
WHERE WE’RE AT

We want:

• a mapping of PCF types 𝜏 to domains J𝜏 K;✓
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;✓
• denotation of open terms will be continuous functions.✓

Such that:

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.✓
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✓
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✗

1/1



WHERE WE’RE AT

We want:

• a mapping of PCF types 𝜏 to domains J𝜏 K;✓
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;✓
• denotation of open terms will be continuous functions.✓

Such that:

Compositionality: J𝑡K = q𝑡′y ⇒ q
C[𝑡]y = q

C[𝑡′]y.✓
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.✓
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .✗

1/1



RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS



REMINDER: ADEQUACY

For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}
�𝑡� = �𝑣� ∈ �𝛾� ⇒ 𝑡 ⇓𝛾 𝑣
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�𝑡� = �𝑣� ∈ �𝛾� ⇒ 𝑡 ⇓𝛾 𝑣

Adequacy does not hold at function types or for open terms
�
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥� = �fun 𝑥: 𝜏 . 𝑥� : �𝜏 � → �𝜏 �

but
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥/⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
FORMAL APPROXIMATION RELATION



HOW TO PROVE ADEQUACY

Proof idea: introduce a relation 𝑅 such that

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡);
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1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);
2. for any well-typed term 𝑡 , 𝑅(�𝑡� , 𝑡);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation⊲𝜏⊆ �𝜏 � × PCF𝜏
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FORMAL APPROXIMATION AT BASE TYPES

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)∧(𝑑 = false ⇒ 𝑡 ⇓bool false)
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𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)∧(𝑑 = false ⇒ 𝑡 ⇓bool false)
Exactly what we need to get 1.

Note though that ⊥ ⊲nat 𝑡 for any 𝑡 ∈ PCFnat.
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FORMAL APPROXIMATION AT FUNCTION TYPES

1. if 𝑡 ∈ PCFnat, 𝑛 ∈ ℕ, and 𝑅(𝑛, 𝑡), then 𝑡 ⇓𝛾 𝑛 (same for booleans);✓
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Assume �𝑢� ⊲𝜏 𝑢 and �𝑡� ⊲𝜏->𝜏 ′ 𝑡 , how do we get �𝑡 𝑢� = �𝑡� (�𝑢�) ⊲𝜏 𝑡 𝑢?
Define 𝑑 ⊲𝜏->𝜏 ′ 𝑡 def⇔ ∀𝑒 ∈ �𝜏 � , 𝑢 ∈ PCF𝜏 .(𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏′ 𝑡 𝑢)
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FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove Item 2, we need to talk about open terms.
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Given a term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 for some Γ and 𝜏 , for any environment 𝜌 and
substitution 𝜎 such that 𝜌 ⊲Γ 𝜎 , we have �𝑡� (𝜌) ⊲𝜏 𝑡[𝜎].
Parallel substitution: maps each 𝑥 ∈ dom(Γ) to 𝜎(𝑥) ∈ PCFΓ(𝑥).
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION



PROPERTIES OF FORMAL APPROXIMATION

1. The least element approximates any program: for any 𝜏 and 𝑡 ∈ PCF𝜏 , ⊥�𝜏 � ⊲𝜏 𝑡 ;
2. the set {𝑑 ∈ �𝜏 � ∣ 𝑑 ⊲𝜏 𝑡} is chain-closed;
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RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
EXTENSIONALITY



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder is the one-sided version of contextual equivalence: Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏
if for all C such that ⋅ ⊢Γ,𝜏 C : 𝛾 and for all values 𝑣 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .
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Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 ⇔ (Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 ∧ Γ ⊢ 𝑡′ ≤ctx 𝑡 : 𝜏 )

It corresponds to formal approximation: for all PCF types 𝜏 and closed terms𝑡1, 𝑡2 ∈ PCF𝜏 𝑡1 ≤ctx 𝑡2 : 𝜏 ⇔ �𝑡1� ⊲𝜏 𝑡2.
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LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.
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LEMMA: APPLICATION CONTEXTS

For contextual preorder between closed terms, applicative contexts are enough.

Let 𝑡1, 𝑡2 be closed terms of type 𝜏 . Then 𝑡1 ≤ctx 𝑡2 : 𝜏 if and only if, for every term𝑓 : 𝜏 → bool, 𝑓 𝑡1 ⇓bool true ⇒ 𝑓 𝑡2 ⇓bool true.
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EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For 𝛾 = bool or nat, 𝑡1 ≤ctx 𝑡2 : 𝜏 holds if and only if∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).
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EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For 𝛾 = bool or nat, 𝑡1 ≤ctx 𝑡2 : 𝜏 holds if and only if∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).
At a function type 𝜏 -> 𝜏 ′, 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′ holds if and only if∀𝑡 ∈ PCF𝜏 . (𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′).
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