Where we're at

We want:

- \cdot a mapping of PCF types au to domains $[\![au]\!];$
- a mapping of closed, well-typed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

WHERE WE'RE AT

We want:

- \cdot a mapping of PCF types au to domains $[\![au]\!];$
- a mapping of closed, well-typed PCF terms $\vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

Such that:

Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$. Soundness: for any type $\tau, t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$.

Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PCF}_{\gamma}$ and [t] = [v] then $t \downarrow_{\gamma} v$.

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v$

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v$

Adequacy does not hold at function types or for open terms

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

$$\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v$$

Adequacy does not hold at function types or for open terms

$$\llbracket \mathsf{fun} x: \tau. (\mathsf{fun} y: \tau. y) x \rrbracket = \llbracket \mathsf{fun} x: \tau. x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

fun
$$x: \tau$$
. (fun $y: \tau$. y) $x \not \models_{\tau \to \tau}$ fun $x: \tau$. x

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS FORMAL APPROXIMATION RELATION

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans); 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Thus $v = \underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket = n$.

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans); 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Thus $v = \underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket = n$.

$$\llbracket t \rrbracket = \llbracket \underline{n} \rrbracket = n$$

$$\Rightarrow R(n, t)$$

$$\Rightarrow t \Downarrow \underline{n} = v$$

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{Y} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

But at non-base types, adequacy does not hold.

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_V \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

But at non-base types, adequacy does not hold.

We must define a family of relations, tailored for each type: formal approximation

 $\lhd_\tau \subseteq \llbracket \tau \rrbracket \times \mathrm{PCF}_\tau$

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false})$$

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false}$$

Exactly what we need to get 1.

$$d \triangleleft_{nat} t \stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{nat} \underline{d})$$
$$d \triangleleft_{bool} t \stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{bool} \text{true})$$
$$\wedge (d = \text{false} \Rightarrow t \Downarrow_{bool} \text{false}$$

Exactly what we need to get 1.

Note though that $\perp \triangleleft_{nat} t$ for any $t \in PCF_{nat}$.

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.

FORMAL APPROXIMATION AT FUNCTION TYPES

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

FORMAL APPROXIMATION AT FUNCTION TYPES

- 1. if $t \in \mathrm{PCF}_{\mathsf{nat}}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$APP \xrightarrow{\vdash t: \tau \to \tau' \vdash u: \tau}{\vdash t \, u: \tau'}$$

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$\operatorname{App} \frac{\vdash t: \tau \to \tau' \quad \vdash u: \tau}{\vdash t \; u: \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \to \tau'} t$, how do we get $\llbracket t u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \triangleleft_{\tau} t u$?

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans);
- 2. for any well-typed term $t, R(\llbracket t \rrbracket, t)$.
 - 2.1 By induction on (the typing derivation of) *t*;
 - 2.2 we need to interpret each typing rule.

$$\mathsf{APP} \xrightarrow{\vdash t : \tau \to \tau' \quad \vdash u : \tau}{\vdash t \; u : \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \to \tau'} t$, how do we get $\llbracket t u \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket) \triangleleft_{\tau} t u$? **Define**

$$d \triangleleft_{\tau \to \tau'} t \stackrel{\text{def}}{\Leftrightarrow} \forall e \in \llbracket \tau \rrbracket, u \in \text{PCF}_{\tau} . (e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau'} t u)$$

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application pprox syntactic substitution

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application \approx syntactic substitution

Fundamental property of formal approximation

Given a term t such that $\Gamma \vdash t : \tau$ for some Γ and τ , for any environment ρ and substitution σ such that $\rho \triangleleft_{\Gamma} \sigma$, we have $\llbracket t \rrbracket (\rho) \triangleleft_{\tau} t[\sigma]$.

$$ABS \frac{\Gamma, x: \tau \vdash t: \tau'}{\Gamma \vdash \operatorname{fun} x: \tau. t: \tau \to \tau'}$$

 $\llbracket t \rrbracket (\llbracket u \rrbracket) = \llbracket (t \llbracket u / x \rrbracket) \rrbracket$ Semantic application \approx syntactic substitution

Fundamental property of formal approximation

Given a term t such that $\Gamma \vdash t : \tau$ for some Γ and τ , for any environment ρ and substitution σ such that $\rho \triangleleft_{\Gamma} \sigma$, we have $\llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma]$.

Parallel substitution: maps each $x \in \text{dom}(\Gamma)$ to $\sigma(x) \in \text{PCF}_{\Gamma(x)}$. $\sigma \in \text{Tr} \quad \text{edom}(\Gamma)$

83/99

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS PROOF OF THE FUNDAMENTAL PROPERTY OF FORMAL APPROXIMATION

1. The least element approximates any program: for any τ and $t \in \text{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;

2. the set $\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} t\}$ is chain-closed;

1. prany te, teRE ITEL t induction T nat/Dool: (IntEN=)...) vacuously Twe false a tres VdcTTJ, the ties VacTTI, DuePE, dazu szalajaitu TAT: we need for [[] 4 - Til -FE'D IH: - TT'I Z, tu

1. The least element approximates any program: for any τ and $t \in \text{PCF}_{\tau}, \perp_{\llbracket \tau \rrbracket} \triangleleft_{\tau} t$;

2. the set $\{d \in \llbracket \tau \rrbracket \mid d \triangleleft_{\tau} t\}$ is chain-closed;

3. if $\forall v. t \downarrow_{\tau} v \Rightarrow t' \downarrow_{\tau} v$, and $d \triangleleft_{\tau} t$, then $d \triangleleft_{\tau} t'$.

 $t \bigvee_{\tau \neq t} \Rightarrow t' \bigvee_{\tau \neq t'}$ MERCE tu Var >t'u Va, V

PROOF OF THE FUNDAMENTAL PROPERTY

-

fx: <u>Frfize</u> e, o ([[0]]) IH: [g](e) ----ne need Tjörfl(e) a: (fird) to) fix [[](e) ~ fix (f [0]) enough: dates of => fix d at fix of Scott induction! S= Sectol/en; fixg} contains 1 and chain dered (1,2 before)

5 stable moder d: ees (e = fix 3) Nonor d(e) ES assumption: d == TeETIT, the PCE, e=24 d(e) = g(u) del a fix y but de a 3 (fing) but by 3. s(fix s) Ur \$ d(e) a fixe fix うしい

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS EXTENSIONALITY

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

 $\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

$$\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$$

$$\Gamma \vdash t \cong_{\mathrm{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\mathrm{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\mathrm{ctx}} t : \tau)$$

Contextual preorder is the one-sided version of contextual equivalence: $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ if for all C such that $\cdot \vdash_{\Gamma,\tau} C : \gamma$ and for all values ν ,

$$\mathcal{C}[t] \Downarrow_{\gamma} \nu \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} \nu.$$

$$\Gamma \vdash t \cong_{\mathrm{ctx}} t' : \tau \Leftrightarrow (\Gamma \vdash t \leq_{\mathrm{ctx}} t' : \tau \land \Gamma \vdash t' \leq_{\mathrm{ctx}} t : \tau)$$

It corresponds to formal approximation: for all PCF types τ and closed terms $t_1, t_2 \in \text{PCF}_{\tau}$

$$t_1 \leq_{\mathrm{ctx}} t_2 : \tau \Leftrightarrow \llbracket t_1 \rrbracket \triangleleft_{\tau} t_2.$$

For contextual preorder between closed terms, applicative contexts are enough.

For contextual preorder between closed terms, applicative contexts are enough.

Let t_1, t_2 be closed terms of type τ . Then $t_1 \leq_{\mathrm{ctx}} t_2 : \tau$ if and only if, for every term $f : \tau \to \mathrm{bool}$,

$$f t_1 \downarrow_{\text{bool}} \text{true} \Rightarrow f t_2 \downarrow_{\text{bool}} \text{true}.$$

For $\gamma = \texttt{bool}$ or nat, $t_1 \leq_{\texttt{ctx}} t_2 : \tau$ holds if and only if

 $\forall v. (t_1 \Downarrow_{\gamma} v \Rightarrow t_2 \Downarrow_{\gamma} v).$

For $\gamma = \text{bool or nat}, t_1 \leq_{\text{ctx}} t_2 : \tau$ holds if and only if $\forall \nu. (t_1 \Downarrow_{\gamma} \nu \Rightarrow t_2 \Downarrow_{\gamma} \nu).$

At a function type $\tau \to \tau'$, $t_1 \leq_{\text{ctx}} t_2 : \tau \to \tau'$ holds if and only if $\forall t \in \text{PCF}_{\tau} . (t_1 \ t \leq_{\text{ctx}} t_2 \ t : \tau').$