Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type τ , $t \downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PcF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \downarrow_{\gamma} v$. Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type τ , $t \downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PcF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \downarrow_{\gamma} v$.

Now: back to contextual equivalence...

ADEQUACY Extensionality **Contextual preorder** is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

 $\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

$$\begin{array}{ccc} C[t] \Downarrow_{\gamma} v \Rightarrow C[t'] \Downarrow_{\gamma} v. \\ \gamma = & \text{true on false} \\ \varphi & \text{not} & 0 & \underline{\mathcal{M}} \end{array}$$

 $\Gamma \vdash t \cong_{\mathsf{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\mathsf{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\mathsf{ctx}} t : \tau)$

Let au be a type, and assume $t_1, t_2 \in \mathsf{PCF}_{ au}$ are such that $t_1 \leq_{\mathrm{ctx}} t_2 : au$. Then

By induction on T: mat: Take G = - then (Et1)=t1 GTt1)=t2 Bly cont. prealer: ([t] UN=> ([t] UN t', (2) By the versions emma date => d x may te bool: nimila

Tot: Ned if dant, and antit Take e E [[T], MERGE: NT. equ Assumption: de azity u By IN out it is enough to show the suder the to get de ten. $\mathcal{E}[t_{y}u] = \mathcal{E}'[t_{x}] \text{ for } \mathcal{E}' = \mathcal{E}[-u]$ and no $t_{x} \leq c_{x}v_{x}$ thue $t_{y}u \leq c_{x}v_{x}$

To characterise contextual preorder between closed terms, **applicative** contexts are enough.

To characterise contextual preorder between closed terms, applicative contexts are enough.

Let t_1, t_2 be closed terms of type τ . Then $t_1 \leq_{\mathrm{ctx}} t_2 : \tau$ if and only if, for every term $f : \tau \to \mathsf{bool}$,

 $f t_1 \downarrow_{\text{bool}} \text{true} \Rightarrow f t_2 \downarrow_{\text{bool}} \text{true}.$

 $\exists if t_1 \leq t_2 \quad Hen (i -)[t_1] \Rightarrow (i -)[t_1]$ It, Vo It, Vo El Assume UP EPCF , pool, Stalt time aft. Utime? let be a context: . F. , t G: y with & shop Define f := fern a: T. C[2] We want GEtz] W, v » GEtz] W, v Define + g, v: X » bool x. g u W true es u W v

Apply lossimption with good (good)(t) I true = (good)(t) I true et, Vo P.St. Vo CITY WV

Formal approximation corresponds to the contextual preorder.

Formal approximation corresponds to the contextual preorder.

For all PCF types au and all closed terms $t_1, t_2 \in \mathsf{PCF}_{ au}$

 $t_1 \leq_{\mathrm{ctx}} t_2 : \tau \Leftrightarrow \llbracket t_1 \rrbracket \triangleleft_{\tau} t_2.$

I tosume the scrite Dy pendemental theorem: It, D<12t1 By monstanicity: It, D<22t2 El Assume Itji) 47 te It is change to show that for all f: T-> bool of to ytime them of to y true Dy the fundamental lemma of 2 - T-> hood of So TID (TEA) Close ft.

(Tgts)

top ft,

gts the state of the (soundness)

=) gte it true (def of those)

For $\gamma = \texttt{bool}$ or nat, $t_1 \leq_{\texttt{ctx}} t_2 : \gamma$ holds if and only if

 $\forall v. (t_1 \Downarrow_{\gamma} v \Rightarrow t_2 \Downarrow_{\gamma} v).$

For $\gamma = \text{bool or nat}, t_1 \leq_{\text{ctx}} t_2 : \gamma$ holds if and only if

 $\forall \nu. (t_1 \Downarrow_{\gamma} \nu \Rightarrow t_2 \Downarrow_{\gamma} \nu).$

At a function type $\tau \to \tau'$, $t_1 \leq_{\text{ctx}} t_2 : \tau \to \tau'$ holds if and only if $\forall t \in \mathsf{PCF}_{\tau} . (t_1 t \leq_{\text{ctx}} t_2 t : \tau').$

FULL ABSTRACTION

FULL ABSTRACTION

FAILURE OF FULL ABSTRACTION

A denotational model is **fully abstract** if

$$t_1 \cong_{\mathsf{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A denotational model is **fully abstract** if

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau \Longrightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of **completeness** of semantic equivalence wrt. program equivalence.

A denotational model is **fully abstract** if

$$t_1 \cong_{\mathrm{ctx}} t_2 : \tau \Longrightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A form of completeness of semantic equivalence wrt. program equivalence.

The domain model of PCF is **not** fully abstract.

The parallel or function $\text{por} : \mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ is defined as given by the following table:

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\bot

The (left) sequential or function $or: \mathbb{B}_\perp \times \mathbb{B}_\perp \to \mathbb{B}_\perp$ is defined as

or $\stackrel{\text{def}}{=} \llbracket \text{fun } x : \text{bool. fun } y : \text{bool. if } x \text{ then true else } y \rrbracket$

It is given by the following table:

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\bot

por	true	false	\perp	or	true	false	\perp
true	true	true	true	true	true	true	true
false	true	false	\perp	false	true	false	\perp
\perp	true	\perp	\perp	\perp	T	\perp	\perp

por	true	false	\perp	or	true	false	\perp
true	true	true	true	true	true	true	true
false	true	false	\perp	false	true	false	\perp
\perp	true	\perp	\perp	\perp	T	\perp	\perp

or is sequential, but por is not.

There is **no** closed PCF term

 $t: bool \rightarrow bool \rightarrow bool$

satisfying

$$\llbracket t \rrbracket = \operatorname{por} : \mathbb{B}_{\perp} \to \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$$
.

The denotational model of PCF in domains and continuous functions is not fully abstract.

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$T_{\text{true}} \cong_{\text{ctx}} T_{\text{false}} : (\text{bool} \to \text{bool} \to \text{bool}) \to \text{bool}$$
$$[\![T_{\text{true}}]\!] \neq [\![T_{\text{false}}]\!] \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B}$$

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$T_{\text{true}} \cong_{\text{ctx}} T_{\text{false}} : (\text{bool} \to \text{bool} \to \text{bool}) \to \text{bool}$$
$$[[T_{\text{true}}]] \neq [[T_{\text{false}}]] \in (\mathbb{B} \to \mathbb{B} \to \mathbb{B}) \to \mathbb{B}$$

Idea:

- for all $f \in PCF_{bool \rightarrow bool \rightarrow bool}$, ensure $T_b f \uparrow_{bool}$...
- but $\llbracket T_b \rrbracket$ (por) = $\llbracket b \rrbracket$.

```
 \begin{array}{l} T_b \stackrel{\mathrm{def}}{=} & \mathrm{fun}\,f{:}\,\mathrm{bool}\to(\mathrm{bool}\to\mathrm{bool}).\\ & \mathrm{if}(f\,\mathrm{true}\,\Omega_{\mathrm{bool}})\,\mathrm{then}\\ & \mathrm{if}\,(f\,\Omega_{\mathrm{bool}}\,\mathrm{true})\,\mathrm{then}\\ & \mathrm{if}\,(f\,\mathrm{false}\,\mathrm{false})\,\mathrm{then}\,\Omega_{\mathrm{bool}}\,\mathrm{else}\,b\\ & \mathrm{else}\,\Omega_{\mathrm{bool}}\\ & \mathrm{else}\,\Omega_{\mathrm{bool}} \end{array}
```

TTb1) (por) = 76 1

 \checkmark