We want:

- \cdot a mapping of PCF types au to domains $[\![au]\!];$ 🗸
- a mapping of closed, well-typed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

We want:

- \cdot a mapping of PCF types au to domains $[\![au]\!];$
- a mapping of closed, well-typed PCF terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms will be continuous functions.

Such that:

Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket C[t] \rrbracket = \llbracket C[t'] \rrbracket$. Soundness: for any type $\tau, t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$. Adequacy: for $\gamma = \text{bool}$ or nat, if $t \in \text{PCF}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \Downarrow_{\gamma} v$.

DENOTATIONAL SEMANTICS FOR PCF

To every typing judgement

$$\Gamma \vdash t : \tau$$

we associate a continuous function

 $\llbracket \Gamma \vdash t : \tau \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

between domains. In other words,

 $\llbracket - \rrbracket : \mathrm{PCF}_{\Gamma, \tau} \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

succ: $\mathbb{N} \to \mathbb{N}$ pred: $\mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$ $0 \mapsto \text{undefined}$ $rac{rec}{n+1} \mapsto n$ zero?: $\mathbb{N} \to \mathbb{B}$ $0 \mapsto \text{true}$ $n+1 \mapsto \text{false}$

$$\operatorname{succ}_{\perp} : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \qquad \operatorname{pred}_{\perp} : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \\ n \mapsto n+1 \\ \perp \mapsto \perp \qquad \qquad n+1 \mapsto n \\ 1 \mapsto \mu \mapsto \mu$$

$$zero?_{\perp}: \mathbb{N}_{\perp} \to \mathbb{B}_{\perp}$$

$$0 \mapsto true$$

$$n+1 \mapsto false$$

$$\perp \mapsto \perp$$

$$\llbracket \emptyset \rrbracket(\rho) \stackrel{\text{def}}{=} 0 \qquad \in \mathbb{N}_{\perp}$$
$$\llbracket \text{true} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{true} \qquad \in \mathbb{B}_{\perp}$$
$$\llbracket \text{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \text{false} \qquad \in \mathbb{B}_{\perp}$$

$$\begin{bmatrix} \emptyset \end{bmatrix}(\rho) \stackrel{\text{def}}{=} 0 \qquad \in \mathbb{N}_{\perp}$$

$$\begin{bmatrix} \text{true} \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{true} \qquad \in \mathbb{B}_{\perp}$$

$$\begin{bmatrix} \text{false} \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{false} \qquad \in \mathbb{B}_{\perp}$$

$$\begin{bmatrix} \text{succ}(t) \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{succ}_{\perp}(\llbracket t \rrbracket(\rho)) \qquad \in \mathbb{N}_{\perp}$$

$$\begin{bmatrix} \text{pred}(t) \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \text{pred}_{\perp}(\llbracket t \rrbracket(\rho)) \qquad \in \mathbb{N}_{\perp}$$

$$\text{zero}?(t) \rrbracket(\rho) \stackrel{\text{def}}{=} \text{zero}?_{\perp}(\llbracket t \rrbracket(\rho)) \qquad \in \mathbb{B}_{\perp}$$

$$\llbracket \operatorname{succ}(t) \rrbracket = \operatorname{succ}_{\perp} \circ \llbracket t \rrbracket$$

 $\llbracket 0 \rrbracket (
ho) \stackrel{\mathrm{def}}{=} 0$ $\in \mathbb{N}_{+}$ $[true](
ho) \stackrel{\text{def}}{=} true$ $\in \mathbb{B}_{+}$ $[[false]](\rho) \stackrel{\text{def}}{=} \text{false}$ $\in \mathbb{B}_{+}$ $\llbracket \operatorname{succ}(t) \rrbracket(\rho) \stackrel{\text{def}}{=} \operatorname{succ}_{\perp}(\llbracket t \rrbracket(\rho))$ $\in \mathbb{N}_{+}$ $[[\operatorname{pred}(t)]](\rho) \stackrel{\text{def}}{=} \operatorname{pred}_{\perp}([[t]](\rho))$ $\in \mathbb{N}_{+}$ $\llbracket \operatorname{zero}(t) \rrbracket(\rho) \stackrel{\text{def}}{=} \operatorname{zero}(t) \rrbracket(\rho)$ $\in \mathbb{B}_{+}$ $\llbracket \text{if } b \text{ then } t \text{ else } t' \rrbracket \stackrel{\text{def}}{=} \operatorname{if}(\llbracket b \rrbracket(\rho), \llbracket t \rrbracket(\rho), \llbracket t' \rrbracket(\rho)) \in \llbracket t \rrbracket$ $\llbracket \text{if } b \text{ then } t \text{ else } t' \rrbracket = \text{if } \langle \llbracket b \rrbracket, \langle \llbracket t \rrbracket, \llbracket t' \rrbracket \rangle \rangle$

Denotation of the λ -calculus operations

$$(\mathfrak{X}:\overline{\mathcal{C}})\in \overline{\Gamma} \qquad ([\overline{\Gamma}]] = \overline{\Pi} \qquad [\overline{\Gamma}(\mathcal{L})]$$

$$\overline{\Gamma} + \mathfrak{se}:\overline{\Gamma} \qquad ([\overline{\Gamma}]] = \overline{\Pi} \qquad [[\overline{\Gamma}(\mathcal{L})]] = \overline{\Pi} \qquad [\overline{\Gamma}(\mathcal{L})]$$

$$[[\mathfrak{X}]](\rho) \stackrel{\text{def}}{=} \rho(\mathfrak{X}) \qquad \in [[\Gamma(\mathfrak{X})]$$

$$\llbracket x \rrbracket(\rho) = \pi_x(\rho)$$

$$\begin{bmatrix} x \end{bmatrix}(\rho) \stackrel{\text{def}}{=} \rho(x) \in \llbracket \Gamma(x) \rrbracket$$
$$\begin{bmatrix} t_1 \ t_2 \end{bmatrix}(\rho) \stackrel{\text{def}}{=} (\llbracket t_1 \rrbracket(\rho)) (\llbracket t_2 \rrbracket(\rho))$$

$$\llbracket t_1 t_2 \rrbracket = \operatorname{eval} \circ \langle \llbracket t_1 \rrbracket, \llbracket t_2 \rrbracket$$

$$\operatorname{eval} : (\operatorname{D} \to \widetilde{\mathsf{t}}) \times 1) \to \widetilde{\mathsf{t}}$$

Denotation of the λ -calculus operations

$$\begin{bmatrix} \operatorname{fun} x: \tau. t \end{bmatrix} = \operatorname{cur}(\llbracket t \rrbracket)$$

$$(\bigcup \times \bigcup' \to E) \to \bigcup \to \bigcup' \to E \qquad \bigcup \cdot \llbracket \tau \rrbracket \qquad \bigcup' : \llbracket \tau \rbrack \qquad \Box \\ (\llbracket \tau \rrbracket \times \llbracket \tau \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket \to \llbracket \tau \lor \tau \rbrack \qquad \overline{\tau} \cdot \llbracket \sigma \rrbracket \qquad \overline{\tau} \circ [\overline{\tau} \circ \rrbracket \sigma \rrbracket \qquad \overline{\tau} \to [\overline{\tau} \circ \rrbracket \odot \rrbracket \qquad \overline{\tau} \to [\overline{\tau} \circ \rrbracket$$

$\llbracket \texttt{fix} f \rrbracket(\rho) \stackrel{\text{def}}{=} \texttt{fix}(\llbracket f \rrbracket(\rho))$

For any PCF term t such that $\Gamma \vdash t : \tau$, the object $\llbracket t \rrbracket$ is well-defined and a continuous function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \tau$.

For any PCF term t such that $\Gamma \vdash t : \tau$, the object $\llbracket t \rrbracket$ is well-defined and a continuous function $\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \to \tau$.

DENOTATIONAL SEMANTICS FOR PCF COMPOSITIONALITY

Suppose $t, u \in \text{PCF}_{\Gamma, \tau}$, such that

 $\llbracket t \rrbracket = \llbracket u \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

Suppose moreover that $\mathcal{C}[-]$ is a PCF context such that $\Gamma' \vdash_{\Gamma, \tau} \mathcal{C} : \tau'$. Then

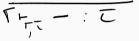
 $\llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[u] \rrbracket : \llbracket \Gamma' \rrbracket \to \llbracket \tau' \rrbracket.$

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

```
\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket
```

A DENOTATION FOR EVALUATION CONTEXTS

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that



If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$, then define $\llbracket \mathcal{C} \rrbracket$ such that

 $\llbracket \mathcal{C} \rrbracket : (\llbracket \Delta \rrbracket \to \llbracket \sigma \rrbracket) \to \llbracket \Gamma \rrbracket \to \llbracket \tau \rrbracket$

If $\Gamma \vdash_{\Delta,\sigma} \mathcal{C} : \tau$ and $\Delta \vdash t : \sigma$, then

 $\llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C} \rrbracket (\llbracket t \rrbracket)$

Assume TED= TUDE EDD - TOD tue PGF And Ft G : T TTEND= [57(IEI) - 1 67 (Fw7) = [TTL]]

Assume

$$\frac{\Gamma \vdash u:\sigma}{\Gamma, x: \sigma \vdash t:\tau} \qquad \nabla \vdash t E' f_{2}]: =$$

Then for all
$$\rho \in \llbracket \Gamma \rrbracket$$

 $\llbracket t[u/x] \rrbracket (\rho) = \llbracket t \rrbracket (\rho[x \mapsto \llbracket u \rrbracket (\rho)]).$
In particular when $\Gamma = \cdot, \llbracket t \rrbracket : \llbracket \sigma \rrbracket \to \llbracket \tau \rrbracket$ and
 $\llbracket t[u/x] \rrbracket = \llbracket t \rrbracket (\llbracket u \rrbracket)$
 $\llbracket \tau \rrbracket : \llbracket \tau : \llbracket \tau \to \tau \to \tau \to \tau \to \tau$

DENOTATIONAL SEMANTICS FOR PCF Soundness

For all PCF types τ and all closed terms $t, v \in PCF_{\tau}$ with v a value, if $t \downarrow_{\tau} v$ is derivable, then

$$[t] = [v] \in [\tau]$$
Poy rule induction on t by \checkmark

t Unat V ync: succ(t) Unat succ (v) IH: [[t] = [[v] e [met] = N] $T_{mac}(I) = M(C_{I}(I)) = M(C_{I}(I)) = I_{M}(I)$

$$\begin{array}{rcl}
\overline{tun} & \underbrace{tul_{s-c}funs:s.t'} & \underbrace{t'[\forall x_{c}]}_{tul_{c}} \\
\overline{tul_{c}} \\
\overline{tul_{c}} \\
\overline{tul_{c}} \\
\overline{tul_{c}} \\
\overline{tul_{c}} \\
\overline{tl} \\$$

Fix: E(fixt) Ve V fit it v IH : [[t(fat)] = [[1] $T_{jix} t T = f_{ix} (T t T)$ $= T t T (f_{ix} T t T)$ = [[t (fixt)] = TVP

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Μ

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

$$[t] = [v] \in [y] \Rightarrow t \downarrow_{y} v$$

$$twe - T \underline{twe}]$$

$$[F] = n \Rightarrow t \forall_{mat} n$$

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

 $\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \downarrow_{\gamma} v$

Adequacy does not hold at function types or for open terms

For any closed PCF term t and value v of ground type $\gamma \in \{nat, bool\}$

$$\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \gamma \rrbracket \Rightarrow t \Downarrow_{\gamma} v$$

Adequacy does not hold at function types or for open terms

$$\llbracket \mathsf{fun} x: \tau. (\mathsf{fun} y: \tau. y) x \rrbracket = \llbracket \mathsf{fun} x: \tau. x \rrbracket : \llbracket \tau \rrbracket \to \llbracket \tau \rrbracket$$

but

fun
$$x: \tau$$
. (fun $y: \tau$. y) $x \not \models_{\tau \to \tau}$ fun $x: \tau$. x

RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS FORMAL APPROXIMATION RELATION

K: Erl-PCF- - Rap

Proof idea: introduce a relation R such that

- 1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);
- 2. for any well-typed term t, R([t], t);

Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_Y \underline{n}$ (same for booleans);

2. for any well-typed term t, R([t], t);

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans); 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Thus $v = \underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket = n$.

Proof idea: introduce a relation R such that

1. if $t \in \text{PCF}_{nat}$, $n \in \mathbb{N}$, and R(n, t), then $t \downarrow_{\gamma} \underline{n}$ (same for booleans); 2. for any well-typed term t, $R(\llbracket t \rrbracket, t)$;

Assume $t, v \in \mathrm{PCF}_{\mathsf{nat}}$, $\llbracket t \rrbracket = \llbracket v \rrbracket$, and v is a value.

Thus $v = \underline{n}$ for some $n \in \mathbb{N}$, and $\llbracket v \rrbracket = n$.

$$\llbracket t \rrbracket = \llbracket \underline{n} \rrbracket = n$$

$$\Rightarrow R(n, t)$$

$$\Rightarrow t \Downarrow \underline{n} = v$$