify/justify formal methods (compilers, type systems, code analysis, certification...).

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic
- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- Axiomatic
- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- Axiomatic: indirect meaning of a program in terms of a program logic to reason about its properties (see Part II Hoare Logic \& Model Checking).
- Denotational

StyLes of formal semantics

- Operational: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- Axiomatic: indirect meaning of a program in terms of a program logic to reason about its properties (see Part II Hoare Logic \& Model Checking).
- Denotational: meaning of a program defined abstractly as object of some suitable mathematical structure (see this course).

DENOTATIONAL SEMANTICS IN A NUTSHELL

$$
\begin{array}{rll}
\text { Syntax } & \xrightarrow{\llbracket-\rrbracket} & \text { Semantics } \\
\text { Program } P & \mapsto & \text { Denotation } \llbracket P \rrbracket \\
& & \\
\text { Recursive program } & \mapsto & \text { Partial recursive function } \\
\text { Boolean circuit } & \mapsto & \text { Boolean function }
\end{array}
$$

DENOTATIONAL SEMANTICS IN A NUTSHELL

$$
\begin{aligned}
& \text { Syntax } \xrightarrow{\llbracket-\rrbracket} \text { Semantics } \\
& \text { Program } P \mapsto \\
& \text { Denotation } \llbracket P \rrbracket \\
& \text { Recursive program } \mapsto \\
& \text { Portial recursive function } \\
& \text { Boolean circuit } \mapsto \\
& \text { Boolean function } \\
& \text { Type } \mapsto \\
& \text { Promain } \\
& \text { Pram } \mapsto \\
& \text { Continuous functions between domains }
\end{aligned}
$$

Properties of denotational semantics

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Properties of denotational semantics

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Compositionality

- The denotation of a phrase is defined using the denotation of its sub-phrases.
- $\llbracket P \rrbracket$ represents the contribution of P to any program containing P.
- Much more flexible than whole-program semantics.

INTRODUCTION

A BASIC EXAMPLE

Commands
$C \in$ Comm $::=$ skip $|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

IMP SYNTAX

Commands ranges over a set \mathbb{L} of locations
$C \in$ Comm ::= skip $|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

IMP SYNTAX

Arithmetic expressions

$$
A \in \operatorname{Aexp}::=\underline{n}|L| A+A \mid \ldots
$$

Commands

$$
C \in \operatorname{Comm}::=\operatorname{skip}|L:=A| C ; C \mid \text { if } B \text { then } C \text { else } C \mid \text { while } B \text { do } C
$$

IMP SYNTAX

ranges over integers
Arithmetic expressions

$$
A \in \operatorname{Aexp}::=\underline{\underline{n}}|L| A+A \mid \ldots
$$

Commands
$C \in \operatorname{Comm}::=\operatorname{skip}|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

IMP SYNTAX

Arithmetic expressions

$$
A \in \operatorname{Aexp}::=\underline{n}|L| A+A \mid \ldots
$$

Boolean expressions

$$
B \in \operatorname{Bexp}::=\text { true } \mid \text { false }|A=A| \neg B \mid \ldots
$$

Commands
$C \in \operatorname{Comm}::=$ skip $|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

DENOTATION FUNCTIONS - NAÏVELY

$$
\mathcal{A}: \quad A \exp \rightarrow \mathbb{Z}
$$

where

$$
\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}
$$

Denotation functions - naïvely

$$
\begin{array}{ll}
\mathcal{A}: & \operatorname{Aexp} \rightarrow \mathbb{Z} \\
\mathcal{B}: & \operatorname{Bexp} \rightarrow \mathbb{B}
\end{array}
$$

where

$$
\begin{aligned}
& \mathbb{Z}=\{\ldots,-1,0,1, \ldots\} \\
& \mathbb{B}=\{\text { true, false }\}
\end{aligned}
$$

ARITHMETIC EXPRESSIONS?

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\mathcal{A} \llbracket A_{1} \rrbracket+\mathcal{A} \llbracket A_{2} \rrbracket
\end{aligned}
$$

ARITHMETIC EXPRESSIONS?

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\mathcal{A} \llbracket A_{1} \rrbracket+\mathcal{A} \llbracket A_{2} \rrbracket \\
\mathcal{A} \llbracket L \rrbracket & =? ? ?
\end{aligned}
$$

$$
\text { State }=(\mathbb{Z} \rightarrow \mathbb{Z})
$$

DENOTATION FUNCTIONS

$$
\text { State }=(\mathbb{Z} \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \mathcal{A}: \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
& \mathcal{B}: \operatorname{Bexp} \rightarrow(\text { State } \rightarrow \mathbb{B})
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\}
\end{aligned}
$$

DENOTATION FUNCTIONS

$$
\text { State }=(\mathbb{L} \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \mathcal{A}: \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
& \mathcal{B}: \operatorname{Bexp} \rightarrow(\text { State } \rightarrow \mathbb{B}) \\
& \mathcal{C}: \text { Comm } \rightarrow(\text { State } \rightarrow \text { State })
\end{aligned}
$$

where \rightharpoonup denotes partial functions and

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\}
\end{aligned}
$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =\lambda s \in \text { State. } n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\lambda s \in \text { State. } \mathcal{A} \llbracket A_{1} \rrbracket(s)+\mathcal{A} \llbracket A_{2} \rrbracket(s)
\end{aligned}
$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =\lambda s \in \text { State. } n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\lambda s \in \text { State. } \mathcal{A} \llbracket A_{1} \rrbracket(s)+\mathcal{A} \llbracket A_{2} \rrbracket(s) \\
\mathcal{A} \llbracket L \rrbracket & =\lambda s \in \text { State. } s(L)
\end{aligned}
$$

SEMANTICS OF BOOLEAN EXPRESSIONS

$$
\begin{aligned}
\mathcal{B} \llbracket \mathrm{true} \rrbracket= & \lambda s \in \text { State. true } \\
\mathcal{B} \llbracket \mathrm{false} \rrbracket= & \lambda s \in \text { State. false } \\
\mathcal{B} \llbracket A_{1}=A_{2} \rrbracket= & \lambda s \in \text { State. eq }\left(\mathcal{A} \llbracket A_{1} \rrbracket(s), \mathcal{A} \llbracket A_{2} \rrbracket(s)\right) \\
& \text { where eq }\left(a, a^{\prime}\right)= \begin{cases}\text { true } & \text { if } a=a^{\prime} \\
\text { false } & \text { if } a \neq a^{\prime}\end{cases}
\end{aligned}
$$

$$
\mathcal{C} \llbracket \text { skip } \rrbracket=\lambda s \in \text { State. } s
$$

SEmANtics of commands

$$
\begin{aligned}
\mathcal{C} \llbracket \text { skip }= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases}
\end{aligned}
$$

SEmANTICS OF COMMANDS

$$
\begin{aligned}
\mathcal{C} \llbracket \text { skip }= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases}
\end{aligned}
$$

SEmANtics of commands

$$
\begin{aligned}
\mathcal{C} \llbracket s k i p \rrbracket= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases} \\
\mathcal{C} \llbracket L:=A \rrbracket= & \lambda s \in \text { State. } s[L \mapsto \mathcal{A} \llbracket A \rrbracket(s)] \\
& \text { where } s[L \mapsto n]\left(L^{\prime}\right)= \begin{cases}n & \text { if } L^{\prime}=L \\
s(L) & \text { otherwise }\end{cases}
\end{aligned}
$$

SEmANtics of commands

$$
\begin{aligned}
\mathcal{C} \llbracket s k i p \rrbracket= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases} \\
\mathcal{C} \llbracket L:=A \rrbracket= & \lambda s \in \text { State. } s[L \mapsto \mathcal{A} \llbracket A \rrbracket(s)] \\
& \text { where } s[L \mapsto n]\left(L^{\prime}\right)= \begin{cases}n & \text { if } L^{\prime}=L \\
s(L) & \text { otherwise }\end{cases} \\
\mathcal{C} \llbracket C ; C^{\prime} \rrbracket= & \mathcal{C} \llbracket C^{\prime} \rrbracket \circ \mathcal{C} \llbracket C \rrbracket \\
= & \lambda s \in \operatorname{State} . \mathcal{C} \llbracket C^{\prime} \rrbracket(\mathcal{C} \llbracket C \rrbracket(s))
\end{aligned}
$$

INTRODUCTION

A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...
\llbracket while B do $C \rrbracket=$???

SEmANtics of LOOPS?

This is all very nice, but...

$$
\llbracket \text { while } B \text { do } C \rrbracket=? ? ?
$$

Remember:

- (while B do $C, s) \rightarrow($ if B then (C; while B do C) else skip, s)
- we want a compositional semantic: we should give \llbracket while B do $C \rrbracket$ in terms of $\llbracket C \rrbracket$ and $\llbracket B \rrbracket$
\llbracket while B do $C \rrbracket=\llbracket$ if B then (C; while B do C) else skip \rrbracket $=\lambda s \in$ State. $\mathrm{if}(\llbracket B \rrbracket, \llbracket$ while B do $C \rrbracket \circ \llbracket C \rrbracket(s), s)$

LOOP AS A FIXPOINT

$$
\begin{aligned}
\llbracket \text { while } B \text { do } C \rrbracket & =\llbracket \text { if } B \text { then }(C ; \text { while } B \text { do } C) \text { else skip } \rrbracket \\
& =\lambda s \in \text { State. } \operatorname{if}(\llbracket B \rrbracket, \llbracket \text { while } B \text { do } C \rrbracket ॰ \llbracket C \rrbracket(s), s)
\end{aligned}
$$

Not a direct definition for $\llbracket w h i l e B$ do $C \rrbracket$... But a fixed point equation!

$$
\llbracket \text { while } B \text { do } C \rrbracket=F_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\text { while } B \text { do } C)
$$

where $\quad F_{b, c}:($ State \rightharpoonup State $) \rightarrow($ State \rightharpoonup State $)$
$w \mapsto \lambda s \in \operatorname{State} . \operatorname{if}(b(s), w \circ c(s), s)$.

NOW WE HAVE A GOAL

-Why/when does $w=F_{b, c}(w)$ have a solution?

- What if it has several solutions? Which one should be our \llbracket while B do $C \rrbracket$?

NOW WE HAVE A GOAL

-Why/when does $w=F_{b, c}(w)$ have a solution?

- What if it has several solutions? Which one should be our \llbracket while B do $C \rrbracket$?

Our occupation for the next few lectures...

INTRODUCTION

A TASTE OF DOMAIN THEORY

【while $X>0$ do $(Y:=X * Y ; X:=X-1) \rrbracket$

AN EXAMPLE

$$
\llbracket \text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) \rrbracket
$$

should be some w such that:

$$
w=F_{\llbracket X>0 \rrbracket, \llbracket Y:=X * Y ; X:=X-1 \rrbracket}(w)
$$

AN EXAMPLE

$$
\llbracket \text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) \rrbracket
$$

should be some w such that:

$$
w=F_{\llbracket X>0 \rrbracket, \llbracket Y:=X * Y ; X:=X-1 \rrbracket}(w) .
$$

That is, we are looking for a fixed point of the following $F: D \rightarrow D$, where D is (State - State):

$$
F(w)([X \mapsto x, Y \mapsto y])= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ w([X \mapsto x-1, Y \mapsto x \cdot y]) & \text { if } x>0\end{cases}
$$

The POSET OF PARTIAL FUNCTIONS

Partial order \sqsubseteq on D ($=$ State \rightharpoonup State):

$w \sqsubseteq w^{\prime} \quad$ if for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
if the graph of w is included in the graph of w^{\prime}.

The POSET OF PARTIAL FUNCTIONS

Partial order \sqsubseteq on D ($=$ State \rightharpoonup State):

$w \sqsubseteq w^{\prime} \quad$ if for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
if the graph of w is included in the graph of w^{\prime}.

Least element $\perp \in D$:
$\perp=$ totally undefined partial function
= partial function with empty graph

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{1}[X \mapsto x, Y \mapsto y]=F(\perp)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ \text { undefined } & \text { if } x \geq 1\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{2}[X \mapsto x, Y \mapsto y]=F\left(w_{1}\right)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \mapsto 0, Y \mapsto y]} & \text { if } x=1 \\ \text { undefined } & \text { if } x \geq 2\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{3}[X \mapsto x, Y \mapsto y]=F\left(w_{2}\right)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \mapsto 0, Y \mapsto y]} & \text { if } x=1 \\ {[X \mapsto 0, Y \mapsto 2 y]} & \text { if } x=2 \\ \text { undefined } & \text { if } x \geq 3\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\ {[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\ \text { undefined } & \text { if } x \geq n\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
\begin{gathered}
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\
\text { undefined } & \text { if } x \geq n\end{cases} \\
\qquad w_{0} \sqsubseteq w_{1} \sqsubseteq \ldots \sqsubseteq w_{n} \sqsubseteq \ldots
\end{gathered}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
\begin{gathered}
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\
\text { undefined } & \text { if } x \geq n\end{cases} \\
\qquad w_{0} \sqsubseteq w_{1} \sqsubseteq \ldots \sqsubseteq w_{n} \sqsubseteq \ldots \sqsubseteq w_{\infty} ?
\end{gathered}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
\begin{gathered}
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\
\text { undefined } & \text { if } x \geq n\end{cases} \\
w_{0} \sqsubseteq w_{1} \sqsubseteq \ldots \sqsubseteq w_{n} \sqsubseteq \ldots \sqsubseteq w_{\infty} \\
w_{\infty}[X \mapsto x, Y \mapsto y]=\bigsqcup_{i \in \mathbb{N}} w_{i}= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } x \geq 0\end{cases}
\end{gathered}
$$

$$
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y]
$$

WE HAVE OUR SEMANTICS

$$
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0\end{cases}
$$

(by definition of F)

We have our semantics

$$
\begin{aligned}
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y] & =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0
\end{array} \quad \text { (by definition of } F\right. \text {) } \\
& =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
{[X \mapsto 0, Y \mapsto(x-1)!\cdot x \cdot y]} & \text { if } x>0
\end{array} \text { (by definition of } w_{\infty}\right. \text {) }
\end{aligned}
$$

We have our semantics

$$
\begin{aligned}
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y] & =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0
\end{array} \quad \text { (by definition of } F\right. \text {) } \\
& =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
{[X \mapsto 0, Y \mapsto(x-1)!\cdot x \cdot y]} & \text { if } x>0
\end{array} \text { (by definition of } w_{\infty}\right. \text {) } \\
& =w_{\infty}[X \mapsto x, Y \mapsto y]
\end{aligned}
$$

We have our semantics

$$
\begin{aligned}
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y] & =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0
\end{array} \quad \text { (by definition of } F\right. \text {) } \\
& =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
{[X \mapsto 0, Y \mapsto(x-1)!\cdot x \cdot y]} & \text { if } x>0
\end{array} \text { (by definition of } w_{\infty}\right. \text {) } \\
& =w_{\infty}[X \mapsto x, Y \mapsto y]
\end{aligned}
$$

- w_{∞} is a fixed point
- which moreover agrees with the operational semantics (!)

Least Fixed Points

Least Fixed Points
 POSETS AND MONOTONE FUNCTIONS

Partially ordered set

A partial order on a set D is a binary relation \sqsubseteq that is reflexive: $\forall d \in D . d \sqsubseteq d$ transitive: $\forall d, d^{\prime}, d^{\prime \prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d^{\prime \prime} \Rightarrow d \sqsubseteq d^{\prime \prime}$ antisymmetric: $\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d \Rightarrow d=d^{\prime}$.

Partially ordered set

A partial order on a set D is a binary relation \sqsubseteq that is
reflexive: $\forall d \in D . d \sqsubseteq d$
transitive: $\forall d, d^{\prime}, d^{\prime \prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d^{\prime \prime} \Rightarrow d \sqsubseteq d^{\prime \prime}$
antisymmetric: $\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d \Rightarrow d=d^{\prime}$.

Underlying set: partial functions f with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y;

Underlying set: partial functions f with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y;
Order: $f \sqsubseteq g$ if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $\forall x \in \operatorname{dom}(f)$. $f(x)=g(x)$, i.e. if $\operatorname{graph}(f) \subseteq \operatorname{graph}(g)$.

A function $f: D \rightarrow E$ between posets is monotone if

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)
$$

A function $f: D \rightarrow E$ between posets is monotone if

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)
$$

$$
\operatorname{MoN} \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}
$$

Least Fixed Points

LEAST ELEMENTS AND PRE-FIXED POINTS

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x .
$$

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x
$$

If it exists, it is unique, and is written \perp_{S}, or simply \perp.

$$
\text { LEAST } \frac{x \in S}{\perp_{S} \sqsubseteq x}
$$

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x
$$

If it exists, it is unique, and is written \perp_{S}, or simply \perp.

$$
\operatorname{ASYM} \frac{\text { LEAST } \frac{\perp_{S}^{\prime} \in S}{\perp_{S} \sqsubseteq \perp_{S}^{\prime}} \quad \text { LEAST } \frac{\perp_{S} \in S}{\perp_{S}^{\prime} \sqsubseteq \perp_{S}}}{\perp_{S}=\perp_{S}^{\prime}}
$$

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
\operatorname{fix}(f)
$$

PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
\operatorname{fix}(f)
$$

It is thus (uniquely) specified by the two properties:

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

$$
\text { LFP-LEAST } \frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}
$$

PROOFS WITH LEAST FIXED POINTS

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

The least pre-fixed point is a fixed point.

Proofs with least fixed points

LFP-FIX $\overline{f(\mathrm{fix}(f)) \sqsubseteq \mathrm{fix}(f)}$
LEP-LEAST $\frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}$
To prove $\operatorname{fix}(f) \sqsubseteq d$, it is enough to show $f(d) \sqsubseteq d$.

PROOFS WITH LEAST FIXED POINTS

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

$$
\text { LFP-LEAST } \frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}
$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$
\operatorname{ASYM} \frac{\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}}{f(\operatorname{fix}(f))=\operatorname{fix}(f)}
$$

Proofs with least fixed points

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

$$
\text { LFP-LEAST } \frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}
$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$
\text { ASYM } \frac{\text { LFP-FIX } \frac{\operatorname{MON} \frac{\operatorname{LFP-FIX} \overline{f(f i x}(f)) \sqsubseteq \operatorname{fix}(f)}{f(f i x(f)) \sqsubseteq \operatorname{fix}(f)}}{f(f \operatorname{fix}(f))) \sqsubseteq f(f i x(f))}}{\text { LFP-LEAST } \frac{\operatorname{fix}(f) \sqsubseteq f(\mathrm{fix}(f))}{\operatorname{fix}(f)}}
$$

Least Fixed Points

LEAST UPPER BOUNDS

LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$, written $\bigsqcup_{n \geq 0} d_{n}$, satisfies the two following properties:

$$
\text { LUB-BOUND } \overline{x_{i} \sqsubseteq \bigsqcup_{n \geq 0} x_{n}}
$$

$$
\text { LUB-LEAST } \frac{\forall n \geq 0 . x_{n} \sqsubseteq x}{\bigsqcup_{n \geq 0} x_{n} \sqsubseteq x}
$$

PROPERTIES OF LUBS

Lubs are unique.

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

$$
\text { LUB-MON } \frac{\forall i . d_{i} \sqsubseteq e_{i}}{\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}}
$$

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

For any $d, \bigsqcup_{n} d=d$.

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

For any $d, \bigsqcup_{n} d=d$.

For any chain and $N \in \mathbb{N}, \bigsqcup_{n} d_{n}=\bigsqcup_{n} d_{n+N}$.

PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$ (if they exist).

For any $d, \bigsqcup_{n} d=d$ (and in particular it exists).

For any chain and $N \in \mathbb{N}, \bigsqcup_{n} d_{n}=\bigsqcup_{n} d_{n+N}$ (if any of the two exists).

DIAGONALISATION

Assume $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \wedge n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

DIAGONALISATION

Assume $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \wedge n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then, assuming they exist, the lubs form two chains

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 2} \sqsubseteq \ldots
$$

DIAGONALISATION

Assume $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \wedge n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then, assuming they exist, the lubs form two chains

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 2} \sqsubseteq \ldots
$$

Moreover, again assuming they exist,

$$
\bigsqcup_{m \geq 0}\left(\bigsqcup_{n \geq 0} d_{m, n}\right)=\bigsqcup_{k \geq 0} d_{k, k}=\bigsqcup_{n \geq 0}\left(\bigsqcup_{m \geq 0} d_{m, n}\right)
$$

Least Fixed Points

COMPLETE PARTIAL ORDERS AND DOMAINS

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_{i} form a chain!

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_{i} form a chain!

A domain is a cpo with a least element \perp.

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

Lub of a chain: $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ has lub f such that

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right) \text { for some } n \\ \text { undefined } & \text { otherwise }\end{cases}
$$

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

Lub of a chain: $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ has lub f such that

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right) \text { for some } n \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Beware: the definition of $\bigsqcup_{n \geq 0} f_{n}$ is unambiguous only if the f_{i} form a chain!

THE FLAT NATURAL NUMBERS \mathbb{N}_{\perp}

Least Fixed Points

Continuous functions

CONTINUITY AND STRICTNESS

Given two cpos D and E, a function $f: D \rightarrow E$ is continuous if

- it is monotone, and
- it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, we have

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right)
$$

CONTINUITY AND STRICTNESS

Given two cpos D and E, a function $f: D \rightarrow E$ is continuous if

- it is monotone, and
- it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, we have

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right)
$$

A function f is strict if $f\left(\perp_{D}\right)=\perp_{E}$.

All computable functions are continuous.

All computable functions are continuous.

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

$$
\begin{array}{ccccccc}
0 & 0 & \perp & \ldots & & & \mapsto \perp \\
0 & 0 & 0 & 0 & 1 & \ldots & \mapsto 1 \\
& & & & & & \\
0 & 0 & 0 & 0 & 0 & \overline{0} & \mapsto 0
\end{array}
$$

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

0	0	\perp	\ldots			$\mapsto \perp$
0	0	0	0	1	\ldots	$\mapsto 1$
0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	$\overline{0}$	$\mapsto 0$

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

0	0	\perp	\ldots							$\mapsto \perp$
0	0	0	0	1	\ldots					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	\ldots	$\mapsto \perp$
0	0	0	0	0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	0					$\mapsto 0$

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\perp	\ldots							$\mapsto \perp$
0	0	0	0	1	\ldots					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	\ldots	$\mapsto \perp$
0	0	0	0	0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	0					$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

0	0	\perp	\ldots							$\mapsto \perp$
0	0	0	0	1	\ldots					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	\ldots	$\mapsto \perp$
0	0	0	0	0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	0					$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability
Later in the course: show the thesis... by giving a denotational semantics.

Least Fixed Points

Kleene's fixed point theorem

Kleene's fixed point theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$
\operatorname{fix}(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

KLeEne's fixed point theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$
\operatorname{fix}(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

It is thus also the least fixed point of f !

Constructions on Domains

Constructions on Domains

FLAT DOMAINS

Flat domain on X

The flat domain on a set X is defined by:

- its underlying set $X \biguplus\{\perp\}$;
- $x \sqsubseteq x^{\prime}$ if either $x=\perp$ or $x=x^{\prime}$.

FLAT DOMAIN LIFTING

Let $f: X \rightharpoonup Y$ be a partial function between two sets. Then

$$
\begin{aligned}
f_{\perp}: X_{\perp} & \rightarrow Y_{\perp} \\
d & \mapsto \begin{cases}f(d) & \text { if } d \in X \text { and } f \text { is defined at } d \\
\perp & \text { if } d \in X \text { and } f \text { is not defined at } d \\
\perp & \text { if } d=\perp\end{cases}
\end{aligned}
$$

defines a continuous function between the corresponding flat domains.

Constructions on Domains

Products of domains

BINARY PRODUCT

The product of two posets $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \wedge d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \wedge d_{2} \sqsubseteq_{2} d_{2}^{\prime}
$$

BINARY PRODUCT

The product of two posets $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \wedge d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\begin{gathered}
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \wedge d_{2} \sqsubseteq_{2} d_{2}^{\prime} \\
\text { РО× } \frac{d_{1} \sqsubseteq_{1} d_{1}^{\prime} \quad d_{2} \sqsubseteq_{2} d_{2}^{\prime}}{\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right)}
\end{gathered}
$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ have least elements, so does $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ with

$$
\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)
$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ have least elements, so does $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ with

$$
\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)
$$

Products of cpos (domains) are cpos (domains).

Functions of two Arguments

A function $f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Functions of two Arguments

A function $f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

$$
\begin{aligned}
& f\left(\bigsqcup_{m \geq 0} d_{m}, e\right)=\bigsqcup_{m \geq 0} f\left(d_{m}, e\right) \\
& f\left(d, \bigsqcup_{n \geq 0} e_{n}\right)=\bigsqcup_{n \geq 0} f\left(d, e_{n}\right)
\end{aligned}
$$

DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

$$
\begin{gathered}
\text { monx } \frac{f \text { monotone } \quad x \sqsubseteq x^{\prime} \quad y \sqsubseteq y^{\prime}}{f(x, y) \sqsubseteq f\left(x^{\prime}, y^{\prime}\right)} \\
f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right)=\bigsqcup_{m} \bigsqcup_{n} f\left(x_{m}, y_{n}\right)=\bigsqcup_{k} f\left(x_{k}, y_{k}\right)
\end{gathered}
$$

PROJECTION AND PAIRING

Let D_{1} and D_{2} be cpos. The projections

$$
\begin{array}{rlll}
\pi_{1}: & D_{1} \times D_{2} & \rightarrow D_{1} & \pi_{2}: \\
\left(d_{1}, d_{2}\right) & \mapsto d_{1} & D_{1} \times D_{2} & \rightarrow D_{2} \\
\left(d_{1}, d_{2}\right) & \mapsto & d_{2}
\end{array}
$$

are continuous functions.

PROJECTION AND PAIRING

Let D_{1} and D_{2} be cpos. The projections

$$
\begin{array}{rlrl}
\pi_{1}: & D_{1} \times D_{2} & \rightarrow D_{1} & \pi_{2}: \\
\left(d_{1}, d_{2}\right) & \mapsto d_{1} & D_{1} \times D_{2} & \rightarrow D_{2} \\
\left(d_{1}, d_{2}\right) & \mapsto & d_{2}
\end{array}
$$

are continuous functions.

If $f_{1}: D \rightarrow D_{1}$ and $f_{2}: D \rightarrow D_{2}$ are continuous functions from a cpo D, then the pairing function

$$
\begin{aligned}
\left\langle f_{1}, f_{2}\right\rangle: \quad & \rightarrow D_{1} \times D_{2} \\
d & \mapsto\left(f_{1}(d), f_{2}(d)\right)
\end{aligned}
$$

is continuous.

DOMAIN CONDITIONAL

The conditional function

$$
\text { if : } \begin{aligned}
\mathbb{B}_{\perp} \times(D \times D) & \rightarrow D \\
(x, d) & \mapsto \begin{cases}\pi_{1}(d) & \text { if } x=\text { true } \\
\pi_{2}(d) & \text { if } x=\text { false } \\
\perp_{D} & \text { if } x=\perp\end{cases}
\end{aligned}
$$

is continuous.

GENERAL PRODUCT

Given a set I, suppose that for each $i \in I$ we are given a set X_{i}. The (cartesian) product of the X_{i} is

$$
\prod_{i \in T} x_{i}
$$

Two ways to see it:

- tuples: $\left(\ldots, x_{i}, \ldots\right)_{i \in I}$ such that $x_{i} \in X_{i}$;

GENERAL PRODUCT

Given a set I, suppose that for each $i \in I$ we are given a set X_{i}. The (cartesian) product of the X_{i} is

$$
\prod_{\ell \in} x_{i}
$$

Two ways to see it:

- tuples: $\left(\ldots, x_{i}, \ldots\right)_{i \in I}$ such that $x_{i} \in X_{i}$;
- heterogeneous functions: p defined on I such that $p(i) \in X_{i}$.

GENERAL PRODUCT

Given a set I, suppose that for each $i \in I$ we are given a set X_{i}. The (cartesian) product of the X_{i} is

$$
\prod_{i \in I} X_{i}
$$

Two ways to see it:

- tuples: $\left(\ldots, x_{i}, \ldots\right)_{i \in I}$ such that $x_{i} \in X_{i}$;
- heterogeneous functions: p defined on I such that $p(i) \in X_{i}$.

Special case: $\prod_{i \in \mathbb{B}} D_{i}$ corresponds to $D_{\text {true }} \times D_{\text {false }}$.

GENERAL PRODUCT

Given a set I, suppose that for each $i \in I$ we are given a set X_{i}. The (cartesian) product of the X_{i} is

$$
\prod_{\theta} x_{i}
$$

Two ways to see it:

- tuples: $\left(\ldots, x_{i}, \ldots\right)_{i \in I}$ such that $x_{i} \in X_{i}$;
- heterogeneous functions: p defined on I such that $p(i) \in X_{i}$.

Special case: $\prod_{i \in \mathbb{B}} D_{i}$ corresponds to $D_{\text {true }} \times D_{\text {false }}$.
Projections (for any $i \in I$):

$$
\pi_{i}:\left(\prod_{i \in I} X_{i}\right) \rightarrow X_{i}
$$

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each $i \in I$ we are given a cpo $\left(D_{i}, \sqsubseteq_{i}\right)$. The product of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_{i}$;

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each $i \in I$ we are given a cpo $\left(D_{i}, \sqsubseteq_{i}\right)$. The product of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_{i}$;
- componentwise order

$$
p \sqsubseteq p^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall i \in I . p_{i} \sqsubseteq_{i} p_{i}^{\prime} .
$$

GENERAL PRODUCT OF DOMAINS

Given a set I, suppose that for each $i \in I$ we are given a cpo $\left(D_{i}, \sqsubseteq_{i}\right)$. The product of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_{i}$;
- componentwise order

$$
p \sqsubseteq p^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall i \in I . p_{i} \sqsubseteq_{i} p_{i}^{\prime} .
$$

I-indexed products of cpos (domains) are cpos (domains), and projections are continuous.

Constructions on Domains

Function domains

Given two cpos $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$
\{f: D \rightarrow E \mid \text { is a continuous function }\}
$$

equipped with the pointwise order:

$$
f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d) .
$$

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$
\{f: D \rightarrow E \mid \text { is a continuous function }\}
$$

equipped with the pointwise order:

$$
\begin{gathered}
f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d) . \\
\frac{f \sqsubseteq_{D \rightarrow E} g \quad x \sqsubseteq_{D} y}{f(x) \sqsubseteq_{E} g(y)}
\end{gathered}
$$

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$, the function cpo $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$
\{f: D \rightarrow E \mid \text { is a continuous function }\}
$$

equipped with the pointwise order:

$$
f \sqsubseteq f^{\prime} \stackrel{\text { def }}{\Leftrightarrow} \forall d \in D . f(d) \sqsubseteq_{E} f^{\prime}(d) .
$$

Argumentwise least elements and lubs:

$$
\perp_{D \rightarrow E}(d)=\perp_{E} \quad\left(\bigsqcup_{n \geq 0} f_{n}\right)(d)=\bigsqcup_{n \geq 0} f_{n}(d)
$$

Function operations are continuous

Evaluation, currying $\left(f:\left(D^{\prime} \times D\right) \rightarrow E\right)$ and composition

$$
\begin{aligned}
\text { eval : } \begin{aligned}
&(D \rightarrow E) \times D \rightarrow E \\
&(f, d) \mapsto f(d) \\
& \operatorname{cur}(f): \begin{array}{ll}
D^{\prime} & \rightarrow(D \rightarrow E) \\
d^{\prime} & \mapsto \lambda d \in D . f\left(d^{\prime}, d\right)
\end{array} \\
& \circ:((E \rightarrow F) \times(D \rightarrow E)) \longrightarrow(D \rightarrow F) \\
&(f, g)
\end{aligned}>\lambda d \in D \cdot g(f(d))
\end{aligned}
$$

are all well-defined and continuous.

CONTINUITY OF THE FIXED POINT OPERATOR

$$
\text { fix: } \quad(D \rightarrow D) \rightarrow D
$$

is continuous.

Constructions on Domains

BACK TO THE INTRODUCTION

The semantics of a while loop

$$
\llbracket \text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) \rrbracket
$$

is a fixed point of the following $F: D \rightarrow D$, where D is (State \rightharpoonup State):

$$
F(w)([X \mapsto x, Y \mapsto y])= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ w([X \mapsto x-1, Y \mapsto x \cdot y]) & \text { if } x>0\end{cases}
$$

The semantics of a while loop

$$
\llbracket \text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) \rrbracket
$$

is a fixed point of the following $F: D \rightarrow D$, where D is $\left(\right.$ State $_{\perp} \rightarrow$ State $\left._{\perp}\right)$:

$$
\begin{aligned}
F(w)([X \mapsto x, Y \mapsto y]) & = \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w([X \mapsto x-1, Y \mapsto x \cdot y]) & \text { if } x>0 .\end{cases} \\
F(\perp) & =\perp
\end{aligned}
$$

State $_{\perp} \rightarrow$ State $_{\perp}$ is a domain!

Kleene's fixed point theorem

Kleene's fixed point theorem:

$$
w_{\infty}=\bigsqcup_{i \in \mathbb{N}} F^{n}(\perp)
$$

is the least fixed point of F, and in particular a fixed point.

Kleene's fixed point theorem

Kleene's fixed point theorem:

$$
w_{\infty}=\bigsqcup_{i \in \mathbb{N}} F^{n}(\perp)
$$

is the least fixed point of F, and in particular a fixed point.

We can compute explicitly

$$
w_{\infty}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\ {[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } x \geq 0\end{cases}
$$

And check this agrees with the operational semantics.

Scott Induction

Reasoning on fixed points: Scott induction

Let D be a domain, $f: D \rightarrow D$ be a continuous function and $S \subseteq D$ be a subset of D. If the set S
(i) contains \perp,
(ii) is stable under f, i.e. $f(S) \subseteq S$,
(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S, then $\operatorname{fix}(f) \in S$.

Reasoning on fixed points: Scott induction

Let D be a domain, $f: D \rightarrow D$ be a continuous function and $S \subseteq D$ be a subset of D. If the set S
(i) contains \perp,
(ii) is stable under f, i.e. $f(S) \subseteq S$,
(iii) is chain-closed, i.e. the lub of any chain of elements of S is also in S, then $\operatorname{fix}(f) \in S$.

$$
\Phi(\perp) \quad \Phi(x) \Rightarrow \Phi(f(x)) \quad\left(\forall i \in \mathbb{N} . \Phi\left(x_{i}\right)\right) \Rightarrow \Phi\left(\bigsqcup_{i \in \mathbb{N}} x_{i}\right)
$$

SCOTTIND $\quad \Phi(\mathrm{fix}(f))$

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:
$\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow \stackrel{\text { def }}{=}\{x \in D \mid x \sqsubseteq d\} \quad$ and $\quad\{(x, y) \in D \times D \mid x=y\}$

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

$$
\begin{gathered}
\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow \stackrel{\text { def }}{=}\{x \in D \mid x \sqsubseteq d\} \quad \text { and } \quad\{(x, y) \in D \times D \mid x=y\} \\
f^{-1} S=\{x \in D \mid f(x) \in S\} \quad \text { if } S \subseteq E \text { is chain-closed, and } f: D \rightarrow E \text { is continuous }
\end{gathered}
$$

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

$$
\begin{gathered}
\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow \stackrel{\text { def }}{=}\{x \in D \mid x \sqsubseteq d\} \quad \text { and } \quad\{(x, y) \in D \times D \mid x=y\} \\
f^{-1} S=\{x \in D \mid f(x) \in S\} \quad \text { if } S \subseteq E \text { is chain-closed, and } f: D \rightarrow E \text { is continuous } \\
S \cup T \quad \text { and } \bigcap_{i \in I} S_{i} \quad \text { if } S, T \text { and } S_{i} \text { are }
\end{gathered}
$$

BUILDING CHAIN-CLOSED SETS

All the following are chain-closed:

$$
\begin{gathered}
\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow \stackrel{\text { def }}{=}\{x \in D \mid x \sqsubseteq d\} \quad \text { and } \quad\{(x, y) \in D \times D \mid x=y\} \\
f^{-1} S=\{x \in D \mid f(x) \in S\} \quad \text { if } S \subseteq E \text { is chain-closed, and } f: D \rightarrow E \text { is continuous } \\
S \cup T \quad \text { and } \bigcap_{i \in I} S_{i} \quad \text { if } S, T \text { and } S_{i} \text { are } \\
\forall S \stackrel{\text { def }}{=}\{y \in E \mid \forall x \in D .(x, y) \in S\} \subseteq E \quad \text { if } S \subseteq D \times E \text { is }
\end{gathered}
$$

EXAMPLE: DOWNSET

Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of the continuous $f: D \rightarrow D$. By Scott induction on $d \downarrow$, $\mathrm{fix}(f) \sqsubseteq d$.

EXAMPLE: DOWNSET

Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of the continuous $f: D \rightarrow D$. By Scott induction on $d \downarrow$, $\operatorname{fix}(f) \sqsubseteq d$.

Proof!

EXAMPLE: PARTIAL CORRECTNESS

Let w_{∞} : State $_{\perp} \rightarrow$ State $_{\perp}$ be the denotation of

$$
\text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1)
$$

Recall that $w_{\infty}=\operatorname{fix}(F)$ where

$$
\begin{aligned}
F(w)(x, y) & = \begin{cases}(x, y) & \text { if } x \leq 0 \\
w(x-1, x \cdot y) & \text { if } x>0\end{cases} \\
F(w)(\perp) & =\perp
\end{aligned}
$$

EXAMPLE: PARTIAL CORRECTNESS

Let $w_{\infty}:$ State $_{\perp} \rightarrow$ State $_{\perp}$ be the denotation of

$$
\text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1)
$$

Recall that $w_{\infty}=\operatorname{fix}(F)$ where

$$
\begin{aligned}
F(w)(x, y) & = \begin{cases}(x, y) & \text { if } x \leq 0 \\
w(x-1, x \cdot y) & \text { if } x>0\end{cases} \\
F(w)(\perp) & =\perp
\end{aligned}
$$

Claim:

$$
\forall x . \forall y \geq 0 . w_{\infty}(x, y) \Downarrow \Longrightarrow \pi_{Y}\left(w_{\infty}(x, y)\right) \geq 0
$$

EXAMPLE: PARTIAL CORRECTNESS

Let w_{∞} : State $_{\perp} \rightarrow$ State $_{\perp}$ be the denotation of

$$
\text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1)
$$

Recall that $w_{\infty}=\operatorname{fix}(F)$ where

$$
\begin{aligned}
F(w)(x, y) & = \begin{cases}(x, y) & \text { if } x \leq 0 \\
w(x-1, x \cdot y) & \text { if } x>0\end{cases} \\
F(w)(\perp) & =\perp
\end{aligned}
$$

Claim:

$$
\forall x . \forall y \geq 0 . w_{\infty}(x, y) \Downarrow \Longrightarrow \pi_{Y}\left(w_{\infty}(x, y)\right) \geq 0
$$

Proof: by Scott induction!

PCF

PCF

TERMS AND TYPES

Types:

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Syntax of PCF

Types:

$$
\tau::=\text { nat } \mid \text { bool } \mid \tau \rightarrow \tau
$$

Terms:

$$
\begin{aligned}
t::= & 0|\operatorname{succ}(t)| \operatorname{pred}(t) \mid \\
& \operatorname{true} \mid \text { false } \mid \text { zero? }(t) \mid \text { if } t \text { then } t \text { else } t \\
& x \mid \text { fun } x: \tau . t|t t| \operatorname{fix}(t)
\end{aligned}
$$

TYPING FOR PCF (I)

$\Gamma \vdash t: \tau$ The term t has type τ in context Γ

$$
\text { Zero } \frac{\Gamma \vdash 0: \text { nat }}{\Gamma \vdash 0} \quad \frac{\Gamma \vdash t: \text { nat }}{\Gamma \vdash \operatorname{succ}(t): \text { nat }} \quad \text { Pred } \frac{\Gamma \vdash t: \text { nat }}{\Gamma \vdash \operatorname{pred}(t): \text { nat }}
$$

TYPING FOR PCF (I)

$\Gamma \vdash t: \tau$ The term t has type τ in context Γ

$$
\operatorname{PRED} \frac{\Gamma \vdash t: \text { nat }}{\Gamma \vdash \operatorname{pred}(t): \text { nat }}
$$

$$
\begin{gathered}
\text { FALSE } \overline{\Gamma \vdash \mathrm{false}: \text { bool }} \\
\text { IF } \frac{\Gamma \vdash b: \text { bool }}{\Gamma \vdash \mathrm{if} b \text { then } t \text { else } t^{\prime}: \tau}
\end{gathered}
$$

$$
\text { Isz } \frac{\Gamma \vdash t: \text { nat }}{\Gamma \vdash \text { zero? }(t): \text { bool }}
$$

TYPING FOR PCF (II)

$$
\begin{gathered}
\operatorname{VAR} \frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \quad \text { FUN } \frac{\Gamma, x: \sigma \vdash t: \tau}{\Gamma \vdash \operatorname{fun} x: \sigma . t: \sigma \rightarrow \tau} \quad \text { APP } \frac{\Gamma \vdash f: \sigma \rightarrow \tau \quad \Gamma \vdash u: \sigma}{\Gamma \vdash f u: \tau} \\
\text { FIX } \frac{\Gamma \vdash f: \tau \rightarrow \tau}{\Gamma \vdash \mathrm{fix}(f): \tau}
\end{gathered}
$$

TYPING FOR PCF (II)

$$
\begin{gathered}
\operatorname{VAR} \frac{\Gamma(x)=\tau}{\Gamma \vdash x: \tau} \quad \text { Fun } \frac{\Gamma, x: \sigma \vdash t: \tau}{\Gamma \vdash \operatorname{fun} x: \sigma \cdot t: \sigma \rightarrow \tau} \quad \text { APP } \frac{\Gamma \vdash f: \sigma \rightarrow \tau \quad \Gamma \vdash u: \sigma}{\Gamma \vdash f u: \tau} \\
\operatorname{FIx} \frac{\Gamma \vdash f: \tau \rightarrow \tau}{\Gamma \vdash \mathrm{fix}(f): \tau} \\
\operatorname{PCF}_{\Gamma, \tau} \stackrel{\text { def }}{=}\{t \mid \Gamma \vdash t: \tau\} \quad \mathrm{PCF}_{\tau} \stackrel{\text { def }}{=} \mathrm{PCF}_{\cdot, \tau}
\end{gathered}
$$

PCF

Operational Semantics

PCF EVALUATION

Values:

$$
v::=\underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \text { true } \mid \text { false } \mid \text { fun } x: \tau . t
$$

PCF EVALUATION

Values:

$$
v::=\underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \text { true } \mid \text { false } \mid \text { fun } x: \tau . t
$$

$$
\mathrm{VAL} \frac{\vdash v: \tau}{v \Downarrow_{\tau} v}
$$

PCF EVALUATION

Values:

$$
v::=\underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \text { true } \mid \text { false } \mid \text { fun } x: \tau . t
$$

$$
\operatorname{VAL} \frac{\vdash v: \tau}{v \Downarrow_{\tau} v} \quad \operatorname{Succ} \frac{t \Downarrow_{\text {nat }} v}{\operatorname{succ}(t) \Downarrow_{\text {nat }} \operatorname{succ}(v)} \quad \quad \operatorname{PrED} \frac{t \Downarrow_{\text {nat }} \operatorname{succ}(v)}{\operatorname{pred}(t) \Downarrow_{\text {nat }} v}
$$

PCF EVALUATION

Values:

$$
v::=\underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \text { true } \mid \text { false } \mid \text { fun } x: \tau . t
$$

$$
\begin{gathered}
\operatorname{VAL} \frac{\vdash v: \tau}{v \Downarrow_{\tau} v} \quad \operatorname{Succ} \frac{t \Downarrow_{\text {nat }} v}{\operatorname{succ}(t) \Downarrow_{\text {nat }} \operatorname{succ}(v)} \quad \text { Pred } \frac{t \Downarrow_{\text {nat }} \operatorname{succ}(v)}{\operatorname{pred}(t) \Downarrow_{\text {nat }} v} \\
\text { ZERoZ } \frac{t \Downarrow_{\text {nat }} 0}{\operatorname{zero} ?(t) \Downarrow_{\text {bool }} \operatorname{true}} \quad \cdots \quad \text { IFT } \frac{b \Downarrow_{\text {bool }} \operatorname{true} \quad t_{1} \Downarrow_{\tau} v}{\text { if } b \text { then } t_{1} \operatorname{else} t_{2} \Downarrow_{\tau} v}
\end{gathered}
$$

PCF EVALUATION

Values:

$$
v::=\underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \text { true } \mid \text { false } \mid \text { fun } x: \tau . t
$$

$$
\begin{gathered}
\text { VALL } \frac{\vdash v: \tau}{v \Downarrow_{\tau} v} \quad \operatorname{Succ} \frac{t \Downarrow_{\text {nat }} v}{\operatorname{succ}(t) \Downarrow_{\text {nat }} \operatorname{succ}(v)} \quad \text { PRED } \frac{t \Downarrow_{\text {nat }} \operatorname{succ}(v)}{\operatorname{pred}(t) \Downarrow_{\text {nat }} v} \\
\text { ZEROZ } \frac{t \Downarrow_{\text {nat }} 0}{\text { zero? }(t) \Downarrow_{\text {bool }} \operatorname{true}} \quad \cdots \quad \text { IFT } \frac{b \Downarrow_{\text {bool }} \operatorname{true} \quad t_{1} \Downarrow_{\tau} v}{\text { if } b \text { then } t_{1} \operatorname{else~} t_{2} \Downarrow_{\tau} v} \\
\text { FUN } \frac{t \Downarrow_{\sigma \rightarrow \tau} \text { fun } x: \sigma . t^{\prime} \quad t^{\prime}[u / x] \Downarrow_{\tau} v}{t u \Downarrow_{\tau} v} \quad \operatorname{FIx} \frac{t(\text { fix }(t)) \Downarrow_{\tau} v}{\operatorname{fix}(t) \Downarrow_{\tau} v}
\end{gathered}
$$

PCF EVALUATION

Values:

$$
v::=\underbrace{0 \mid \operatorname{succ}(v)}_{\underline{n}} \mid \text { true } \mid \text { false } \mid \text { fun } x: \tau . t
$$

$$
\begin{gathered}
\text { VALL } \frac{\vdash v: \tau}{v \Downarrow_{\tau} v} \quad \operatorname{Succ} \frac{t \Downarrow_{\text {nat }} v}{\operatorname{succ}(t) \Downarrow_{\text {nat }} \operatorname{succ}(v)} \quad \text { Pred } \frac{t \Downarrow_{\text {nat }} \operatorname{succ}(v)}{\operatorname{pred}(t) \Downarrow_{\text {nat }} v} \\
\text { Zeroz } \frac{t \Downarrow_{\text {nat }} 0}{\text { zero? }(t) \Downarrow_{\text {bool }} \operatorname{true}} \quad \cdots \quad \text { IFT } \frac{b \Downarrow_{\text {bool }} \operatorname{true} \quad t_{1} \Downarrow_{\tau} v}{\text { if } b \text { then } t_{1} \operatorname{else~} t_{2} \Downarrow_{\tau} v} \\
\text { FUN } \frac{t \Downarrow_{\sigma \rightarrow \tau} \text { fun } x: \sigma . t^{\prime} \quad t^{\prime}[u / x] \Downarrow_{\tau} v}{t u \Downarrow_{\tau} v} \quad \operatorname{FIX} \frac{t(\text { fix }(t)) \Downarrow_{\tau} v}{\operatorname{fix}(t) \Downarrow_{\tau} v}
\end{gathered}
$$

Alternatively: small-step $t \rightsquigarrow_{\tau} u$, we have $t \Downarrow_{\tau} v$ iff $t \rightsquigarrow_{\tau}^{\star} u$.

EXAMPLES

$$
\begin{gathered}
\text { plus } \stackrel{\text { def }}{=} \text { fun } x \text { : nat. fix(fun(} p \text { : nat } \rightarrow \text { nat })(y: \text { nat }) . \\
\text { if zero?(y) then } x \text { else } \operatorname{succ}(p \operatorname{pred}(y))) \\
\text { plus } \underline{3} \underline{1} \Downarrow_{\text {nat }} \underline{4}
\end{gathered}
$$

EXAMPLES

$$
\begin{gathered}
\text { plus } \stackrel{\text { def }}{=} \text { fun } x: \text { nat. fix }(\text { fun }(p: \text { nat } \rightarrow \text { nat })(y: \text { nat }) \\
\text { if zero?(y) then } x \text { else } \operatorname{succ}(p \operatorname{pred}(y))) \\
\text { plus } \underline{3} \underline{1} \Downarrow_{\text {nat }} \underline{4} \\
\left.\Omega_{\tau} \stackrel{\text { def }}{=} \text { fix(fun } x: \tau . x\right) \\
\Omega_{\tau} \Uparrow_{\tau} \quad \text { (diverges) }
\end{gathered}
$$

EXAMPLES

$$
\begin{gathered}
\text { plus } \stackrel{\text { def }}{=} \text { fun } x: \text { nat. fix }(\text { fun }(p: \text { nat } \rightarrow \text { nat })(y: \text { nat }) \\
\text { if zero? }(y) \text { then } x \text { else } \operatorname{succ}(p \operatorname{pred}(y))) \\
\text { plus } \underline{3} \underline{1} \Downarrow_{\text {nat }} \underline{4} \\
\left.\Omega_{\tau} \stackrel{\text { def }}{=} \text { fix(fun } x: \tau . x\right) \\
\Omega_{\tau} \Uparrow_{\tau} \quad \text { (diverges) }
\end{gathered}
$$

> Try it out!

TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ϕ, there is a PCF term $\underline{\phi}$ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\underline{\phi} \underline{n} \Downarrow_{\text {nat }} \underline{\phi(n)}$.

TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function ϕ, there is a PCF term $\underline{\phi}$ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\underline{\phi} \underline{n} \Downarrow_{\text {nat }} \underline{\phi(n)}$.
(Later on: $\phi=\llbracket \underline{\phi}-\rrbracket$).

DETERMINISM

Evaluation in PCF is deterministic: if both $t \Downarrow_{\tau} v$ and $t \Downarrow_{\tau} v^{\prime}$ hold, then $v=v^{\prime}$.

DETERMINISM

Evaluation in PCF is deterministic: if both $t \Downarrow_{\tau} v$ and $t \Downarrow_{\tau} v^{\prime}$ hold, then $v=v^{\prime}$.

By (rule) induction on evaluation \Downarrow :

$$
\left\{(t, \tau, v) \mid t \Downarrow_{\tau} v \wedge \forall v^{\prime} .\left(t \Downarrow_{\tau} v^{\prime} \Rightarrow v=v^{\prime}\right)\right\}
$$

Intuition: there is always exactly one rule which applies.

PCF

Contextual equivalence

CONTEXTUAL EQUIVALENCE - INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.

CONTEXTUAL EQUIVALENCE - INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

Evaluation contexts

$$
\begin{aligned}
\mathcal{C}::= & -|\operatorname{succ}(\mathcal{C})| \operatorname{pred}(\mathcal{C}) \mid \operatorname{zero?(\mathcal {C})|} \\
& \text { if } \mathcal{C} \text { then } t \text { else } t \mid \text { if } t \text { then } \mathcal{C} \text { else } t \mid \text { if } t \text { then } t \text { else } \mathcal{C} \mid \\
& \text { fun } x: \tau . \mathcal{C}|\mathcal{C} t| t \mathcal{C} \mid \operatorname{fix}(\mathcal{C})
\end{aligned}
$$

Evaluation contexts

$$
\begin{aligned}
\mathcal{C}::= & -|\operatorname{succ}(\mathcal{C})| \operatorname{pred}(\mathcal{C}) \mid \operatorname{zero?(\mathcal {C})|} \\
& \text { if } \mathcal{C} \text { then } t \text { else } t \mid \operatorname{if} t \text { then } \mathcal{C} \text { else } t \mid \text { if } t \text { then } t \text { else } \mathcal{C} \mid \\
& \text { fun } x: \tau . \mathcal{C}|\mathcal{C} t| t \mathcal{C} \mid \operatorname{fix}(\mathcal{C})
\end{aligned}
$$

Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau$.

Evaluation contexts

$$
\begin{aligned}
\mathcal{C}::= & -|\operatorname{succ}(\mathcal{C})| \operatorname{pred}(\mathcal{C}) \mid \operatorname{zero?(\mathcal {C})|} \\
& \text { if } \mathcal{C} \text { then } t \text { else } t \mid \operatorname{if} t \text { then } \mathcal{C} \text { else } t \mid \text { if } t \text { then } t \text { else } \mathcal{C} \mid \\
& \text { fun } x: \tau . \mathcal{C}|\mathcal{C} t| t \mathcal{C} \mid \operatorname{fix}(\mathcal{C})
\end{aligned}
$$

Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau$.

$$
\overline{\Gamma \vdash_{\Gamma, \tau}-: \tau} \quad \frac{\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau_{1} \rightarrow \tau_{2} \quad \Gamma \vdash u: \tau_{1}}{\Gamma \vdash_{\Delta, \sigma} \mathcal{C} u: \tau_{2}}
$$

CONTEXTUAL EQUIVALENCE

Given a type τ, a typing context Γ and terms $t, t^{\prime} \in \mathrm{PCF}_{\Gamma, \tau}$, contextual equivalence, written $\Gamma \vdash t \cong_{c t x} t^{\prime}: \tau$ is defined to hold if for all evaluation contexts \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C}: \gamma$, where γ is nat or bool, and for all values $v \in \mathrm{PCF}_{\gamma}$,

$$
\mathcal{C}[t] \Downarrow_{\gamma} v \Leftrightarrow \mathcal{C}\left[t^{\prime}\right] \Downarrow_{\gamma} v .
$$

When Γ is the empty context, we simply write $t \cong \cong_{c t x} t^{\prime}: \tau$ for $\cdot \vdash t \cong{ }_{c t x} t^{\prime}: \tau$.

PCF

Introducing denotational semantics

The alms of denotational semantics

- a mapping of PCF types τ to domains $\llbracket \tau \rrbracket$;
- a mapping of closed, well-typed PCF terms $\cdot \vdash t: \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

The aims of denotational semantics

- a mapping of PCF types τ to domains $\llbracket \tau \rrbracket$;
- a mapping of closed, well-typed PCF terms $\cdot \vdash t: \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

Compositionality: $\llbracket t \rrbracket=\llbracket t^{\prime} \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket=\llbracket \mathcal{C}\left[t^{\prime}\right] \rrbracket$.
Soundness: for any type $\tau, t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket=\llbracket v \rrbracket$.
Adequacy: for $\gamma=$ bool or nat, if $t \in \mathrm{PCF}_{\gamma}$ and $\llbracket t \rrbracket=\llbracket v \rrbracket$ then $t \Downarrow_{\gamma} v$.

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show

$$
t_{1} \cong_{\operatorname{ctx}} t_{2}: \tau
$$

it suffices to establish

$$
\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show

$$
t_{1} \cong_{\operatorname{ctx}} t_{2}: \tau
$$

it suffices to establish

$$
\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

$$
\begin{aligned}
\mathcal{C}\left[t_{1}\right] \Downarrow_{\text {nat }} v & \Rightarrow \llbracket \mathcal{C}\left[t_{1}\right] \rrbracket=\llbracket v \rrbracket & & \text { (soundness) } \\
& \Rightarrow \llbracket \mathcal{C}\left[t_{2}\right] \rrbracket=\llbracket v \rrbracket & & \text { (compositionality on } \left.\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket\right) \\
& \Rightarrow \mathcal{C}\left[t_{2}\right] \Downarrow_{\text {nat }} v & & \text { (adequacy) }
\end{aligned}
$$

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show

$$
t_{1} \cong_{\operatorname{ctx}} t_{2}: \tau
$$

it suffices to establish

$$
\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

$$
\mathcal{C}\left[t_{1}\right] \Downarrow_{\text {nat }} v \Rightarrow \llbracket \mathcal{C}\left[t_{1}\right] \rrbracket=\llbracket v \rrbracket \quad \text { (soundness) }
$$

$$
\left.\Rightarrow \llbracket \mathcal{C}\left[t_{2}\right] \rrbracket=\llbracket v \rrbracket \quad \text { (compositionality on } \llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket\right)
$$

$$
\Rightarrow \mathcal{C}\left[t_{2}\right] \Downarrow_{\text {nat }} v \quad \text { (adequacy) }
$$

and symmetrically for $\mathcal{C}\left[t_{2}\right] \Downarrow_{\text {nat }} v \Rightarrow \mathcal{C}\left[t_{1}\right] \Downarrow_{\text {nat }} v$, and similarly for bool.

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show

$$
t_{1} \cong_{\operatorname{ctx}} t_{2}: \tau
$$

it suffices to establish

$$
\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show

$$
t_{1} \cong_{\operatorname{ctx}} t_{2}: \tau
$$

it suffices to establish

$$
\llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

Denotational Semantics for PCF

Denotational Semantics for PCF
 TYPES AND CONTEXTS

SEMANTICS OF TYPES

$$
\begin{array}{cl}
\llbracket \text { nat } \rrbracket \stackrel{\text { def }}{=} \mathbb{N}_{\perp} & \text { (flat domain) } \\
\llbracket \text { bool } \stackrel{\text { def }}{=} \mathbb{B}_{\perp} & \text { (flat domain) } \\
\llbracket \tau \rightarrow \tau^{\prime} \rrbracket \stackrel{\text { def }}{=} \llbracket \tau \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket & \text { (function domain) }
\end{array}
$$

SEmantics of contexts

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad \text { (} \Gamma \text {-environments) }
$$

SEmantics of contexts

$$
\llbracket \Gamma \rrbracket \stackrel{\text { def }}{=} \prod_{x \in \operatorname{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \quad \text { (} \Gamma \text {-environments) }
$$

$\cdot \llbracket \cdot \rrbracket=\mathbb{1}$ (one element set)

- $\llbracket x: \tau \rrbracket=(\{x\} \rightarrow \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$
$\cdot \llbracket x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \rrbracket=\llbracket \tau_{1} \rrbracket \times \cdots \times \llbracket \tau_{n} \rrbracket$

Denotational Semantics for PCF

TERMS

Denotational semantics of PCF

To every typing judgement

$$
\Gamma \vdash t: \tau
$$

we associate a continuous function

$$
\llbracket \Gamma \vdash t: \tau \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

between domains. In other words,

$$
\llbracket-\rrbracket: \mathrm{PCF}_{\Gamma, \tau} \rightarrow \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

Denotation of operations on \mathbb{B} and \mathbb{N}

$$
\begin{aligned}
& \text { succ: } \mathbb{N} \rightarrow \mathbb{N} \\
& n \mapsto n+1 \\
& \text { pred: } \quad \mathbb{N} \rightarrow \mathbb{N} \\
& 0 \mapsto \text { undefined } \\
& n+1 \mapsto n \\
& \text { zero?: } \quad \mathbb{N} \rightarrow \mathbb{B} \\
& 0 \mapsto \text { true } \\
& n+1 \mapsto \text { false }
\end{aligned}
$$

Denotation of operations on \mathbb{B} and \mathbb{N}

$$
\begin{aligned}
& \operatorname{succ}_{\perp}: \mathbb{N}_{\perp} \rightarrow \mathbb{N}_{\perp} \\
& n \mapsto n+1 \\
& \operatorname{pred}_{\perp}: \quad \begin{array}{rll}
\mathbb{N}_{\perp} & \rightarrow & \mathbb{N}_{\perp} \\
0 & \mapsto & \perp \\
n+1 & \mapsto & n \\
\perp & \mapsto & \perp
\end{array} \\
& \text { zero } ?_{\perp}: \quad \mathbb{N}_{\perp} \rightarrow \mathbb{B}_{\perp} \\
& 0 \mapsto \text { true } \\
& n+1 \mapsto \text { false } \\
& \perp \mapsto \perp
\end{aligned}
$$

Denotation of operations on \mathbb{B} and \mathbb{N}

$$
\begin{aligned}
\llbracket 0 \rrbracket(\rho) \stackrel{\text { def }}{=} 0 & \in \mathbb{N}_{\perp} \\
\llbracket \operatorname{true} \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } & \in \mathbb{B}_{\perp} \\
\llbracket \text { false } \rrbracket(\rho) & \stackrel{\text { def }}{=} \text { false }
\end{aligned}
$$

Denotation of operations on \mathbb{B} and \mathbb{N}

$$
\begin{array}{cc}
\llbracket 0 \rrbracket(\rho) \stackrel{\text { def }}{=} 0 & \in \mathbb{N}_{\perp} \\
\llbracket \operatorname{true} \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } & \in \mathbb{B}_{\perp} \\
\llbracket \text { false } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } & \in \mathbb{B}_{\perp} \\
\llbracket \operatorname{succ}(t) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{succ}_{\perp}(\llbracket t \rrbracket(\rho)) & \in \mathbb{N}_{\perp} \\
\llbracket \operatorname{pred}(t) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{pred}_{\perp}(\llbracket t \rrbracket(\rho)) & \in \mathbb{N}_{\perp} \\
\llbracket \operatorname{zero?(t)\rrbracket (\rho)} \stackrel{\text { def }}{=} \operatorname{zero}_{\perp}(\llbracket t \rrbracket(\rho)) & \in \mathbb{B}_{\perp} \\
& \\
\llbracket \operatorname{succ}(t) \rrbracket=\operatorname{succ}_{\perp} \circ \llbracket t \rrbracket &
\end{array}
$$

Denotation of operations on \mathbb{B} and \mathbb{N}

$$
\begin{array}{cc}
\llbracket 0 \rrbracket(\rho) \stackrel{\text { def }}{=} 0 & \in \mathbb{N}_{\perp} \\
\llbracket \operatorname{true} \rrbracket(\rho) \stackrel{\text { def }}{=} \text { true } & \in \mathbb{B}_{\perp} \\
\llbracket \text { false } \rrbracket(\rho) \stackrel{\text { def }}{=} \text { false } & \in \mathbb{B}_{\perp} \\
\llbracket \operatorname{succ}(t) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{succ}_{\perp}(\llbracket t \rrbracket(\rho)) & \in \mathbb{N}_{\perp} \\
\llbracket \operatorname{pred}(t) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{pred}_{\perp}(\llbracket t \rrbracket(\rho)) & \in \mathbb{N}_{\perp} \\
\llbracket \text { zero? }(t) \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{zero?~}_{\perp}(\llbracket t \rrbracket(\rho)) & \in \mathbb{B}_{\perp} \\
\llbracket \text { if } b \text { then } t \text { else } t^{\prime} \rrbracket \stackrel{\text { def }}{=} \operatorname{if}\left(\llbracket b \rrbracket(\rho), \llbracket t \rrbracket(\rho), \llbracket t^{\prime} \rrbracket(\rho)\right) & \in \llbracket \tau \rrbracket \\
\llbracket \text { if } b \text { then } t \text { else } t^{\prime} \rrbracket=\text { if } \circ\left\langle\llbracket b \rrbracket,\left\langle\llbracket t \rrbracket, \llbracket t^{\prime} \rrbracket\right\rangle\right\rangle &
\end{array}
$$

Denotation of the $\boldsymbol{\lambda}$-CALCULUS OPERATIONS

$$
\llbracket x \rrbracket(\rho) \stackrel{\text { def }}{=} \rho(x) \quad \in \llbracket \Gamma(x) \rrbracket
$$

$$
\llbracket x \rrbracket(\rho)=\pi_{x}(\rho)
$$

Denotation of the $\boldsymbol{\lambda}$-CALCULUS OPERATIONS

$$
\begin{gathered}
\llbracket x \rrbracket(\rho) \stackrel{\text { def }}{=} \rho(x) \\
\llbracket t_{1} t_{2} \rrbracket(\rho) \stackrel{\text { def }}{=}\left(\llbracket t_{1} \rrbracket(\rho)\right)\left(\llbracket t_{2} \rrbracket(\rho)\right) \\
\llbracket t_{1} t_{2} \rrbracket=\operatorname{eval} \circ\left\langle\llbracket t_{1} \rrbracket, \llbracket t_{2} \rrbracket\right\rangle
\end{gathered}
$$

Denotation of the $\boldsymbol{\lambda}$-CALCULUS OPERATIONS

$$
\begin{aligned}
\llbracket x \rrbracket(\rho) & \stackrel{\text { def }}{=} \rho(x) \\
\llbracket t_{1} t_{2} \rrbracket(\rho) & \stackrel{\text { def }}{=}\left(\llbracket t_{1} \rrbracket(\rho)\right)\left(\llbracket t_{2} \rrbracket(\rho)\right) \\
\llbracket \text { fun } x: \tau . t \rrbracket(\rho) & \stackrel{\text { def }}{=} \lambda d \in \llbracket \tau \rrbracket . \llbracket t \rrbracket(\rho, d)
\end{aligned}
$$

\llbracket fun $x: \tau . t \rrbracket=\operatorname{cur}(\llbracket t \rrbracket)$
$\llbracket f i x f \rrbracket(\rho) \stackrel{\text { def }}{=} \operatorname{fix}(\llbracket f \rrbracket(\rho))$

Denotation of PCF terms

For any PCF term t such that $\Gamma \vdash t: \tau$, the object $\llbracket t \rrbracket$
is well-defined and a continuous function $\llbracket t \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \tau$.

Denotation of PCF terms

For any PCF term t such that $\Gamma \vdash t: \tau$, the object $\llbracket t \rrbracket$ is well-defined and a continuous function $\llbracket t \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \tau$.

If $t \in \mathrm{PCF}_{\tau}: \quad \llbracket t \rrbracket \in \llbracket \cdot \rrbracket \rightarrow \llbracket \tau \rrbracket=\mathbb{1} \rightarrow \llbracket \tau \rrbracket \cong \llbracket \tau \rrbracket$

Denotational Semantics for PCF Compositionality

COMPOSITIONALITY

Suppose $t, u \in \mathrm{PCF}_{\Gamma, \tau}$, such that

$$
\llbracket t \rrbracket=\llbracket u \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

Suppose moreover that $\mathcal{C}[-]$ is a PCF context such that $\Gamma^{\prime} \vdash_{\Gamma, \tau} \mathcal{C}: \tau^{\prime}$. Then

$$
\llbracket \mathbb{C}[t] \rrbracket=\llbracket \subset[u] \rrbracket: \llbracket \Gamma^{\prime} \rrbracket \rightarrow \llbracket \tau^{\prime} \rrbracket .
$$

A denotation for evaluation contexts

If $\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

$$
\llbracket \mathcal{C} \rrbracket:(\llbracket \Delta \rrbracket \rightarrow \llbracket \sigma \rrbracket) \rightarrow \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

A denotation for evaluation contexts

If $\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

$$
\begin{aligned}
\llbracket \mathcal{C} \rrbracket:(\llbracket \Delta \rrbracket & \rightarrow \llbracket \sigma \rrbracket) \rightarrow \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket \\
\llbracket-\rrbracket(d) & =d \\
\llbracket \mathcal{C} t \rrbracket(d)(\rho) & =(\llbracket \mathcal{C} \rrbracket(d)(\rho))(\llbracket t \rrbracket(\rho))
\end{aligned}
$$

A denotation for evaluation contexts

If $\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

$$
\begin{aligned}
\llbracket C \rrbracket:(\llbracket \Delta \rrbracket & \rightarrow \llbracket \sigma \rrbracket) \rightarrow \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket \\
\llbracket-\rrbracket(d) & =d \\
\llbracket \mathcal{C} t \rrbracket(d)(\rho) & =(\llbracket C \rrbracket(d)(\rho))(\llbracket t \rrbracket(\rho))
\end{aligned}
$$

If $\Gamma \vdash_{\Delta, \sigma} \mathcal{C}: \tau$ and $\Delta \vdash t: \sigma$, then

$$
\llbracket \mathcal{C}[t] \rrbracket=\llbracket \mathcal{C} \rrbracket([\llbracket \rrbracket)
$$

SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

$$
\begin{gathered}
\Gamma \vdash u: \sigma \\
\Gamma, x: \sigma \vdash t: \tau
\end{gathered}
$$

Then for all $\rho \in \llbracket \Gamma \rrbracket$

$$
\llbracket t[u / x \rrbracket \rrbracket(\rho)=\llbracket t \rrbracket(\rho[x \mapsto \llbracket u \rrbracket(\rho) \rrbracket)
$$

In particular when $\Gamma=\cdot, \llbracket t \rrbracket: \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket$ and

$$
\llbracket t[u / x \rrbracket \rrbracket=\llbracket t \rrbracket(\llbracket u \rrbracket)
$$

Denotational Semantics for PCF

Soundness

Soundness

For all PCF types τ and all closed terms $t, v \in \mathrm{PCF}_{\tau}$ with v a value, if $t \Downarrow_{\tau} v$ is derivable, then

$$
\llbracket t \rrbracket=\llbracket v \rrbracket \in \llbracket \tau \rrbracket
$$

Relating Denotational and Operational Semantics

REMINDER: ADEQUACY

For any closed PCF term t and value v of ground type $\gamma \in\{$ nat, bool $\}$

$$
\llbracket t \rrbracket=\llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v
$$

Reminder: Adequacy

For any closed PCF term t and value v of ground type $\gamma \in\{$ nat, bool $\}$

$$
\llbracket t \rrbracket=\llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v
$$

Adequacy does not hold at function types or for open terms

REMINDER: ADEQUACY

For any closed PCF term t and value v of ground type $\gamma \in\{$ nat, bool $\}$

$$
\llbracket t \rrbracket=\llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v
$$

Adequacy does not hold at function types or for open terms

$$
\llbracket \text { fun } x: \tau \text {. (fun } y: \tau . y) x \rrbracket=\llbracket \text { fun } x: \tau . x \rrbracket: \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket
$$

but

$$
\text { fun } x: \tau \text {. (fun } y: \tau . y) x \psi_{\tau \rightarrow \tau} \text { fun } x: \tau . x
$$

Relating Denotational and Operational Semantics

FORMAL APPROXIMATION RELATION

How TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$;

How TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\text {nat }}, \llbracket t \rrbracket=\llbracket v \rrbracket$, and v is a value.

How TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\text {nat }}, \llbracket t \rrbracket=\llbracket v \rrbracket$, and v is a value.
Thus $v=\underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket=n$.

How TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\text {nat }}, \llbracket t \rrbracket=\llbracket v \rrbracket$, and v is a value.
Thus $v=\underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket=n$.

$$
\begin{aligned}
\llbracket t \rrbracket & =\llbracket \underline{n} \rrbracket=n \\
& \Rightarrow R(n, t) \\
& \Rightarrow t \Downarrow \underline{n}=v
\end{aligned}
$$

How TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$;

But at non-base types, adequacy does not hold.

How TO PROVE ADEQUACY

Proof idea: introduce a relation R such that

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$;

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

$$
\triangleleft_{\tau} \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_{\tau}
$$

FORMAL APPROXIMATION AT BASE TYPES

$$
\begin{aligned}
d \triangleleft_{\text {nat }} t \stackrel{\text { def }}{\Leftrightarrow} & \left(d \in \mathbb{N} \Rightarrow t \Downarrow_{\text {nat }} \underline{d}\right) \\
d \triangleleft_{\text {bool }} t \stackrel{\text { def }}{\Leftrightarrow} & \left(d=\text { true } \Rightarrow t \Downarrow_{\text {bool }} \text { true }\right) \\
& \wedge\left(d=\text { false } \Rightarrow t \Downarrow_{\text {bool }} \text { false }\right)
\end{aligned}
$$

FORMAL APPROXIMATION AT BASE TYPES

$$
\begin{aligned}
d \triangleleft_{\text {nat }} t \stackrel{\text { def }}{\Leftrightarrow} & \left(d \in \mathbb{N} \Rightarrow t \Downarrow_{\text {nat }} \underline{d}\right) \\
d \triangleleft_{\text {bool }} t \stackrel{\text { def }}{\Leftrightarrow} & \left(d=\text { true } \Rightarrow t \Downarrow_{\text {bool }} \text { true }\right) \\
& \wedge\left(d=\text { false } \Rightarrow t \Downarrow_{\text {bool }} \text { false }\right)
\end{aligned}
$$

Exactly what we need to get 1.

FORMAL APPROXIMATION AT BASE TYPES

$$
\begin{aligned}
d \triangleleft_{\text {nat }} t \stackrel{\text { def }}{\Leftrightarrow} & \left(d \in \mathbb{N} \Rightarrow t \Downarrow_{\text {nat }} \underline{d}\right) \\
d \triangleleft_{\text {bool }} t \stackrel{\text { def }}{\Leftrightarrow} & \left(d=\text { true } \Rightarrow t \Downarrow_{\text {bool }} \text { true }\right) \\
& \wedge\left(d=\text { false } \Rightarrow t \Downarrow_{\text {bool }} \text { false }\right)
\end{aligned}
$$

Exactly what we need to get 1.

Note though that $\perp \triangleleft_{\text {nat }} t$ for any $t \in \mathrm{PCF}_{\text {nat }}$.

FORMAL APPROXIMATION AT FUNCTION TYPES

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.

FORMAL APPROXIMATION AT FUNCTION TYPES

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
2.1 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

FORMAL APPROXIMATION AT FUNCTION TYPES

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
2.1 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

$$
\text { APP } \frac{\vdash t: \tau \rightarrow \tau^{\prime} \quad \vdash u: \tau}{\vdash t u: \tau^{\prime}}
$$

FORMAL APPROXIMATION AT FUNCTION TYPES

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
2.1 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

$$
\text { APP } \frac{\vdash t: \tau \rightarrow \tau^{\prime} \quad \vdash u: \tau}{\vdash t u: \tau^{\prime}}
$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \rightarrow \tau^{\prime}} t$, how do we get $\llbracket t u \rrbracket=\llbracket t \rrbracket(\llbracket u \rrbracket) \triangleleft_{\tau} t u$?

FORMAL APPROXIMATION AT FUNCTION TYPES

1. if $t \in \mathrm{PCF}_{\text {nat }}, n \in \mathbb{N}$, and $R(n, t)$, then $t \Downarrow_{\gamma} \underline{n}$ (same for booleans);
2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
2.1 By induction on (the typing derivation of) t;
2.2 we need to interpret each typing rule.

$$
\text { APP } \frac{\vdash t: \tau \rightarrow \tau^{\prime} \quad \vdash u: \tau}{\vdash t u: \tau^{\prime}}
$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \rightarrow \tau^{\prime}} t$, how do we get $\llbracket t u \rrbracket=\llbracket t \rrbracket(\llbracket u \rrbracket) \triangleleft_{\tau} t u$?
Define

$$
d \triangleleft_{\tau \rightarrow \tau^{\prime}} t \stackrel{\text { def }}{\Leftrightarrow} \forall e \in \llbracket \tau \rrbracket, u \in \mathrm{PCF}_{\tau} .\left(e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau^{\prime}} t u\right)
$$

FORMAL APPROXIMATION FOR OPEN TERMS

$$
\text { ABS } \frac{\Gamma, x: \tau \vdash t: \tau^{\prime}}{\Gamma \vdash \operatorname{fun} x: \tau . t: \tau \rightarrow \tau^{\prime}}
$$

To prove Item 2, we need to talk about open terms.

FORMAL APPROXIMATION FOR OPEN TERMS

$$
\text { ABS } \frac{\Gamma, x: \tau \vdash t: \tau^{\prime}}{\Gamma \vdash \operatorname{fun} x: \tau . t: \tau \rightarrow \tau^{\prime}}
$$

To prove Item 2, we need to talk about open terms.

$$
\llbracket t \rrbracket(\llbracket u \rrbracket)=\llbracket(t[u / x]) \rrbracket \quad \text { Semantic application } \approx \text { syntactic substitution }
$$

FORMAL APPROXIMATION FOR OPEN TERMS

$$
\text { ABS } \frac{\Gamma, x: \tau \vdash t: \tau^{\prime}}{\Gamma \vdash \operatorname{fun} x: \tau . t: \tau \rightarrow \tau^{\prime}}
$$

To prove Item 2, we need to talk about open terms.

$$
\llbracket t \rrbracket(\llbracket u \rrbracket)=\llbracket(t[u / x]) \rrbracket \quad \text { Semantic application } \approx \text { syntactic substitution }
$$

Fundamental property of formal approximation

Given a term t such that $\Gamma \vdash t: \tau$ for some Γ and τ, for any environment ρ and substitution σ such that $\rho \triangleleft_{\Gamma} \sigma$, we have $\llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma]$.

FORMAL APPROXIMATION FOR OPEN TERMS

$$
\text { ABS } \frac{\Gamma, x: \tau \vdash t: \tau^{\prime}}{\Gamma \vdash \operatorname{fun} x: \tau . t: \tau \rightarrow \tau^{\prime}}
$$

To prove Item 2, we need to talk about open terms.

$$
\llbracket t \rrbracket(\llbracket u \rrbracket)=\llbracket(t[u / x]) \rrbracket \quad \text { Semantic application } \approx \text { syntactic substitution }
$$

Fundamental property of formal approximation

Given a term t such that $\Gamma \vdash t: \tau$ for some Γ and τ, for any environment ρ and substitution σ such that $\rho \triangleleft_{\Gamma} \sigma$, we have $\llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma]$.

Parallel substitution: maps each $x \in \operatorname{dom}(\Gamma)$ to $\sigma(x) \in \mathrm{PCF}_{\Gamma(x)}$.

Relating Denotational and Operational Semantics

PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION

PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in \mathrm{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;
2. the set $\left\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} t\right\}$ is chain-closed;

PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in \mathrm{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;
2. the set $\left\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} t\right\}$ is chain-closed;
3. if $\forall v$. $t \Downarrow_{\tau} v \Rightarrow t^{\prime} \Downarrow_{\tau} v$, and $d \triangleleft_{\tau} t$, then $d \triangleleft_{\tau} t^{\prime}$.

Relating Denotational and Operational Semantics

EXTENSIONALITY

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text {ctx }} t^{\prime}: \tau$ if for all \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C}: \gamma$ and for all values v,

$$
\mathcal{C}[t] \Downarrow_{\gamma} v \Rightarrow \mathcal{C}\left[t^{\prime}\right] \Downarrow_{\gamma} v
$$

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text {ctx }} t^{\prime}: \tau$ if for all \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C}: \gamma$ and for all values v,

$$
\mathcal{C}[t] \Downarrow_{\gamma} v \Rightarrow \mathcal{C}\left[t^{\prime}\right] \Downarrow_{\gamma} v
$$

$$
\Gamma \vdash t \cong_{\operatorname{ctx}} t^{\prime}: \tau \Leftrightarrow\left(\Gamma \vdash t \leq_{\mathrm{ctx}} t^{\prime}: \tau \wedge \Gamma \vdash t^{\prime} \leq_{\mathrm{ctx}} t: \tau\right)
$$

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text {ctx }} t^{\prime}: \tau$ if for all \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C}: \gamma$ and for all values v,

$$
\mathcal{C}[t] \Downarrow_{\gamma} v \Rightarrow \mathcal{C}\left[t^{\prime}\right] \Downarrow_{\gamma} v
$$

$$
\Gamma \vdash t \cong_{\mathrm{ctx}} t^{\prime}: \tau \Leftrightarrow\left(\Gamma \vdash t \leq_{\mathrm{ctx}} t^{\prime}: \tau \wedge \Gamma \vdash t^{\prime} \leq_{\mathrm{ctx}} t: \tau\right)
$$

It corresponds to formal approximation: for all PCF types τ and closed terms $t_{1}, t_{2} \in \mathrm{PCF}_{\tau}$

$$
t_{1} \leq_{\mathrm{ctx}} t_{2}: \tau \Leftrightarrow \llbracket t_{1} \rrbracket \triangleleft_{\tau} t_{2}
$$

LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let t_{1}, t_{2} be closed terms of type τ. Then $t_{1} \leq_{c t x} t_{2}: \tau$ if and only if, for every term $f: \tau \rightarrow$ bool,

$$
f t_{1} \Downarrow_{\text {bool }} \text { true } \Rightarrow f t_{2} \Downarrow_{\text {bool }} \text { true. }
$$

EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For $\gamma=$ bool or nat, $t_{1} \leq_{\text {ctx }} t_{2}: \tau$ holds if and only if

$$
\forall v .\left(t_{1} \Downarrow_{\gamma} v \Rightarrow t_{2} \Downarrow_{\gamma} v\right)
$$

EXtENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For $\gamma=$ bool or nat, $t_{1} \leq_{\text {ctx }} t_{2}: \tau$ holds if and only if

$$
\forall v .\left(t_{1} \Downarrow_{\gamma} v \Rightarrow t_{2} \Downarrow_{\gamma} v\right)
$$

At a function type $\tau \rightarrow \tau^{\prime}, t_{1} \leq_{\text {ctx }} t_{2}: \tau \rightarrow \tau^{\prime}$ holds if and only if

$$
\forall t \in \mathrm{PCF}_{\tau} .\left(t_{1} t \leq_{\mathrm{ctx}} t_{2} t: \tau^{\prime}\right)
$$

Full abstraction

Full abstraction
FAILURE OF FULL ABSTRACTION

FULL ABSTRACTION

A denotational model is fully abstract if

$$
t_{1} \cong_{\mathrm{ctx}} t_{2}: \tau \Rightarrow \llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

FULL ABSTRACTION

A denotational model is fully abstract if

$$
t_{1} \cong_{\mathrm{ctx}} t_{2}: \tau \Rightarrow \llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

A form of completeness of semantic equivalence wrt. program equivalence.

FULL ABSTRACTION

A denotational model is fully abstract if

$$
t_{1} \cong_{\mathrm{ctx}} t_{2}: \tau \Rightarrow \llbracket t_{1} \rrbracket=\llbracket t_{2} \rrbracket \in \llbracket \tau \rrbracket
$$

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

Parallel or

The parallel or function por : $\mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}$ is defined as given by the following table:

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

LeFt SEQUENTIAL OR

The (left) sequential or function or : $\mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}$ is defined as

$$
\text { or } \stackrel{\text { def }}{=} \llbracket \text { fun } x \text { : bool. fun } y \text { : bool. if } x \text { then true else } y \rrbracket
$$

It is given by the following table:

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

Parallel vs sequential or

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

Parallel vs sequential or

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

or is sequential, but por is not.

Undefinability or parallel or

There is no closed PCF term

$$
t: \text { bool } \rightarrow \text { bool } \rightarrow \text { bool }
$$

satisfying

$$
\llbracket t \rrbracket=\text { por }: \mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp} \rightarrow \mathbb{B}_{\perp}
$$

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.
For well-chosen $T_{\text {true }}$ and $T_{\text {false }}$,

$$
\begin{gathered}
T_{\text {true }} \cong_{\text {ctx }} T_{\text {false }}:(\text { bool } \rightarrow \text { bool } \rightarrow \text { bool }) \rightarrow \text { bool } \\
\llbracket T_{\text {true }} \rrbracket \neq \llbracket T_{\text {false }} \rrbracket \in(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}
\end{gathered}
$$

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.
For well-chosen $T_{\text {true }}$ and $T_{\text {false }}$,

$$
\begin{gathered}
T_{\text {true }} \cong_{\text {ctx }} T_{\text {false }}:(\text { bool } \rightarrow \text { bool } \rightarrow \text { bool }) \rightarrow \text { bool } \\
\llbracket T_{\text {true }} \rrbracket \neq \llbracket T_{\text {false }} \rrbracket \in(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}
\end{gathered}
$$

Idea:

- for all $f \in P C F_{\text {bool } \rightarrow \text { bool } \rightarrow \text { bool }}$, ensure $T_{b} f \Uparrow_{\text {bool }} \ldots$
- but $\llbracket T_{b} \rrbracket$ (por) $=\llbracket b \rrbracket$.

EXAMPLE OF FULL ABSTRACTION FAILURE

$$
\begin{aligned}
& T_{b} \stackrel{\text { def }}{=} \text { fun } f: \text { bool } \rightarrow(\text { bool } \rightarrow \text { bool }) \\
& \text { if }\left(f \text { true } \Omega_{\text {bool }}\right) \text { then } \\
& \text { if }\left(f \Omega_{\text {bool }} \text { true }\right) \text { then } \\
& \text { if }(f \text { false false }) \text { then } \Omega_{\text {bool }} \text { else } b \\
& \text { else } \Omega_{\text {bool }} \\
& \text { else } \Omega_{\text {bool }}
\end{aligned}
$$

Full abstraction

Beyond full abstraction failure

INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?
- Contexts are too weak: they do not distinguish enough programs?

PCF+por

$$
\begin{array}{ll}
\Gamma \vdash t: \tau \\
& \ldots \\
& \\
& \\
& \text { POR } \frac{\Gamma \vdash t_{1}: \tau \quad \Gamma \vdash t_{2}: \tau}{\Gamma \vdash \operatorname{por}\left(t_{1}, t_{2}\right): \tau}
\end{array}
$$

$$
t \Downarrow_{\tau} v
$$

$$
\begin{array}{cc}
\text { PORL } \frac{t_{1} \Downarrow_{\text {bool }} \text { true }}{\operatorname{por}\left(t_{1}, t_{2}\right) \Downarrow_{\text {bool }} \operatorname{true}} & \text { PoRR } \frac{t_{2} \Downarrow_{\text {bool }} \text { true }}{\operatorname{por}\left(t_{1}, t_{2}\right) \Downarrow_{\text {bool }} \text { true }} \\
\operatorname{PORF} \frac{t_{1} \Downarrow_{\text {bool }} \text { false } \quad t_{2} \Downarrow_{\text {bool }} \text { false }}{\operatorname{por}\left(t_{1}, t_{2}\right) \Downarrow_{\text {bool }} \text { false }}
\end{array}
$$

FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

$$
\llbracket \mathrm{por} \rrbracket=\text { por }
$$

the resulting denotational semantics is fully abstract.

Full abstraction for PCF+por

If we extend the semantics of PCF to PCF+por with

$$
\llbracket \mathrm{por} \rrbracket=\text { por }
$$

the resulting denotational semantics is fully abstract...
but is PCF+por still a reasonable model of programming language?

Fully abstract semantics

Fully abstract semantics for PCF

- first step: dl-domains \& stable functions \rightarrow no por any more, but still not fully abstract...
- only proper answers in the late 90s (!): logical relations and game semantics

Fully abstract semantics

Fully abstract semantics for PCF

- first step: dl-domains \& stable functions \rightarrow no por any more, but still not fully abstract...
- only proper answers in the late 90 (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become much more expressive.
- Full abstraction becomes different: somewhat easier... but is contextual equivalence still a reasonable idea?

Where to go from here?

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic
- logical relations
- game semantics
- bisimulations techniques
- ...

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- a type τ as an object in a category;
- a term $\Gamma \vdash t: \tau$ as a morphism/arrow $\llbracket t \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$.

CATEGORICAL SEMANTICS

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- a type τ as an object in a category;
- a term $\Gamma \vdash t: \tau$ as a morphism/arrow $\llbracket t \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$.

Example: λ-calculus \rightarrow cartesian closed categories

DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

It is a fixed point equation! We can use domain theory to solve it.

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad T (example: $\left.T(A) \stackrel{\text { def }}{=}(A \times \text { State })^{\text {State }}\right)$

BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad T (example: $\left.T(A) \stackrel{\text { def }}{=}(A \times \text { State })^{\text {State }}\right)$

Denotation of a computation: $\llbracket \Gamma \rrbracket \rightarrow T(\llbracket \tau \rrbracket)$

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between different approaches.

