
WHERE WE’RE AT

We have a denotational semantics for types J𝜏 K and terms J𝑡K such that:
Compositionality: J𝑡K = q𝑡′y ⇒ q

C[𝑡]y = q
C[𝑡′]y.✓

Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✓
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✓

From this we can show J𝑡K = J𝑢K ∈ J𝜏 K ⇒ 𝑡 ≅ctx 𝑢 : 𝜏
What about the converse implication?

1/1



WHERE WE’RE AT

We have a denotational semantics for types J𝜏 K and terms J𝑡K such that:
Compositionality: J𝑡K = q𝑡′y ⇒ q

C[𝑡]y = q
C[𝑡′]y.✓

Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✓
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✓

From this we can show J𝑡K = J𝑢K ∈ J𝜏 K ⇒ 𝑡 ≅ctx 𝑢 : 𝜏
What about the converse implication?

1/1



FULL ABSTRACTION



FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION



FULL ABSTRACTION

A denotational model is fully abstract if𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ �𝑡1� = �𝑡2� ∈ �𝜏 �

89/104



FULL ABSTRACTION

A denotational model is fully abstract if𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ �𝑡1� = �𝑡2� ∈ �𝜏 �

A form of completeness of semantic equivalence wrt. program equivalence.

89/104



FULL ABSTRACTION

A denotational model is fully abstract if𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ �𝑡1� = �𝑡2� ∈ �𝜏 �

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is not fully abstract.

89/104



PARALLEL OR

The parallel or function por : 𝔹⊥ × 𝔹⊥ → 𝔹⊥ is defined as given by the following table:por true false ⊥true true true truefalse true false ⊥⊥ true ⊥ ⊥
90/104



LEFT SEQUENTIAL OR

The (left) sequential or function or : 𝔹⊥ × 𝔹⊥ → 𝔹⊥ is defined asor def= �
fun 𝑥: bool. fun 𝑦: bool. if 𝑥 then true else 𝑦�

It is given by the following table: or true false ⊥true true true truefalse true false ⊥⊥ ⊥ ⊥ ⊥
91/104



PARALLEL VS SEQUENTIAL OR

por true false ⊥true true true truefalse true false ⊥⊥ true ⊥ ⊥
or true false ⊥true true true truefalse true false ⊥⊥ ⊥ ⊥ ⊥

92/104



PARALLEL VS SEQUENTIAL OR

por true false ⊥true true true truefalse true false ⊥⊥ true ⊥ ⊥
or true false ⊥true true true truefalse true false ⊥⊥ ⊥ ⊥ ⊥

or is sequential, but por is not.

92/104



UNDEFINABILITY OR PARALLEL OR

There is no closed PCF term 𝑡 : bool -> bool -> bool

satisfying
�𝑡� = por : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ .

93/104



FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

94/104



FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> bool
�𝑇true� ≠ �𝑇false� ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

94/104



FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> bool
�𝑇true� ≠ �𝑇false� ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

Idea:

• for all 𝑓 ∈ 𝑃𝐶𝐹bool->bool->bool, ensure 𝑇𝑏 𝑓 ⇑bool…
• but

�𝑇𝑏� (por) = �𝑏�.

94/104



EXAMPLE OF FULL ABSTRACTION FAILURE

𝑇𝑏 def= fun 𝑓 : bool -> (bool -> bool).
if(𝑓 true Ωbool) then
if (𝑓 Ωbool true) then
if (𝑓 false false) then Ωbool else 𝑏

else Ωbool
else Ωbool

95/104









FULL ABSTRACTION
BEYOND FULL ABSTRACTION FAILURE



INTERPRETING FULL ABSTRACTION FAILURE

• PCF is not expressive enough to present the model?
• The model does not adequately capture PCF?
• Contexts are too weak: they do not distinguish enough programs?

96/104



PCF+porΓ ⊢ 𝑡 : 𝜏 … POR
Γ ⊢ 𝑡1 : 𝜏 Γ ⊢ 𝑡2 : 𝜏Γ ⊢ por(𝑡1, 𝑡2) : 𝜏𝑡 ⇓𝜏 𝑣

PORL
𝑡1 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true PORR
𝑡2 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true
PORF

𝑡1 ⇓bool false 𝑡2 ⇓bool false
por(𝑡1, 𝑡2) ⇓bool false

97/104



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

�por� = por
the resulting denotational semantics is fully abstract.

98/104



FULL ABSTRACTION FOR PCF+por

If we extend the semantics of PCF to PCF+por with

�por� = por
the resulting denotational semantics is fully abstract…

but is PCF+por still a reasonable model of programming language?

98/104



FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF
• first step: dI-domains & stable functions → no por any more, but still not fully
abstract…

• only proper answers in the late 90s (!): logical relations and game semantics

99/104



FULLY ABSTRACT SEMANTICS

Fully abstract semantics for PCF
• first step: dI-domains & stable functions → no por any more, but still not fully
abstract…

• only proper answers in the late 90s (!): logical relations and game semantics

Real languages have effects

• If you add effects (references, control flow…) to a language, contexts become much
more expressive.

• Full abstraction becomes different: somewhat easier… but is contextual equivalence
still a reasonable idea?

99/104



WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

• linear logic
• logical relations
• game semantics
• bisimulations techniques
• …

100/104



CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

101/104



CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow �𝑡� : �Γ� → �𝜏 �.

101/104



CATEGORICAL SEMANTICS

Separate

• the structure needed to interpret a language (generic)
• how to construct this structure in particular examples (specific)

Interpret:

• a type 𝜏 as an object in a category;
• a term Γ ⊢ 𝑡 : 𝜏 as a morphism/arrow �𝑡� : �Γ� → �𝜏 �.

Example: λ-calculus → cartesian closed categories

101/104



DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml’s ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

It is a fixed point equation! We can use domain theory to solve it.

102/104



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

103/104



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

103/104



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output…
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)
Denotation of a computation: �Γ� → 𝑇(�𝜏 �)

103/104



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

104/104



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.

104/104


