DENOTATIONAL SEMANTICS

Meven Lennon-Bertrand Lectures for Part II CST 2023/2024

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.

INTRODUCTION

• Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- **Programming language theory**: how to design, implement and reason about programming languages?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- **Programming language theory**: how to design, implement and reason about programming languages?
- **Programming language semantics**: what is the (mathematical) meaning of a program?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

• Insight: exposes the mathematical "essence" of programming language concepts.

- Insight: exposes the mathematical "essence" of programming language concepts.
- Language design: feedback from semantic concepts (monads, algebraic effects & effect handlers...).

- Insight: exposes the mathematical "essence" of programming language concepts.
- Language design: feedback from semantic concepts (monads, algebraic effects & effect handlers...).
- **Rigour**: semantics is necessary to specify/justify formal methods (compilers, type systems, code analysis, certification...).

- \cdot Operational
- \cdot Axiomatic
- Denotational

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- \cdot Axiomatic
- Denotational

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- Axiomatic: indirect meaning of a program in terms of a *program logic* to reason about its properties (see Part II Hoare Logic & Model Checking).
- Denotational

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- Axiomatic: indirect meaning of a program in terms of a *program logic* to reason about its properties (see Part II Hoare Logic & Model Checking).
- **Denotational**: meaning of a program defined abstractly as object of some suitable *mathematical structure* (see this course).

Syntax
$$\xrightarrow{\llbracket-\rrbracket}$$
 Semantics
Program $P \mapsto$ Denotation $\llbracket P \rrbracket$

. . .

- Recursive program \mapsto Partial recursive function

 - Boolean circuit \mapsto Boolean function

Syntax
$$\xrightarrow{\llbracket - \rrbracket}$$
 Semantics
Program $P \mapsto$ Denotation $\llbracket P \rrbracket$

- Recursive program \mapsto Partial recursive function
 - Boolean circuit \mapsto Boolean function
- - . . .
 - → Domain Туре

Program → Continuous functions between domains

Abstraction

- mathematical object, implementation/machine independent;
- · captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Abstraction

- mathematical object, implementation/machine independent;
- · captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Compositionality

- The denotation of a phrase is defined using the *denotation* of its sub-phrases.
- $\llbracket P \rrbracket$ represents the contribution of P to any program containing P.
- Much more flexible than whole-program semantics.

INTRODUCTION A BASIC EXAMPLE

Commands

Arithmetic expressions

 $A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$

Commands

IMP SYNTAX

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathsf{true} \mid \mathsf{false} \mid A = A \mid \neg B \mid \dots$$

Commands

$$\mathcal{A}: \operatorname{Aexp} \to \mathbb{Z}$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

where

$$\begin{array}{ll} \mathcal{A}: & \mathbf{Aexp} \to \mathbb{Z} \\ \mathcal{B}: & \mathbf{Bexp} \to \mathbb{B} \end{array}$$

$$\mathbb{Z} = \{..., -1, 0, 1, ...\}$$

 $\mathbb{B} = \{\text{true, false}\}$

$$\mathcal{A}[\![\underline{n}]\!] = n$$
$$\mathcal{A}[\![A_1 + A_2]\!] = \mathcal{A}[\![A_1]\!] + \mathcal{A}[\![A_2]\!]$$

$$\mathcal{A}[\underline{n}] = n$$
$$\mathcal{A}[A_1 + A_2] = \mathcal{A}[A_1] + \mathcal{A}[A_2]$$
$$\mathcal{A}[L] = ???$$

DENOTATION FUNCTIONS

State =
$$(\mathbb{L} \to \mathbb{Z})$$

State =
$$(\mathbb{L} \to \mathbb{Z})$$

$$\mathcal{A} : \mathbf{Aexp} \to (\mathbf{State} \to \mathbb{Z})$$
$$\mathcal{B} : \mathbf{Bexp} \to (\mathbf{State} \to \mathbb{B})$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$
$$\mathbb{B} = \{\text{true, false}\}.$$

State =
$$(\mathbb{L} \to \mathbb{Z})$$

$$\mathcal{A} : \mathbf{Aexp} \to (\mathsf{State} \to \mathbb{Z})$$
$$\mathcal{B} : \mathbf{Bexp} \to (\mathsf{State} \to \mathbb{B})$$
$$\mathcal{C} : \mathbf{Comm} \to (\mathsf{State} \to \mathsf{State})$$

where \rightarrow denotes partial functions and

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$
$$\mathbb{B} = \{\text{true}, \text{false}\}.$$

$$\mathcal{A}[\underline{n}] = \lambda s \in \text{State. } n$$
$$\mathcal{A}[A_1 + A_2] = \lambda s \in \text{State. } \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)$$

$$\mathcal{A}[\underline{n}] = \lambda s \in \text{State. } n$$
$$\mathcal{A}[A_1 + A_2] = \lambda s \in \text{State. } \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)$$
$$\mathcal{A}[L] = \lambda s \in \text{State. } s(L)$$

$$\mathcal{B}[[\mathsf{true}]] = \lambda s \in \text{State. true}$$

$$\mathcal{B}[[\mathsf{false}]] = \lambda s \in \text{State. false}$$

$$\mathcal{B}[[A_1 = A_2]] = \lambda s \in \text{State. eq} \left(\mathcal{A}[[A_1]](s), \mathcal{A}[[A_2]](s)\right)$$
where eq(a, a') =

$$\begin{cases} \text{true} & \text{if } a = a' \\ \text{false} & \text{if } a \neq a' \end{cases}$$

 $C[skip] = \lambda s \in State. s$

 $C[skip] = \lambda s \in State. s$

 $\mathcal{C}\llbracket \text{if } B \text{ then } C \text{ else } C' \rrbracket = \lambda s \in \text{State. if } (\mathcal{C}\llbracket B \rrbracket(s), \mathcal{C}\llbracket C \rrbracket(s), \mathcal{C}\llbracket C' \rrbracket(s))$ where $\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$$\mathcal{C}[[skip]] = \lambda s \in \text{State. } s \text{ This is compositionality!}$$

$$\mathcal{C}[[if B \text{ then } C \text{ else } C']] = \lambda s \in \text{State. } if (\mathcal{C}[B]](s), \mathcal{C}[C]](s), \mathcal{C}[[C']](s))$$

$$\text{where } if(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$$

 $C[skip] = \lambda s \in State. s$

 $\mathcal{C}\llbracket \text{if } B \text{ then } C \text{ else } C' \rrbracket = \lambda s \in \text{State. if } (\mathcal{C}\llbracket B \rrbracket(s), \mathcal{C}\llbracket C \rrbracket(s), \mathcal{C}\llbracket C' \rrbracket(s))$ where $\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$$\mathcal{C}\llbracket L := A \rrbracket = \lambda s \in \text{State. } s[L \mapsto \mathcal{A}\llbracket A \rrbracket (s)]$$

where $s[L \mapsto n](L') = \begin{cases} n & \text{if } L' = L \\ s(L) & \text{otherwise} \end{cases}$

 $C[skip] = \lambda s \in State. s$

 $\mathcal{C}\llbracket \text{if } B \text{ then } C \text{ else } C' \rrbracket = \lambda s \in \text{State. if } (\mathcal{C}\llbracket B \rrbracket(s), \mathcal{C}\llbracket C \rrbracket(s), \mathcal{C}\llbracket C' \rrbracket(s))$ where $\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$$\mathcal{C}\llbracket L := A \rrbracket = \lambda s \in \text{State. } s[L \mapsto \mathcal{A}\llbracket A \rrbracket (s)]$$

where $s[L \mapsto n](L') = \begin{cases} n & \text{if } L' = L \\ s(L) & \text{otherwise} \end{cases}$

$$\mathcal{C}\llbracket C; C' \rrbracket = \mathcal{C}\llbracket C' \rrbracket \circ \mathcal{C}\llbracket C \rrbracket \\ = \lambda s \in \text{State. } \mathcal{C}\llbracket C' \rrbracket (\mathcal{C}\llbracket C \rrbracket (s))$$

INTRODUCTION A semantics for loops

This is all very nice, but...

 \llbracket while $B \text{ do } C \rrbracket = ???$

This is all very nice, but...

 $[\![\texttt{while } B \texttt{ do } C]\!] = ???$

Remember:

- \cdot (while B do C, s) \rightarrow (if B then (C; while B do C) else skip, s)
- we want a *compositional* semantic: we should give $\llbracket while B \text{ do } C \rrbracket$ in terms of $\llbracket C \rrbracket$ and $\llbracket B \rrbracket$

 $\llbracket \text{while } B \text{ do } C \rrbracket = \llbracket \text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip} \rrbracket$ $= \lambda s \in \text{State. if}(\llbracket B \rrbracket, \llbracket \text{while } B \text{ do } C \rrbracket \circ \llbracket C \rrbracket (s), s)$

 $\llbracket \text{while } B \text{ do } C \rrbracket = \llbracket \text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip} \rrbracket$ $= \lambda s \in \text{State. if}(\llbracket B \rrbracket, \llbracket \text{while } B \text{ do } C \rrbracket \circ \llbracket C \rrbracket (s), s)$

Not a direct definition for [while *B* do *C*]... But a fixed point equation!

 $\llbracket while B do C \rrbracket = F_{\llbracket B \rrbracket, \llbracket C \rrbracket}(while B do C)$

where
$$F_{b,c}$$
: (State \rightarrow State) \rightarrow (State \rightarrow State)
 $w \mapsto \lambda s \in$ State. if $(b(s), w \circ c(s), s)$.

- Why/when does $w = F_{b,c}(w)$ have a solution?
- What if it has several solutions? Which one should be our [while *B* do *C*]?

- Why/when does $w = F_{b,c}(w)$ have a solution?
- What if it has several solutions? Which one should be our [while *B* do *C*]?

Our occupation for the next few lectures...

INTRODUCTION

A TASTE OF DOMAIN THEORY

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

should be some w such that:

$$w = F_{\llbracket X > 0 \rrbracket, \llbracket Y := X \star Y; X := X - 1 \rrbracket}(w).$$

$$\llbracket \text{while } X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

should be some *w* such that:

$$w = F_{\llbracket X > 0 \rrbracket, \llbracket Y := X \star Y; X := X - 1 \rrbracket}(w).$$

That is, we are looking for a fixed point of the following $F: D \rightarrow D$, where D is (State \rightarrow State):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0\\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0. \end{cases}$$

Partial order \sqsubseteq on D (= State \rightarrow State):

 $w \sqsubseteq w'$ if for all $s \in$ State, if w is defined at s then so is w' and moreover w(s) = w'(s).

if the graph of w is included in the graph of w'.

Partial order \sqsubseteq on D (= State \rightarrow State):

- $w \sqsubseteq w'$ if for all $s \in$ State, if w is defined at sthen so is w' and moreover w(s) = w'(s).
 - if the graph of w is included in the graph of w'.

Least element $\bot \in D$:

- ⊥ = totally undefined partial function
 - = partial function with empty graph

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
$$w_1[X \mapsto x, Y \mapsto y] = F(\bot)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ \text{undefined} & \text{if } x \ge 1 \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
$$w_2[X \mapsto x, Y \mapsto y] = F(w_1)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ [X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\ \text{undefined} & \text{if } x \ge 2 \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
$$w_3[X \mapsto x, Y \mapsto y] = F(w_2)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ [X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\ [X \mapsto 0, Y \mapsto 2y] & \text{if } x = 2 \\ \text{undefined} & \text{if } x \ge 3 \end{cases}$$

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$$

D

efine
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$$

 $w_0 \sqsubseteq w_1 \sqsubseteq \ldots \sqsubseteq w_n \sqsubseteq \ldots$

D

efine
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$
$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$$

$$w_0 \sqsubseteq w_1 \sqsubseteq \ldots \sqsubseteq w_n \sqsubseteq \ldots \sqsubseteq w_\infty$$
?

Define
$$w_n = F^n(w)$$
, that is
$$\begin{cases} w_0 &= \bot \\ w_{n+1} &= F(w_n) \end{cases}$$

 $w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 \le x < n \\ \text{undefined} & \text{if } x \ge n \end{cases}$
 $w_0 \sqsubseteq w_1 \sqsubseteq ... \sqsubseteq w_n \sqsubseteq ... \sqsubseteq w_{\infty}$

$$w_{\infty}[X \mapsto x, Y \mapsto y] = \bigsqcup_{i \in \mathbb{N}} w_i = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0\\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x \ge 0 \end{cases}$$

$F(w_{\infty})[X \mapsto x, Y \mapsto y]$

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0 \\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$

(by definition of F)

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
(by definition of F)
$$= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases}$$
(by definition of w_{∞})

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0\\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
(by definition of F)
$$= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0\\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases}$$
(by definition of w_{∞})
$$= w_{\infty}[X \mapsto x, Y \mapsto y]$$

$$F(w_{\infty})[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0\\ w_{\infty}[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases}$$
(by definition of F)
$$= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0\\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases}$$
(by definition of w_{∞})
$$= w_{\infty}[X \mapsto x, Y \mapsto y]$$

- w_{∞} is a fixed point
- \cdot which moreover agrees with the operational semantics (!)

LEAST FIXED POINTS

Least Fixed Points

POSETS AND MONOTONE FUNCTIONS

A partial order on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. \ d \sqsubseteq d$ transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$ antisymmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$ A partial order on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. \ d \sqsubseteq d$ transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$ antisymmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'.$

REFL
$$\frac{x \sqsubseteq y}{x \sqsubseteq x}$$
 Trans $\frac{x \sqsubseteq y}{x \sqsubseteq z}$ $y \sqsubseteq z$ Asym $\frac{x \sqsubseteq y}{x \sqsupseteq y}$

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y;

Underlying set: partial functions f with domain of definition $dom(f) \subseteq X$ and taking values in Y; Order: $f \sqsubseteq g$ if $dom(f) \subseteq dom(g)$ and $\forall x \in dom(f)$. f(x) = g(x), *i.e.* if $graph(f) \subseteq graph(g)$.

A function $f: D \rightarrow E$ between posets is monotone if

$$\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

A function $f: D \rightarrow E$ between posets is **monotone** if

$$\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$$

$$\max \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}$$

LEAST FIXED POINTS LEAST ELEMENTS AND PRE-FIXED POINTS

An element $d \in S$ is the **least** element of S if it satisfies

 $\forall x \in S. \ d \sqsubseteq x.$

An element $d \in S$ is the **least** element of S if it satisfies

 $\forall x \in S. \ d \sqsubseteq x.$

If it exists, it is unique , and is written \perp_S , or simply \perp .

$$LEAST \frac{x \in S}{\perp_S \sqsubseteq x}$$

An element $d \in S$ is the **least** element of S if it satisfies

 $\forall x \in S. \ d \sqsubseteq x.$

If it exists, it is unique , and is written \perp_S , or simply \perp .

$$\underset{\text{LEAST}}{\text{LEAST}} \frac{x \in S}{\bot_S \sqsubseteq x} \qquad \qquad \underset{\text{ASYM}}{\text{ASYM}} \frac{\underset{L_S}{\overset{\text{LEAST}}{\bot_S}} \frac{\bot_S' \in S}{\bot_S'}}{\bot_S \sqsubseteq \bot_S'} \qquad \underset{L_S}{\text{LEAST}} \frac{\underset{L_S}{\overset{\text{LEAST}}{\bot_S'}} \frac{\bot_S \in S}{\bot_S'}}{\underset{S}{\overset{\text{LEAST}}{\bot_S'}}}$$

An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

fix(f)

An element $d \in D$ is a **pre-fixed point** of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

fix(f)

It is thus (uniquely) specified by the two properties:

f(J) = J

 $^{\text{LFP-FIX}} \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}$

The least pre-fixed point is a fixed point.

To prove $\operatorname{fix}(f) \sqsubseteq d$, it is enough to show $f(d) \sqsubseteq d$.

Application: least pre-fixed points of monotone functions are (least) fixed points.

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$ASYM \frac{\underset{\mathsf{LFP-FIX}}{\overset{\mathsf{LFP-FIX}}{\overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}}}{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)} \underset{f(\operatorname{fix}(f)) = \operatorname{fix}(f)}{\overset{\mathsf{LFP-FIX}}{\overline{f(\operatorname{fix}(f))) \sqsubseteq f(\operatorname{fix}(f))}}}{\operatorname{fix}(f) \sqsubseteq f(\operatorname{fix}(f))}$$

LEAST FIXED POINTS LEAST UPPER BOUNDS

The **least upper bound** of countable increasing chains $d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$, written $\bigsqcup_{n \ge 0} d_n$, satisfies the two following properties:

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

$$\text{LUB-MON} \frac{\forall i. \ d_i \sqsubseteq e_i}{\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n}$$

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$.

For any d, $\bigsqcup_n d = d$.

For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$.

Lubs are unique (if they exist).

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_n \sqsubseteq e_n$, then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$ (if they exist).

For any d, $\bigsqcup_n d = d$ (and in particular it exists).

For any chain and $N \in \mathbb{N}$, $\bigsqcup_n d_n = \bigsqcup_n d_{n+N}$ (if any of the two exists).

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m, n \ge 0)$ satisfies

$$m \leq m' \land n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}.$$

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m, n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \tag{(\dagger)}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \ \sqsubseteq \ \bigsqcup_{n\geq 0} d_{1,n} \ \sqsubseteq \ \bigsqcup_{n\geq 0} d_{2,n} \ \sqsubseteq \ \ldots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,1} \sqsubseteq \bigsqcup_{m\geq 0} d_{m,2} \sqsubseteq \dots$$

DIAGONALISATION

Assume $d_{m,n} \in D$ $(m, n \ge 0)$ satisfies

$$m \le m' \land n \le n' \Rightarrow d_{m,n} \sqsubseteq d_{m',n'}. \tag{(†)}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n\geq 0} d_{0,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{1,n} \sqsubseteq \bigsqcup_{n\geq 0} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m\geq 0} d_{m,0} \ \sqsubseteq \ \bigsqcup_{m\geq 0} d_{m,1} \ \sqsubseteq \ \bigsqcup_{m\geq 0} d_{m,2} \ \sqsubseteq \ \ldots$$

Moreover, again assuming they exist,

$$\bigsqcup_{m \ge 0} \left(\bigsqcup_{n \ge 0} d_{m,n} \right) = \bigsqcup_{k \ge 0} d_{k,k} = \bigsqcup_{n \ge 0} \left(\bigsqcup_{m \ge 0} d_{m,n} \right)$$

Least Fixed Points

COMPLETE PARTIAL ORDERS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_i form a chain!

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_i form a chain!

A **domain** is a cpo with a least element \perp .

Least element: \perp is the totally undefined function.

Least element: \perp is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Least element: \perp is the totally undefined function.

Lub of a chain: $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ has lub f such that

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Beware: the definition of $\bigsqcup_{n\geq 0} f_n$ is unambiguous only if the f_i form a chain!

The flat natural numbers \mathbb{N}_+

LEAST FIXED POINTS CONTINUOUS FUNCTIONS

Given two cpos D and E, a function $f: D \rightarrow E$ is **continuous** if

- \cdot it is monotone, and
- \cdot it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, we have

$$f(\bigsqcup_{n\geq 0}d_n)=\bigsqcup_{n\geq 0}f(d_n)$$

Given two cpos D and E, a function $f: D \rightarrow E$ is **continuous** if

- \cdot it is monotone, and
- \cdot it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D, we have

$$f(\bigsqcup_{n\geq 0}d_n)=\bigsqcup_{n\geq 0}f(d_n)$$

A function f is strict if $f(\perp_D) = \perp_E$.

All computable functions are continuous.

All **computable** functions are continuous.

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\bot				$\mapsto \bot$
0	0	0	0	1		$\mapsto 1$

 $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \overline{0} \qquad \qquad \mapsto 0$

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\bot				$\mapsto \bot$
0	0	0	0	1		$\mapsto 1$
0	0	0	0	0		\mapsto ?
0	0	0	0	0	$\overline{0}$	$\mapsto 0$

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\bot							$\mapsto \bot$
0	0	0	0	1					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	 $\mapsto \bot$
0	0	0	0	0	0	0	0	0	 \mapsto ?
0	0	0	0	0	$\overline{0}$				$\mapsto 0$

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\bot							$\mapsto \bot$
0	0	0	0	1					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	 $\mapsto \bot$
0	0	0	0	0	0	0	0	0	 \mapsto ?
0	0	0	0	0	$\overline{0}$				$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\bot							$\mapsto \bot$
0	0	0	0	1					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	 $\mapsto \bot$
0	0	0	0	0	0	0	0	0	 \mapsto ?
0	0	0	0	0	$\overline{0}$				$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

Later in the course: **show** the thesis... by giving a denotational semantics.

LEAST FIXED POINTS KLEENE'S FIXED POINT THEOREM

Let $f: D \to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$\operatorname{fix}(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

Let $f\colon D\to D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$\operatorname{fix}(f) = \bigsqcup_{n \ge 0} f^n(\bot).$$

It is thus also the **least fixed point** of f!

CONSTRUCTIONS ON DOMAINS

CONSTRUCTIONS ON DOMAINS

Flat domain on \boldsymbol{X}

The **flat domain** on a set X is defined by:

- its underlying set $X \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$;
- $\cdot x \sqsubseteq x'$ if either $x = \bot$ or x = x'.

Let $f: X \rightarrow Y$ be a partial function between two sets. Then

$$\begin{array}{cccc} f_{\perp}: & X_{\perp} &
ightarrow & Y_{\perp} \\ & d & \mapsto egin{cases} f(d) & ext{if } d \in X ext{ and } f ext{ is defined at } d \\ & \perp & ext{if } d \in X ext{ and } f ext{ is not defined at } d \\ & \perp & ext{if } d = \perp \end{array}$$

defines a continuous function between the corresponding flat domains.

CONSTRUCTIONS ON DOMAINS PRODUCTS OF DOMAINS

The product of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

 $D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$

and partial order \sqsubseteq defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \stackrel{ ext{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d_1' \wedge d_2 \sqsubseteq_2 d_2'$$

The product of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

 $D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$

and partial order \sqsubseteq defined by

$$(d_1,d_2) \sqsubseteq (d_1',d_2') \stackrel{ ext{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d_1' \wedge d_2 \sqsubseteq_2 d_2'$$

$$\underset{\mathsf{POX}}{\overset{} \underbrace{d_1 \sqsubseteq_1 d'_1 \quad d_2 \sqsubseteq_2 d'_2}} \underbrace{d_1 (d_1, d_2) \sqsubseteq (d'_1, d'_2)}$$

lubs of chains are computed componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}).$$

lubs of chains are computed componentwise:

$$\bigsqcup_{n \ge 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i \ge 0} d_{1,i}, \bigsqcup_{j \ge 0} d_{2,j}).$$

If (D_1,\sqsubseteq_1) and (D_2,\sqsubseteq_2) have least elements, so does $(D_1 \times D_2,\sqsubseteq)$ with

$$\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$$

lubs of chains are computed componentwise:

$$\bigsqcup_{n\geq 0} (d_{1,n}, d_{2,n}) = (\bigsqcup_{i\geq 0} d_{1,i}, \bigsqcup_{j\geq 0} d_{2,j}).$$

If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) have least elements, so does $(D_1 \times D_2, \sqsupseteq)$ with $\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$

Products of cpos (domains) are cpos (domains).

A function $f : (D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e) \forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

A function $f : (D \times E) \to F$ is monotone if and only if it is monotone in each argument separately:

$$\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e)$$

$$\forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').$$

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

$$f(\bigsqcup_{m \ge 0} d_m, e) = \bigsqcup_{m \ge 0} f(d_m, e)$$
$$f(d, \bigsqcup_{n \ge 0} e_n) = \bigsqcup_{n \ge 0} f(d, e_n).$$

$$\max \frac{f \text{ monotone } x \sqsubseteq x' \quad y \sqsubseteq y'}{f(x, y) \sqsubseteq f(x', y')}$$

$$f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right) = \bigsqcup_{m} \bigsqcup_{n} f(x_{m}, y_{n}) = \bigsqcup_{k} f(x_{k}, y_{k})$$

Let D_1 and D_2 be cpos. The projections

$$\begin{array}{rrrrr} \pi_1: & D_1 \times D_2 & \to & D_1 \\ & (d_1, d_2) & \mapsto & d_1 \end{array}$$

$$\begin{array}{rrrrr} \pi_2: & D_1 \times D_2 & \to & D_2 \\ & (d_1, d_2) & \mapsto & d_2 \end{array}$$

are continuous functions.

Let D_1 and D_2 be cpos. The projections

are continuous functions.

If $f_1: D \to D_1$ and $f_2: D \to D_2$ are continuous functions from a cpo D, then the pairing function

$$\begin{array}{cccc} \langle f_1, f_2 \rangle : & D & \to & D_1 \times D_2 \\ & d & \mapsto & (f_1(d), f_2(d)) \end{array}$$

is continuous.

The **conditional** function

$$\begin{array}{rcl} \text{if} : & \mathbb{B}_{\perp} \times (D \times D) & \to & D \\ & & (x,d) & \mapsto & \begin{cases} \pi_1(d) & \text{if } x = \text{true} \\ \pi_2(d) & \text{if } x = \text{false} \\ \perp_D & \text{if } x = \perp \end{cases}$$

is continuous.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i\in I} X_i$

Two ways to see it:

• tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i\in I} X_i$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i\in I} X_i$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ corresponds to $D_{\text{true}} \times D_{\text{false}}$.

Given a set I, suppose that for each $i \in I$ we are given a set X_i . The (cartesian) product of the X_i is

 $\prod_{i \in I} X_i$

Two ways to see it:

- tuples: $(\ldots, x_i, \ldots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i\in\mathbb{B}}D_i$ corresponds to $D_{ ext{true}} imes D_{ ext{false}}.$ Projections (for any $i\in I$):

$$\pi_i: \left(\prod_{i\in I} X_i\right) \to X_i$$

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The **product** of this whole family of cpos has

• underlying set equal to $\prod_{i \in I} D_i$;

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The **product** of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. \ p_i \sqsubseteq_i p'_i.$$

Given a set I, suppose that for each $i \in I$ we are given a cpo (D_i, \sqsubseteq_i) . The **product** of this whole family of cpos has

- underlying set equal to $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. \ p_i \sqsubseteq_i p'_i.$$

I-indexed products of cpos (domains) are cpos (domains), and projections are continuous.

CONSTRUCTIONS ON DOMAINS

Given two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

 $\{f: D \to E \mid \text{ is a continuous function}\}$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. \ f(d) \sqsubseteq_E f'(d).$$

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set $\{f : D \to E \mid \text{ is a continuous function}\}$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d).$$

$$\frac{f \sqsubseteq_{D \to E} g \qquad x \sqsubseteq_D y}{f(x) \sqsubseteq_E g(y)}$$

Given two cpos (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the function cpo $(D \to E, \sqsubseteq)$ has underlying set

 $\{f: D \rightarrow E \mid \text{ is a continuous function}\}$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d).$$

Argumentwise least elements and lubs:

$$\perp_{D \to E}(d) = \perp_E \qquad \qquad \left(\bigsqcup_{n \ge 0} f_n\right)(d) = \bigsqcup_{n \ge 0} f_n(d)$$

Evaluation, currying $(f : (D' \times D) \rightarrow E)$ and composition

eval:
$$(D \to E) \times D \to E$$

 $(f, d) \mapsto f(d)$

$$\operatorname{cur}(f): D' \to (D \to E)$$
$$d' \mapsto \lambda d \in D. f(d', d)$$

$$\circ: ((E \to F) \times (D \to E)) \longrightarrow (D \to F) (f,g) \mapsto \lambda d \in D. g(f(d))$$

are all well-defined and continuous.

fix: $(D \rightarrow D) \rightarrow D$

is continuous.

CONSTRUCTIONS ON DOMAINS

BACK TO THE INTRODUCTION

$$\llbracket while X > 0 \text{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

is a fixed point of the following $F: D \rightarrow D$, where D is (State \rightarrow State):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0. \end{cases}$$

$$\llbracket \texttt{while } X > 0 \texttt{ do } (Y \coloneqq X * Y; X \coloneqq X - 1) \rrbracket$$

is a fixed point of the following $F: D \rightarrow D$, where D is $(State_{\perp} \rightarrow State_{\perp})$:

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \le 0\\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0. \end{cases}$$
$$F(\bot) = \bot$$

 $State_{\perp} \rightarrow State_{\perp}$ is a domain!

Kleene's fixed point theorem:

$$w_{\infty} = \bigsqcup_{i \in \mathbb{N}} F^n(\bot)$$

is the least fixed point of F, and in particular a fixed point.

Kleene's fixed point theorem:

$$w_{\infty} = \bigsqcup_{i \in \mathbb{N}} F^n(\bot)$$

is the least fixed point of F, and in particular a fixed point.

We can compute explicitly

$$w_{\infty}[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x < 0\\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x \ge 0 \end{cases}$$

And **check** this agrees with the operational semantics.

SCOTT INDUCTION

Let D be a domain, $f\colon D\to D$ be a continuous function and $S\subseteq D$ be a subset of D. If the set S

- (i) contains ⊥,
- (ii) is stable under f, *i.e.* $f(S) \subseteq S$,
- (iii) is chain-closed, *i.e.* the lub of any chain of elements of S is also in S,

then $fix(f) \in S$.

Let D be a domain, $f\colon D\to D$ be a continuous function and $S\subseteq D$ be a subset of D. If the set S

- (i) contains ⊥,
- (ii) is stable under f, *i.e.* $f(S) \subseteq S$,
- (iii) is chain-closed, *i.e.* the lub of any chain of elements of S is also in S,

then $fix(f) \in S$.

SCOTTIND
$$\frac{\Phi(\bot) \quad \Phi(x) \Rightarrow \Phi(f(x)) \quad (\forall i \in \mathbb{N}. \ \Phi(x_i)) \Rightarrow \Phi(\bigsqcup_{i \in \mathbb{N}} x_i)}{\Phi(\operatorname{fix}(f))}$$

$$\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow^{\text{def}} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\}$$

 $\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow^{\text{def}}_{=} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\}$

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$ if $S \subseteq E$ is chain-closed, and $f: D \to E$ is continuous

 $\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow^{\text{def}}_{=} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\}$

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$ if $S \subseteq E$ is chain-closed, and $f: D \to E$ is continuous

$$S \cup T$$
 and $\bigcap_{i \in I} S_i$ if S, T and S_i are

 $\{(x, y) \in D \times D \mid x \sqsubseteq y\}, \quad d \downarrow^{\text{def}}_{=} \{x \in D \mid x \sqsubseteq d\} \quad \text{and} \quad \{(x, y) \in D \times D \mid x = y\}$

 $f^{-1}S = \{x \in D \mid f(x) \in S\}$ if $S \subseteq E$ is chain-closed, and $f: D \to E$ is continuous

$$S \cup T$$
 and $\bigcap_{i \in I} S_i$ if S, T and S_i are

$$\forall S \stackrel{\text{def}}{=} \{ y \in E \mid \forall x \in D. (x, y) \in S \} \subseteq E \quad \text{if } S \subseteq D \times E \text{ is}$$

Assume $f(d) \sqsubseteq d$, *i.e.* d is a pre-fixed point of the continuous $f : D \rightarrow D$. By Scott induction on $d \downarrow$, $fix(f) \sqsubseteq d$.

Assume $f(d) \sqsubseteq d$, *i.e.* d is a pre-fixed point of the continuous $f : D \rightarrow D$. By Scott induction on $d \downarrow$, $fix(f) \sqsubseteq d$.

Proof!

EXAMPLE: PARTIAL CORRECTNESS

Let w_∞ : State $\perp \rightarrow$ State \perp be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$

Recall that $w_{\infty} = \operatorname{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \le 0\\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\bot) = \bot$$

EXAMPLE: PARTIAL CORRECTNESS

Let w_∞ : State $\perp \rightarrow$ State \perp be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$

Recall that $w_{\infty} = \operatorname{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \le 0\\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\bot) = \bot$$

Claim:

$$\forall x. \forall y \ge 0. w_{\infty}(x, y) \Downarrow \implies \pi_Y(w_{\infty}(x, y)) \ge 0$$

Let w_∞ : State $\perp \rightarrow$ State \perp be the denotation of

while
$$X > 0$$
 do $(Y := X * Y; X := X - 1)$

Recall that $w_{\infty} = \operatorname{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \le 0\\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\bot) = \bot$$

Claim:

$$\forall x. \forall y \ge 0. w_{\infty}(x, y) \Downarrow \implies \pi_Y(w_{\infty}(x, y)) \ge 0$$

Proof: by Scott induction!

PCF

PCF Terms and types

Types:

$\tau ::= \mathsf{nat} \mid \mathsf{bool} \mid \tau \to \tau$

Types: $\tau ::= \operatorname{nat} | \operatorname{bool} | \tau \to \tau$

Terms:

$$t ::= 0 | \operatorname{succ}(t) | \operatorname{pred}(t) |$$

true | false | zero?(t) | if t then t else t
$$x | \operatorname{fun} x: \tau. t | t t | \operatorname{fix}(t)$$

$\Gamma \vdash t : \tau$ The term t has type τ in context Γ

ZERO
$$\frac{\Gamma \vdash t: \text{nat}}{\Gamma \vdash 0: \text{nat}}$$
 SUCC $\frac{\Gamma \vdash t: \text{nat}}{\Gamma \vdash \text{succ}(t): \text{nat}}$ Pred $\frac{\Gamma \vdash t: \text{nat}}{\Gamma \vdash \text{pred}(t): \text{nat}}$

 $\Gamma \vdash t : \tau$ The term t has type τ in context Γ

$$ZERO \frac{\Gamma \vdash 0: \text{nat}}{\Gamma \vdash 0: \text{nat}} \qquad SUCC \frac{\Gamma \vdash t: \text{nat}}{\Gamma \vdash \text{succ}(t): \text{nat}} \qquad PRED \frac{\Gamma \vdash t: \text{nat}}{\Gamma \vdash \text{pred}(t): \text{nat}}$$

$$TRUE \frac{\Gamma \vdash t: \text{rue} : \text{bool}}{\Gamma \vdash \text{true} : \text{bool}} \qquad FALSE \frac{\Gamma \vdash false : \text{bool}}{\Gamma \vdash false : \text{bool}} \qquad ISZ \frac{\Gamma \vdash t: \text{nat}}{\Gamma \vdash \text{zero}?(t): \text{bool}}$$

$$IF \frac{\Gamma \vdash t: \tau \quad \Gamma \vdash t': \tau}{\Gamma \vdash \text{if } b \text{ then } t \text{ else } t': \tau}$$

$$\begin{array}{l} \text{Var} \ \frac{\Gamma(x) = \tau}{\Gamma \vdash x : \tau} \\ \text{Fun} \ \frac{\Gamma, x : \sigma \vdash t : \tau}{\Gamma \vdash \text{fun} \ x : \sigma . \ t : \sigma \to \tau} \\ \text{Fix} \ \frac{\Gamma \vdash f : \tau \to \tau}{\Gamma \vdash \text{fix}(f) : \tau} \end{array} \xrightarrow{\text{App}} \frac{\Gamma \vdash f : \sigma \to \tau}{\Gamma \vdash f \ u : \tau} \end{array}$$

$$\mathrm{PCF}_{\Gamma,\tau} \stackrel{\mathrm{def}}{=} \{t \mid \Gamma \vdash t : \tau\} \qquad \qquad \mathrm{PCF}_{\tau} \stackrel{\mathrm{def}}{=} \mathrm{PCF}_{,\tau}$$

PCF Operational Semantics

Values:

$v ::= \underbrace{0 \mid \text{succ}(v)}_{\underline{n}} \mid \text{true} \mid \text{false} \mid \text{fun} \ x: \tau. \ t$

Values:

$$v ::= \underbrace{0 \mid \text{succ}(v)}_{\underline{n}} \mid \text{true} \mid \text{false} \mid \text{fun} \, x; \tau, t$$

$$\mathsf{VAL} \ \frac{\vdash v : \tau}{v \Downarrow_{\tau} v}$$

Values:

$$v ::= \underbrace{\emptyset \mid \text{succ}(v)}_{\underline{n}} \mid \text{true} \mid \text{false} \mid \text{fun} x: \tau. t$$

$$V_{\text{AL}} \frac{\vdash v : \tau}{v \downarrow_{\tau} v} \qquad S_{\text{UCC}} \frac{t \downarrow_{\text{nat}} v}{\text{succ}(t) \downarrow_{\text{nat}} \text{succ}(v)} \qquad P_{\text{RED}} \frac{t \downarrow_{\text{nat}} \text{succ}(v)}{\text{pred}(t) \downarrow_{\text{nat}} v}$$

$$v^{\text{alues:}} \qquad v ::= \underbrace{\emptyset \mid \text{succ}(v)}_{\underline{n}} \mid \text{true} \mid \text{false} \mid \text{fun} x; \tau, t$$

$$v_{\text{AL}} \frac{\vdash v : \tau}{v \downarrow_{\tau} v} \qquad S_{\text{UCC}} \frac{t \downarrow_{\text{nat}} v}{\text{succ}(t) \downarrow_{\text{nat}} \text{succ}(v)} \qquad P_{\text{RED}} \frac{t \downarrow_{\text{nat}} \text{succ}(v)}{\text{pred}(t) \downarrow_{\text{nat}} v}$$

$$Z_{\text{EROZ}} \frac{t \downarrow_{\text{nat}} \emptyset}{\text{zero}?(t) \downarrow_{\text{bool}} \text{true}} \qquad \dots \qquad I_{\text{FT}} \frac{b \downarrow_{\text{bool}} \text{true}}{\text{if } b \text{ then } t_1 \text{ else } t_2 \downarrow_{\tau} v} \qquad \dots$$

$$V_{\text{AL}} \stackrel{\vdash v:\tau}{\underset{v \downarrow_{\tau} v}{\vdash v}} = \underbrace{\emptyset \mid \text{succ}(v)}_{\underline{n}} \mid \text{true} \mid \text{false} \mid \text{fun } x:\tau. t$$

$$V_{\text{AL}} \stackrel{\vdash v:\tau}{\underset{v \downarrow_{\tau} v}{\vdash v}} = \underbrace{S_{\text{UCC}} \frac{t \downarrow_{\text{nat}} v}{\text{succ}(t) \downarrow_{\text{nat}} \text{succ}(v)}}_{\text{succ}(t) \downarrow_{\text{nat}} \text{succ}(v)} = \Pr_{\text{RED}} \frac{t \downarrow_{\text{nat}} \text{succ}(v)}{\text{pred}(t) \downarrow_{\text{nat}} v}$$

$$Z_{\text{EROZ}} \frac{t \downarrow_{\text{nat}} \emptyset}{\text{zero?}(t) \downarrow_{\text{bool}} \text{true}} = \cdots = I_{\text{FT}} \frac{b \downarrow_{\text{bool}} \text{true}}{\text{if } b \text{ then } t_1 \text{ else } t_2 \downarrow_{\tau} v} = \cdots$$

$$F_{\text{UN}} \frac{t \downarrow_{\sigma \to \tau} \text{fun } x:\sigma. t' \quad t'[u/x] \downarrow_{\tau} v}{t u \downarrow_{\tau} v} = F_{\text{IX}} \frac{t (\text{fix}(t)) \downarrow_{\tau} v}{\text{fix}(t) \downarrow_{\tau} v}$$

$$v ::= \underbrace{0 \mid \text{succ}(v)}_{\underline{n}} \mid \text{true} \mid \text{false} \mid \text{fun } x:\tau.t$$

$$VAL \frac{\vdash v:\tau}{v \downarrow_{\tau} v} \qquad Succ \frac{t \downarrow_{\text{nat}} v}{\text{succ}(t) \downarrow_{\text{nat}} \text{succ}(v)} \qquad PRED \frac{t \downarrow_{\text{nat}} \text{succ}(v)}{\text{pred}(t) \downarrow_{\text{nat}} v}$$

$$ZEROZ \frac{t \downarrow_{\text{nat}} 0}{\text{zero}?(t) \downarrow_{\text{bool}} \text{true}} \qquad \dots \qquad IFT \frac{b \downarrow_{\text{bool}} \text{true}}{\text{if } b \text{ then } t_1 \text{ else } t_2 \downarrow_{\tau} v} \qquad \dots$$

$$FUN \frac{t \downarrow_{\sigma \to \tau} \text{fun } x:\sigma.t' \quad t'[u/x] \downarrow_{\tau} v}{t u \downarrow_{\tau} v} \qquad FIX \frac{t (\text{fix}(t)) \downarrow_{\tau} v}{\text{fix}(t) \downarrow_{\tau} v}$$

Alternatively: small-step $t \rightsquigarrow_{\tau} u$, we have $t \Downarrow_{\tau} v$ iff $t \rightsquigarrow_{\tau}^{\star} u$.

59/104

plus $\stackrel{\text{def}}{=} \operatorname{fun} x: \operatorname{nat.} \operatorname{fix}(\operatorname{fun}(p: \operatorname{nat} \to \operatorname{nat})(y: \operatorname{nat}).$ if zero?(y) then x else succ(p pred(y))) plus $\underline{31} \downarrow_{\operatorname{nat}} \underline{4}$

plus $\stackrel{\text{def}}{=} \text{fun } x: \text{nat. fix}(\text{fun}(p: \text{nat} \rightarrow \text{nat})(y: \text{nat}).$ if zero?(y) then x else succ(p pred(y))) plus $\underline{3} \underline{1} \Downarrow_{\text{nat}} \underline{4}$

 $\Omega_{\tau} \stackrel{\text{def}}{=} \mathsf{fix}(\mathsf{fun}\, x; \tau, x)$ $\Omega_{\tau} \Uparrow_{\tau} \quad (\mathsf{diverges})$

plus $\stackrel{\text{def}}{=} \text{fun } x: \text{nat. fix}(\text{fun}(p: \text{nat} \rightarrow \text{nat})(y: \text{nat}).$ if zero?(y) then x else succ(p pred(y))) plus $\underline{3} \underline{1} \Downarrow_{\text{nat}} \underline{4}$

 $\Omega_{\tau} \stackrel{\text{def}}{=} \mathsf{fix}(\mathsf{fun}\,x;\tau,x)$ $\Omega_{\tau} \Uparrow_{\tau} \quad (\mathsf{diverges})$

Try it out!

60/104

PCF is **Turing-complete**: for every partial recursive function ϕ , there is a PCF term ϕ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\phi \underline{n} \downarrow_{nat} \phi(n)$.

PCF is **Turing-complete**: for every partial recursive function ϕ , there is a PCF term ϕ such that for all $n \in \mathbb{N}$, if $\phi(n)$ is defined then $\phi \underline{n} \downarrow_{nat} \phi(n)$.

(Later on:
$$\phi = \left[\!\!\left[\underline{\phi} \right]\!\!\right]$$
).

Evaluation in PCF is deterministic: if both $t \Downarrow_{\tau} v$ and $t \Downarrow_{\tau} v'$ hold, then v = v'.

Evaluation in PCF is deterministic: if both $t \Downarrow_{\tau} v$ and $t \Downarrow_{\tau} v'$ hold, then v = v'.

By (rule) induction on evaluation \Downarrow :

$$\{(t,\tau,\nu) \mid t \Downarrow_{\tau} \nu \land \forall \nu'.(t \Downarrow_{\tau} \nu' \Rightarrow \nu = \nu')\}$$

Intuition: there is always exactly one rule which applies.

PCF Contextual equivalence

Two phrases of a programming language are **contextually equivalent** if any occurrences of the first phrase in a **complete program** can be replaced by the second phrase without affecting the **observable results** of executing the program.

Two phrases of a programming language are **contextually equivalent** if any occurrences of the first phrase in a **complete program** can be replaced by the second phrase without affecting the **observable results** of executing the program.

The intuitive notion of program equivalence for programmers.

$C ::= -|\operatorname{succ}(\mathcal{C})|\operatorname{pred}(\mathcal{C})|\operatorname{zero}?(\mathcal{C})|$ if \mathcal{C} then t else t | if t then \mathcal{C} else t | if t then t else \mathcal{C} | fun $x: \tau. \mathcal{C} | \mathcal{C} t | t \mathcal{C} |$ fix(\mathcal{C})

$\mathcal{C} ::= -|\operatorname{succ}(\mathcal{C})|\operatorname{pred}(\mathcal{C})|\operatorname{zero}?(\mathcal{C})|$ if \mathcal{C} then t else t | if t then \mathcal{C} else t | if t then t else \mathcal{C} | fun $x: \tau. \mathcal{C} | \mathcal{C} t | t \mathcal{C} |$ fix(\mathcal{C})

Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta,\sigma} C : \tau$.

$$\mathcal{C} ::= -|\operatorname{succ}(\mathcal{C})|\operatorname{pred}(\mathcal{C})|\operatorname{zero}?(\mathcal{C})|$$

if \mathcal{C} then t else t | if t then \mathcal{C} else t | if t then t else \mathcal{C} |
fun $x: \tau. \mathcal{C} | \mathcal{C} t | t \mathcal{C}$ | fix(\mathcal{C})

Typing extended to evaluation contexts: $\Gamma \vdash_{\Delta,\sigma} C : \tau$.

$$\frac{\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau_1 \to \tau_2 \qquad \Gamma \vdash u : \tau_1}{\Gamma \vdash_{\Delta,\sigma} \mathcal{C} u : \tau_2} \qquad \dots$$

.

Given a type τ , a typing context Γ and terms $t, t' \in PCF_{\Gamma,\tau}$, contextual equivalence, written $\Gamma \vdash t \cong_{ctx} t' : \tau$ is defined to hold if for all evaluation contexts C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$, where γ is **nat** or **bool**, and for all values $\nu \in PCF_{\gamma}$,

 $\mathcal{C}[t] \Downarrow_{\gamma} \nu \Leftrightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$

When Γ is the empty context, we simply write $t \cong_{\mathrm{ctx}} t' : \tau$ for $\cdot \vdash t \cong_{\mathrm{ctx}} t' : \tau$.

PCF

INTRODUCING DENOTATIONAL SEMANTICS

- a mapping of PCF types au to domains $[\![au]\!]$;
- a mapping of closed, well-typed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

- a mapping of PCF types au to domains $[\![au]\!]$;
- a mapping of closed, well-typed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- · denotation of open terms will be continuous functions.

Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type τ , $t \downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PCF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \downarrow_{\gamma} v$.

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau$$

it suffices to establish

$$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

$$t_1 \cong_{\operatorname{ctx}} t_2 : \tau$$

it suffices to establish

 $[\![t_1]\!] = [\![t_2]\!] \in [\![\tau]\!]$

$$\mathcal{C}[t_1] \Downarrow_{\mathsf{nat}} v \Rightarrow \llbracket \mathcal{C}[t_1] \rrbracket = \llbracket v \rrbracket$$
$$\Rightarrow \llbracket \mathcal{C}[t_2] \rrbracket = \llbracket v \rrbracket$$
$$\Rightarrow \mathcal{C}[t_2] \Downarrow_{\mathsf{nat}} v$$

(soundness) (compositionality on $[t_1] = [t_2]$) (adequacy)

$$t_1 \cong_{\operatorname{ctx}} t_2 : \tau$$

it suffices to establish

 $[\![t_1]\!] = [\![t_2]\!] \in [\![\tau]\!]$

$$\mathcal{C}[t_1] \Downarrow_{nat} \nu \Rightarrow \llbracket \mathcal{C}[t_1] \rrbracket = \llbracket \nu \rrbracket \qquad (\text{soundness}) \\ \Rightarrow \llbracket \mathcal{C}[t_2] \rrbracket = \llbracket \nu \rrbracket \qquad (\text{compositionality on } \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket) \\ \Rightarrow \mathcal{C}[t_2] \Downarrow_{nat} \nu \qquad (\text{adequacy})$$

and symmetrically for $\mathcal{C}[t_2] \downarrow_{nat} v \Rightarrow \mathcal{C}[t_1] \downarrow_{nat} v$, and similarly for **bool**.

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau$$

it suffices to establish

$$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

Denotational equality is **sound**, but is it **complete**? Does equality in the model imply contextual equivalence?

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau$$

it suffices to establish

$$\llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

Denotational equality is **sound**, but is it **complete**? Does equality in the model imply contextual equivalence?

Full abstraction.

DENOTATIONAL SEMANTICS FOR PCF

DENOTATIONAL SEMANTICS FOR PCF

TYPES AND CONTEXTS

$$\begin{bmatrix} \mathsf{nat} \end{bmatrix} \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
$$\begin{bmatrix} \mathsf{bool} \end{bmatrix} \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
$$\begin{bmatrix} \tau \to \tau' \end{bmatrix} \stackrel{\text{def}}{=} \llbracket \tau \rrbracket \to \llbracket \tau' \end{bmatrix}$$

(flat domain)

(flat domain)

(function domain)

$\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \qquad (\Gamma \text{-environments})$

$\llbracket \Gamma \rrbracket \stackrel{\text{def}}{=} \prod_{x \in \text{dom}(\Gamma)} \llbracket \Gamma(x) \rrbracket \qquad (\Gamma \text{-environments})$

- $\cdot \ \llbracket \cdot \rrbracket = \mathbb{1}$ (one element set)
- $\cdot \, \llbracket x : \tau \rrbracket = (\{x\} \to \llbracket \tau \rrbracket) \cong \llbracket \tau \rrbracket$
- $\cdot \ \llbracket x_1 : \tau_1, \dots, x_n : \tau_n \rrbracket = \llbracket \tau_1 \rrbracket \times \dots \times \llbracket \tau_n \rrbracket$

DENOTATIONAL SEMANTICS FOR PCF

To every typing judgement

$$\Gamma \vdash t : \tau$$

we associate a continuous function

 $\llbracket \Gamma \vdash t : \tau \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

between domains. In other words,

 $\llbracket - \rrbracket : \mathrm{PCF}_{\Gamma, \tau} \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

succ: $\mathbb{N} \to \mathbb{N}$ pred: $\mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$ $0 \mapsto \text{undefined}$ $rac{rec}{n+1} \mapsto n$ zero?: $\mathbb{N} \to \mathbb{B}$ $0 \mapsto \text{true}$ $n+1 \mapsto \text{false}$

$$\operatorname{succ}_{\perp} : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \qquad \operatorname{pred}_{\perp} : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \\ n \mapsto n+1 \\ \perp \mapsto \perp \qquad n+1 \mapsto n \\ 1 \mapsto \perp \qquad n+1 \mapsto 1$$

$$zero?_{\perp}: \mathbb{N}_{\perp} \to \mathbb{B}_{\perp}$$

$$0 \mapsto true$$

$$n+1 \mapsto false$$

$$\perp \mapsto \perp$$

$$\llbracket \mathbf{0} \rrbracket(\rho) \stackrel{\text{def}}{=} \mathbf{0} \qquad \in \mathbb{N}_{\perp}$$
$$\llbracket \text{true} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{true} \qquad \in \mathbb{B}_{\perp}$$
$$\llbracket \text{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{false} \qquad \in \mathbb{B}_{\perp}$$

$$\begin{bmatrix} \emptyset \end{bmatrix}(\rho) \stackrel{\text{def}}{=} 0 \qquad \in \mathbb{N}_{\perp}$$

$$\begin{bmatrix} \text{true} \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{true} \qquad \in \mathbb{B}_{\perp}$$

$$\begin{bmatrix} \text{false} \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{false} \qquad \in \mathbb{B}_{\perp}$$

$$\begin{bmatrix} \text{succ}(t) \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{succ}_{\perp}(\llbracket t \rrbracket(\rho)) \qquad \in \mathbb{N}_{\perp}$$

$$\begin{bmatrix} \text{pred}(t) \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{pred}_{\perp}(\llbracket t \rrbracket(\rho)) \qquad \in \mathbb{N}_{\perp}$$

$$\text{zero}?(t) \rrbracket(\rho) \stackrel{\text{def}}{=} \text{zero}?_{\perp}(\llbracket t \rrbracket(\rho)) \qquad \in \mathbb{B}_{\perp}$$

 $\llbracket \texttt{succ}(t) \rrbracket = \texttt{succ}_{\perp} \circ \llbracket t \rrbracket$

 $\llbracket 0 \rrbracket (
ho) \stackrel{\mathrm{def}}{=} 0$ $\in \mathbb{N}_{+}$ $[true](
ho) \stackrel{\text{def}}{=} true$ $\in \mathbb{B}_{+}$ $[[false]](\rho) \stackrel{\text{def}}{=} \text{false}$ $\in \mathbb{B}_{+}$ $\llbracket \operatorname{succ}(t) \rrbracket(\rho) \stackrel{\text{def}}{=} \operatorname{succ}_{\perp}(\llbracket t \rrbracket(\rho))$ $\in \mathbb{N}_{+}$ $[[\operatorname{pred}(t)]](\rho) \stackrel{\text{def}}{=} \operatorname{pred}_{\perp}([[t]](\rho))$ $\in \mathbb{N}_{+}$ $\llbracket \operatorname{zero}(t) \rrbracket(\rho) \stackrel{\text{def}}{=} \operatorname{zero}(t) \rrbracket(\rho)$ $\in \mathbb{B}_{+}$ $\llbracket \text{if } b \text{ then } t \text{ else } t' \rrbracket \stackrel{\text{def}}{=} \operatorname{if}(\llbracket b \rrbracket(\rho), \llbracket t \rrbracket(\rho), \llbracket t' \rrbracket(\rho)) \in \llbracket t \rrbracket$ $\llbracket \text{if } b \text{ then } t \text{ else } t' \rrbracket = \text{if } \langle \llbracket b \rrbracket, \langle \llbracket t \rrbracket, \llbracket t' \rrbracket \rangle \rangle$

$$\llbracket x \rrbracket(
ho) \stackrel{\text{def}}{=}
ho(x) \in \llbracket \Gamma(x) \rrbracket$$

$$\llbracket x \rrbracket(\rho) = \pi_x(\rho)$$

$$\begin{bmatrix} x \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket$$
$$\begin{bmatrix} t_1 \ t_2 \end{bmatrix}(\rho) \stackrel{\text{def}}{=} (\llbracket t_1 \rrbracket(\rho)) (\llbracket t_2 \rrbracket(\rho))$$

$$\llbracket t_1 t_2 \rrbracket = \operatorname{eval} \circ \langle \llbracket t_1 \rrbracket, \llbracket t_2 \rrbracket \rangle$$

$$\begin{bmatrix} x \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket$$
$$\begin{bmatrix} t_1 \ t_2 \end{bmatrix}(\rho) \stackrel{\text{def}}{=} (\llbracket t_1 \rrbracket(\rho)) (\llbracket t_2 \rrbracket(\rho))$$
$$\begin{bmatrix} \text{fun } x: \tau. t \rrbracket(\rho) \stackrel{\text{def}}{=} \lambda d \in \llbracket \tau \rrbracket. \llbracket t \rrbracket(\rho, d)$$

 $\llbracket fun x: \tau. t \rrbracket = cur(\llbracket t \rrbracket)$

$\llbracket \texttt{fix} f \rrbracket(\rho) \stackrel{\text{def}}{=} \texttt{fix}(\llbracket f \rrbracket(\rho))$

For any PCF term t such that $\Gamma \vdash t : \tau$, the object $\llbracket t \rrbracket$ is well-defined and a continuous function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \tau$.

For any PCF term t such that $\Gamma \vdash t : \tau$, the object $\llbracket t \rrbracket$ is well-defined and a continuous function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \tau$.

$|f t \in \mathrm{PCF}_{\tau}: \ \llbracket t \rrbracket \ \in \ \llbracket \cdot \rrbracket \to \llbracket \tau \rrbracket \ = \ \amalg \to \llbracket \tau \rrbracket \ \cong \ \llbracket \tau \rrbracket$

DENOTATIONAL SEMANTICS FOR PCF COMPOSITIONALITY

Suppose $t, u \in \text{PCF}_{\Gamma, \tau}$, such that

 $\llbracket t \rrbracket = \llbracket u \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

Suppose moreover that $\mathcal{C}[-]$ is a PCF context such that $\Gamma' \vdash_{\Gamma, \tau} \mathcal{C} : \tau'$. Then

 $\llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[u] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket.$

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

```
\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket
```

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

 $\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

$$\llbracket - \rrbracket (d) = d$$
$$\llbracket \mathcal{C} t \rrbracket (d)(\rho) = (\llbracket \mathcal{C} \rrbracket (d)(\rho))(\llbracket t \rrbracket (\rho))$$
$$\vdots$$

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

 $\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

$$\llbracket - \rrbracket (d) = d$$
$$\llbracket \mathcal{C} t \rrbracket (d)(\rho) = (\llbracket \mathcal{C} \rrbracket (d)(\rho))(\llbracket t \rrbracket (\rho))$$
$$\vdots$$

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$ and $\Delta \vdash t : \sigma$, then

 $\llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C} \rrbracket \left(\llbracket t \rrbracket \right)$

Assume

 $\Gamma \vdash u : \sigma$ $\Gamma, x: \sigma \vdash t : \tau$

Then for all $\rho \in \llbracket \Gamma \rrbracket$ $\llbracket t[u/x] \rrbracket (\rho) = \llbracket t \rrbracket (\rho[x \mapsto \llbracket u \rrbracket (\rho)]).$ In particular when $\Gamma = \cdot, \llbracket t \rrbracket : \llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket$ and $\llbracket t[u/x] \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket)$

DENOTATIONAL SEMANTICS FOR PCF Soundness

For all PCF types τ and all closed terms $t, v \in PCF_{\tau}$ with v a value, if $t \downarrow_{\tau} v$ is derivable, then

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \tau \rrbracket$

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v$

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v$

Adequacy does not hold at function types or for open terms

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

$$\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v$$

Adequacy does not hold at function types or for open terms

$$\llbracket \mathsf{fun} x: \tau. (\mathsf{fun} y: \tau. y) x \rrbracket = \llbracket \mathsf{fun} x: \tau. x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

fun
$$x: \tau$$
. (fun $y: \tau$. y) $x \not \models_{\tau \to \tau}$ fun $x: \tau$. x

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS FORMAL APPROXIMATION RELATION

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);

2. for any well-typed term t, R([t], t);

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans); 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Thus $v = \underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket = n$.

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans); 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Thus $v = \underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket = n$.

$$\llbracket t \rrbracket = \llbracket \underline{n} \rrbracket = n$$

$$\Rightarrow R(n, t)$$

$$\Rightarrow t \Downarrow \underline{n} = v$$

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

But at non-base types, adequacy does not hold.

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_V \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

 $\lhd_\tau \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_\tau$

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false})$$

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false})$$

Exactly what we need to get 1.

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false}$$

Exactly what we need to get 1.

Note though that $\perp \triangleleft_{nat} t$ for any $t \in PCF_{nat}$.

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.

FORMAL APPROXIMATION AT FUNCTION TYPES

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

FORMAL APPROXIMATION AT FUNCTION TYPES

- 1. if $t \in \mathrm{PCF}_{\mathsf{nat}}, n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$APP \xrightarrow{\vdash t: \tau \to \tau' \vdash u: \tau}{\vdash t u: \tau'}$$

FORMAL APPROXIMATION AT FUNCTION TYPES

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$APP \xrightarrow{\vdash t: \tau \to \tau' \vdash u: \tau}{\vdash t u: \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \to \tau'} t$, how do we get $\llbracket t u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \triangleleft_{\tau} t u$?

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$APP \xrightarrow{\vdash t: \tau \to \tau' \vdash u: \tau}{\vdash t u: \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \to \tau'} t$, how do we get $\llbracket t u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \triangleleft_{\tau} t u$? Define

$$d \triangleleft_{\tau \to \tau'} t \stackrel{\text{def}}{\Leftrightarrow} \forall e \in \llbracket \tau \rrbracket, u \in \text{PCF}_{\tau} . (e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau'} t u)$$

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application pprox syntactic substitution

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application \approx syntactic substitution

Fundamental property of formal approximation

Given a term t such that $\Gamma \vdash t : \tau$ for some Γ and τ , for any environment ρ and substitution σ such that $\rho \triangleleft_{\Gamma} \sigma$, we have $\llbracket t \rrbracket (\rho) \triangleleft_{\tau} t[\sigma]$.

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application \approx syntactic substitution

Fundamental property of formal approximation

Given a term t such that $\Gamma \vdash t : \tau$ for some Γ and τ , for any environment ρ and substitution σ such that $\rho \triangleleft_{\Gamma} \sigma$, we have $\llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma]$.

Parallel substitution: maps each $x \in \text{dom}(\Gamma)$ to $\sigma(x) \in \text{PCF}_{\Gamma(x)}$.

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in \text{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;

2. the set $\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} t\}$ is chain-closed;

1. The least element approximates any program: for any τ and $t \in \text{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;

2. the set $\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} t\}$ is chain-closed;

3. if $\forall v. t \downarrow_{\tau} v \Rightarrow t' \downarrow_{\tau} v$, and $d \triangleleft_{\tau} t$, then $d \triangleleft_{\tau} t'$.

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS EXTENSIONALITY

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

 $\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

$$\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$$

$$\Gamma \vdash t \cong_{\mathrm{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\mathrm{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\mathrm{ctx}} t : \tau)$$

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

$$\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$$

$$\Gamma \vdash t \cong_{\mathrm{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\mathrm{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\mathrm{ctx}} t : \tau)$$

It corresponds to formal approximation: for all PCF types τ and closed terms $t_1, t_2 \in \text{PCF}_{\tau}$

$$t_1 \leq_{\mathrm{ctx}} t_2 : \tau \Leftrightarrow \llbracket t_1 \rrbracket \triangleleft_{\tau} t_2.$$

For contextual preorder between closed terms, applicative contexts are enough.

For contextual preorder between closed terms, applicative contexts are enough.

Let t_1, t_2 be closed terms of type τ . Then $t_1 \leq_{\mathrm{ctx}} t_2 : \tau$ if and only if, for every term $f : \tau \to \mathrm{bool}$,

$$f t_1 \downarrow_{\text{bool}} \text{true} \Rightarrow f t_2 \downarrow_{\text{bool}} \text{true}.$$

For $\gamma = \texttt{bool}$ or nat, $t_1 \leq_{\texttt{ctx}} t_2 : \tau$ holds if and only if

 $\forall v. (t_1 \Downarrow_{\gamma} v \Rightarrow t_2 \Downarrow_{\gamma} v).$

For $\gamma = \text{bool or nat}, t_1 \leq_{\text{ctx}} t_2 : \tau$ holds if and only if $\forall \nu. (t_1 \downarrow_{\gamma} \nu \Rightarrow t_2 \downarrow_{\gamma} \nu).$

At a function type $\tau \to \tau'$, $t_1 \leq_{\text{ctx}} t_2 : \tau \to \tau'$ holds if and only if $\forall t \in \text{PCF}_{\tau} . (t_1 \ t \leq_{\text{ctx}} t_2 \ t : \tau').$

FULL ABSTRACTION

FULL ABSTRACTION

FAILURE OF FULL ABSTRACTION

A denotational model is **fully abstract** if

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau \Longrightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A denotational model is **fully abstract** if

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

A denotational model is **fully abstract** if

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

The parallel or function $\text{por} : \mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ is defined as given by the following table:

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

The (left) sequential or function $or: \mathbb{B}_\perp \times \mathbb{B}_\perp \to \mathbb{B}_\perp$ is defined as

or $\stackrel{\text{def}}{=} \llbracket \text{fun } x : \text{bool. fun } y : \text{bool. if } x \text{ then true else } y \rrbracket$

It is given by the following table:

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

por	true	false	\bot	or	true	false	\perp
true	true	true	true	true	true	true	true
false	true	false	\perp	false	true	false	\perp
\perp	true	\perp	\bot	\perp	T	\perp	\perp

por	true	false	\bot	or	true	false	\perp
true	true	true	true	true	true	true	true
false	true	false	\perp	false	true	false	\perp
\perp	true	\perp	\perp	\perp	T	\perp	\perp

or is sequential, but por is not.

There is **no** closed PCF term

 $t: bool \rightarrow bool \rightarrow bool$

satisfying

$$\llbracket t \rrbracket = \operatorname{por} : \mathbb{B}_{\perp} \to \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$$
.

The denotational model of PCF in domains and continuous functions is not fully abstract.

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$T_{\text{true}} \cong_{\text{ctx}} T_{\text{false}} : (\text{bool} \to \text{bool} \to \text{bool}) \to \text{bool}$$
$$[\![T_{\text{true}}]\!] \neq [\![T_{\text{false}}]\!] \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B}$$

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$T_{\text{true}} \cong_{\text{ctx}} T_{\text{false}} : (\text{bool} \to \text{bool} \to \text{bool}) \to \text{bool}$$
$$[[T_{\text{true}}]] \neq [[T_{\text{false}}]] \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B}$$

Idea:

- for all $f \in PCF_{bool \rightarrow bool \rightarrow bool}$, ensure $T_b f \uparrow_{bool}$...
- but $\llbracket T_b \rrbracket$ (por) = $\llbracket b \rrbracket$.

```
 \begin{array}{l} T_b \stackrel{\mathrm{def}}{=} & \mathsf{fun}\,f\!:\!\mathsf{bool}\to(\mathsf{bool}\to\mathsf{bool}).\\ & \mathsf{if}(f\,\mathsf{true}\,\Omega_{\mathsf{bool}})\,\mathsf{then}\\ & \mathsf{if}\,(f\,\Omega_{\mathsf{bool}}\,\mathsf{true})\,\mathsf{then}\\ & \mathsf{if}\,(f\,\mathsf{false}\,\mathsf{false})\,\mathsf{then}\,\Omega_{\mathsf{bool}}\,\mathsf{else}\,b\\ & \mathsf{else}\,\Omega_{\mathsf{bool}}\\ & \mathsf{else}\,\Omega_{\mathsf{bool}} \end{array}
```

FULL ABSTRACTION

BEYOND FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- The model does not adequately capture PCF?
- · Contexts are too weak: they do not distinguish enough programs?

PCF+por

 $\Gamma \vdash t : \tau$

...
$$\Pr_{\mathsf{POR}} \frac{\Gamma \vdash t_1 : \tau \quad \Gamma \vdash t_2 : \tau}{\Gamma \vdash \mathsf{por}(t_1, t_2) : \tau}$$

If we extend the semantics of PCF to PCF+por with

 $[\![\texttt{por}]\!] = \text{por}$

the resulting denotational semantics is fully abstract.

If we extend the semantics of PCF to PCF+por with

 $[\![\texttt{por}]\!] = \text{por}$

the resulting denotational semantics is fully abstract...

but is PCF+**por** still a reasonable model of programming language?

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dI-domains & stable functions \rightarrow no por any more, but still not fully abstract...
- only proper answers in the late 90s (!): logical relations and game semantics

FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF

- first step: dI-domains & stable functions \rightarrow no por any more, but still not fully abstract...
- only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

- If you add effects (references, control flow...) to a language, contexts become *much more* expressive.
- Full abstraction becomes different: somewhat easier... but is contextual equivalence still a reasonable idea?

WHERE TO GO FROM HERE?

Source of a very rich literature:

- linear logic
- logical relations
- game semantics
- bisimulations techniques

• ...

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- \cdot a type au as an object in a category;
- \cdot a term $\Gamma \vdash t : \tau$ as a morphism/arrow $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$.

Separate

- the structure needed to interpret a language (generic)
- how to construct this structure in particular examples (specific)

Interpret:

- \cdot a type au as an object in a category;
- \cdot a term $\Gamma \vdash t : \tau$ as a morphism/arrow $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$.

Example: λ -calculus \rightarrow cartesian closed categories

OCaml's ADT:

It is a fixed point equation! We can use domain theory to solve it.

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages! Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad *T* (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Effects: control flow (errors), mutability/state, input-output... An important aspect of programming languages!

Modelled as a monad *T* (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $\llbracket \Gamma \rrbracket \to T(\llbracket \tau \rrbracket)$

Easter: axiomatic semantic (Hoare Logic and Model Checking)

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the **interaction** between different approaches.