Where we're at

- The (denotational) semantic of recursive definitions (e.g. loops) is a fixed point: some w such that $F(w)=w$;
- it seems we can compute such fixed points by iterating F on some minimal element.

Where we're at

- The (denotational) semantic of recursive definitions (e.g. loops) is a fixed point: some w such that $F(w)=w$;
- it seems we can compute such fixed points by iterating F on some minimal element.
- If D is a poset and $f: D \rightarrow D$ is monotone and has a least pre-fixed point fix f then $f(\operatorname{fix}(f))=\operatorname{fix}(f)$.

Least Fixed Points

LEAST UPPER BOUNDS

LEAST UPPER BOUND OF A CHAIN

The least upper bound of countable increasing chains $d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$, written $\bigsqcup_{n \geq 0} d_{n}$, satisfies the two following properties:

$$
\text { LUB-BOUND } \overline{x_{i} \sqsubseteq \bigsqcup_{n \geq 0} x_{n}}
$$

$$
\text { LUB-LEAST } \frac{\forall n \geq 0 . x_{n} \sqsubseteq x}{\bigsqcup_{n \geq 0} x_{n} \sqsubseteq x}
$$

Lubs are unique.

PROPERTIES OF LUBS

Labs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$. \uparrow
Bread $d_{M} \leqslant e_{\mu}$
least $\frac{\lambda_{\mu} \cdot d_{\mu} \leq L_{\mu} e_{\mu}}{l_{\mu} d_{\mu} \leq U_{\mu} e_{\mu}}$

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

$$
\text { LUB-MON } \frac{\forall i . d_{i} \sqsubseteq e_{i}}{\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}}
$$

PROPERTIES OF LUBS

Lubs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

For any $d, \bigsqcup_{n} d=d$.

Properties of tubs

Labs are unique.

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$.

For any $d, \bigsqcup_{n} d=d$.

$$
d_{i} \sqsubseteq d_{1} \cdots-\Gamma d_{N} \subseteq d_{N+1}
$$

For any chain and $N \in \mathbb{N}, \bigsqcup_{n} d_{n}=\bigsqcup_{n} d_{n+N}$.

PROPERTIES OF LUBS

Lubs are unique (if they exist).

Lubs are monotone: if for all $n \in \mathbb{N}$. $d_{n} \sqsubseteq e_{n}$, then $\bigsqcup_{n} d_{n} \sqsubseteq \bigsqcup_{n} e_{n}$ (if they exist).

For any $d, \bigsqcup_{n} d=d$ (and in particular it exists).

For any chain and $N \in \mathbb{N}, \bigsqcup_{n} d_{n}=\bigsqcup_{n} d_{n+N}$ (if any of the two exists).

DIAGONALISATION

Assume $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \wedge n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

DIAGONALISATION

Assume $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \wedge n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then, assuming they exist, the lubs form two chains

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 3} \sqsubseteq \ldots
$$

DIAGONALISATION

Assume $d_{m, n} \in D(m, n \geq 0)$ satisfies

$$
m \leq m^{\prime} \wedge n \leq n^{\prime} \Rightarrow d_{m, n} \sqsubseteq d_{m^{\prime}, n^{\prime}}
$$

Then, assuming they exist, the lubs form two chains

$$
\bigsqcup_{n \geq 0} d_{0, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{1, n} \sqsubseteq \bigsqcup_{n \geq 0} d_{2, n} \sqsubseteq \ldots
$$

and

$$
\bigsqcup_{m \geq 0} d_{m, 0} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 1} \sqsubseteq \bigsqcup_{m \geq 0} d_{m, 3} \sqsubseteq \ldots
$$

Moreover, again assuming they exist,

$$
\bigsqcup_{m \geq 0}\left(\bigsqcup_{n \geq 0} d_{m, n}\right)=\bigsqcup_{k \geq 0} d_{k, k}=\bigsqcup_{n \geq 0}\left(\bigsqcup_{m \geq 0} d_{m, n}\right)
$$

Asym $\prod_{m}^{m}\left(l_{r} d_{m, m}\right)=u_{k} d k, k$

Least Fixed Points

COMPLETE PARTIAL ORDERS AND DOMAINS

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_{i} form a chain!

CPOS AND DOMAINS

A chain complete poset/cpo is a poset (D, \sqsubseteq) in which all chains have least upper bounds.

Beware: the lub need only exist if the x_{i} form a chain!

A domain is a cpo with a least element \perp.

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

Lub of a chain: $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ has lub f such that

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right) \text { for some } n \\ \text { undefined } & \text { otherwise }\end{cases}
$$

DOMAIN OF PARTIAL FUNCTIONS

Least element: \perp is the totally undefined function.

Lub of a chain: $f_{0} \sqsubseteq f_{1} \sqsubseteq f_{2} \sqsubseteq \ldots$ has lub f such that

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } x \in \operatorname{dom}\left(f_{n}\right) \text { for some } n \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Beware: the definition of $\bigsqcup_{n \geq 0} f_{n}$ is unambiguous only if the f_{i} form a chain!

THE FLAT NATURAL NUMBERS \mathbb{N}_{\perp}

Least Fixed Points

Continuous functions

CONTINUITY AND STRICTNESS

Given two cpos D and E, a function $f: D \rightarrow E$ is continuous if

- it is monotone, and
- it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, we have

$$
f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right)
$$

CONTINUITY AND STRICTNESS

Given two cos D and E, a function $f: D \rightarrow E$ is continuous if

- it is monotone, and
- it preserves lubs of chains, i.e. for all chains $d_{0} \sqsubseteq d_{1} \sqsubseteq \ldots$ in D, we have

$$
\begin{aligned}
& f\left(\bigsqcup_{n \geq 0} d_{n}\right)=\bigsqcup_{n \geq 0} f\left(d_{n}\right) M_{\text {on d }} d_{n} I\left(U_{n} d_{n}\right. \\
& \text { Least } \frac{V_{m} f\left(d_{n}\right) I f\left(U_{n} d_{n}\right)}{U_{n} f\left(d_{n}\right) \leq f\left(U_{m} d_{n}\right)}
\end{aligned}
$$

All computable functions are continuous.

All computable functions are continuous.

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

$$
\begin{array}{ccccccc}
0 & 0 & \perp & \ldots & & & \mapsto \perp \\
0 & 0 & 0 & 0 & 1 & \ldots & \mapsto 1 \\
& & & & & & \\
0 & 0 & 0 & 0 & 0 & \overline{0} & \mapsto 0
\end{array}
$$

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

0	0	\perp	\ldots			$\mapsto \perp$
0	0	0	0	1	\ldots	$\mapsto 1$
0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	$\overline{0}$	$\mapsto 0$

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0 "?

0	0	\perp	\ldots							$\mapsto \perp$
0	0	0	0	1	\ldots					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	\ldots	$\mapsto \perp$
0	0	0	0	0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	0					$\mapsto 0$

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\perp	\ldots							$\mapsto \perp$
0	0	0	0	1	\ldots					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	\ldots	$\mapsto \perp$
0	0	0	0	0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	$\overline{0}$					$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability

THESIS

All computable functions are continuous.

The typical non-continuous function: "is a sequence the constant 0"?

0	0	\perp	\ldots							$\mapsto \perp$
0	0	0	0	1	\ldots					$\mapsto 1$
0	0	0	0	0	0	0	0	\perp	\ldots	$\mapsto \perp$
0	0	0	0	0	0	0	0	0	\ldots	$\mapsto ?$
0	0	0	0	0	0					$\mapsto 0$

Intuition: non-continuity \approx "jump at infinity" \approx non-computability
Later in the course: show the thesis... by giving a denotational semantics.

Least Fixed Points

Kleene's fixed point theorem

KLeEne's FIXED POINT THEOREM

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$
\operatorname{fix}(f)=\bigsqcup_{n \geq 0} f^{n}(\perp) . \quad \underline{1} 5 f(\perp)
$$

KLeEne's fixed point theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D. Then f possesses a least pre-fixed point, given by

$$
\operatorname{fix}(f)=\bigsqcup_{n \geq 0} f^{n}(\perp)
$$

It is thus also the least fixed point of f !

Take e atrfixed point of f

$$
\frac{\forall \mu f^{\mu}(t) \subseteq e}{U_{\mu} f^{\mu}(1) \underline{E}}
$$

By induction on ~:

$$
\begin{aligned}
& f^{0}(1)=1 E e^{I H} \\
& f^{n+1}(1)=f\left(f^{n}(1)\right)^{I n} E f(e) \sqsubseteq e
\end{aligned}
$$

So $L_{r} f^{n}(t)$ is smallen than all fre fied noints

$$
\begin{array}{r}
f\left(L_{\mu} p^{m}(t)\right) \leq L_{\mu} f^{\mu}(1) \\
\text { monostoncity } U_{m} f^{n-1}(L)^{\prime \prime}
\end{array}
$$

Constructions on Domains

Constructions on Domains

FLAT DOMAINS

Flat domain on X

The flat domain on a set X is defined by:

- its underlying set $X \biguplus\{\perp\}$;
- $x \sqsubseteq x^{\prime}$ if either $x=\perp$ or $x=x^{\prime}$.

FLAT DOMAIN LIFTING

Let $f: X \rightharpoonup Y$ be a partial function between two sets. Then

$$
\begin{aligned}
f_{\perp}: X_{\perp} & \rightarrow Y_{\perp} \\
d & \mapsto \begin{cases}f(d) & \text { if } d \in X \text { and } f \text { is defined at } d \\
\perp & \text { if } d \in X \text { and } f \text { is not defined at } d \\
\perp & \text { if } d=\perp\end{cases}
\end{aligned}
$$

defines a continuous function between the corresponding flat domains.

Constructions on Domains

Products of domains

BINARY PRODUCT

The product of two posets $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \wedge d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \wedge d_{2} \sqsubseteq_{2} d_{2}^{\prime}
$$

BINARY PRODUCT

The product of two posets $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ has underlying set

$$
D_{1} \times D_{2}=\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in D_{1} \wedge d_{2} \in D_{2}\right\}
$$

and partial order \sqsubseteq defined by

$$
\begin{gathered}
\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \stackrel{\text { def }}{\Leftrightarrow} d_{1} \sqsubseteq_{1} d_{1}^{\prime} \wedge d_{2} \sqsubseteq_{2} d_{2}^{\prime} \\
\text { РО× } \frac{d_{1} \sqsubseteq_{1} d_{1}^{\prime} \quad d_{2} \sqsubseteq_{2} d_{2}^{\prime}}{\left(d_{1}, d_{2}\right) \sqsubseteq\left(d_{1}^{\prime}, d_{2}^{\prime}\right)}
\end{gathered}
$$

COMPONENTWISE LUBS AND LEAST ELEMENTS
lubs of chains are computed componentwise:

$$
\begin{aligned}
& \left(d_{1, \mu,} d_{c, \mu}\right)\left[\left(d_{1, \mu+1}, d_{c, \mu+1}\right)\right. \\
& d_{1, \mu}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i, i / 1} \bigsqcup_{j \geq 0} d_{2, j}\right) . \\
& d_{1, \mu}\left[d_{l, \mu \times 1}\right.
\end{aligned}
$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ have least elements, so does $\left(D_{1} \times D_{2}, \sqsubseteq\right)$ with

$$
\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)
$$

$\left(L_{n} d_{1, n}, L_{1 m} d_{L n}\right)$ is a Bub
Say (e, elis an ubs $\left(d_{1, n}, d_{2, s}\right) \subseteq\left(e_{1}, e_{n}\right)$

$$
\begin{aligned}
& \left(d_{1, m}, d_{L, m}\right) \quad\left[\left(l_{m} d_{1, n}, l_{l} d_{2, n}\right)\right. \\
& d_{1, \mu} \Sigma_{1, n} E_{\mu \mu}^{U} d_{1, n}^{U} d_{1, n}
\end{aligned}
$$

COMPONENTWISE LUBS AND LEAST ELEMENTS

lubs of chains are computed componentwise:

$$
\bigsqcup_{n \geq 0}\left(d_{1, n}, d_{2, n}\right)=\left(\bigsqcup_{i \geq 0} d_{1, i}, \bigsqcup_{j \geq 0} d_{2, j}\right)
$$

If $\left(D_{1}, \sqsubseteq_{1}\right)$ and $\left(D_{2}, \sqsubseteq_{2}\right)$ have least elements, so does $\left(D_{1} \times D_{2}\right.$, $\left.\sqsubseteq\right)$ with

$$
\perp_{D_{1} \times D_{2}}=\left(\perp_{D_{1}}, \perp_{D_{2}}\right)
$$

Products of cpos (domains) are cpos (domains).

Functions of two Arguments

A function $f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Functions of two arguments

A function $f:(D \times E) \rightarrow F$ is monotone if and only if it is monotone in each argument separately:

$$
\begin{aligned}
& \forall d, d^{\prime} \in D, e \in E . d \sqsubseteq d^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d^{\prime}, e\right) \\
& \forall d \in D, e, e^{\prime} \in E . e \sqsubseteq e^{\prime} \Rightarrow f(d, e) \sqsubseteq f\left(d, e^{\prime}\right) .
\end{aligned}
$$

Moreover, it is continuous if and only if it preserves lubs in each argument separately:

$$
\begin{aligned}
& f\left(\bigsqcup_{m \geq 0} d_{m}, e\right)=\bigsqcup_{m \geq 0} f\left(d_{m}, e\right) \\
& f\left(d, \bigsqcup_{n \geq 0} e_{n}\right)=\bigsqcup_{n \geq 0} f\left(d, e_{n}\right)
\end{aligned}
$$

DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

$$
\begin{gathered}
\text { monx } \frac{f \text { monotone } \quad x \sqsubseteq x^{\prime} \quad y \sqsubseteq y^{\prime}}{f(x, y) \sqsubseteq f\left(x^{\prime}, y^{\prime}\right)} \\
f\left(\bigsqcup_{m} x_{m}, \bigsqcup_{n} y_{n}\right)=\bigsqcup_{m} \bigsqcup_{n} f\left(x_{m}, y_{n}\right)=\bigsqcup_{k} f\left(x_{k}, y_{k}\right)
\end{gathered}
$$

