Denotational Semantics

Meven Lennon-Bertrand
Lectures for Part II CST 2023/2024

Practicalities

- My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
- Course notes will be updated, keep an eye on the course webpage.

Introduction

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?
- Programming language semantics: what is the (mathematical) meaning of a program?

WHAT IS THIS COURSE ABOUT?

- Formal methods: tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: how to design, implement and reason about programming languages?
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

WHY SHOULD WE CARE?

- Insight: exposes the mathematical "essence" of programming language concepts.

Why should we care?

- Insight: exposes the mathematical "essence" of programming language concepts.
- Language design: feedback from semantic concepts (monads, algebraic effects \& effect handlers...).

Why Should we care?

- Insight: exposes the mathematical "essence" of programming language concepts.
- Language design: feedback from semantic concepts (monads, algebraic effects \& effect handlers...).
- Rigour: semantics is necessary to specify/justify formal methods (compilers, type systems, code analysis, certification...).

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic
- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- Axiomatic
- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- Axiomatic: indirect meaning of a program in terms of a program logic to reason about its properties (see Part II Hoare Logic \& Model Checking).
- Denotational

StyLes of formal semantics

- Operational: meaning of a program in terms of the steps of computation it takes during execution (see Part IB Semantics).
- Axiomatic: indirect meaning of a program in terms of a program logic to reason about its properties (see Part II Hoare Logic \& Model Checking).
- Denotational: meaning of a program defined abstractly as object of some suitable mathematical structure (see this course).

DENOTATIONAL SEMANTICS IN A NUTSHELL

$$
\begin{array}{rll}
\text { Syntax } & \xrightarrow{\llbracket-\rrbracket} & \text { Semantics } \\
\text { Program } P & \mapsto & \text { Denotation } \llbracket P \rrbracket \\
& & \\
\text { Recursive program } & \mapsto & \text { Partial recursive function } \\
\text { Boolean circuit } & \mapsto & \text { Boolean function }
\end{array}
$$

DENOTATIONAL SEMANTICS IN A NUTSHELL

$$
\begin{aligned}
& \text { Syntax } \xrightarrow{\llbracket-\rrbracket} \text { Semantics } \\
& \text { Program } P \mapsto \\
& \text { Denotation } \llbracket P \rrbracket \\
& \text { Recursive program } \mapsto \\
& \text { Partial recursive function } \\
& \text { Boolean circuit } \mapsto \\
& \text { Boolean function } \\
& \text { Type } \mapsto \\
& \text { Program } \mapsto
\end{aligned} \text { Comain } \quad \text { Continuous functions between domains }
$$

Properties of denotational semantics

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Properties of denotational semantics

Abstraction

- mathematical object, implementation/machine independent;
- captures the abstract essence of programming language concepts;
- should relate to practical implementations, though...

Compositionality

- The denotation of a phrase is defined using the denotation of its sub-phrases.
- $\llbracket P \rrbracket$ represents the contribution of P to any program containing P.
- Much more flexible than whole-program semantics.

INTRODUCTION

A BASIC EXAMPLE

Commands
$C \in$ Comm $::=$ skip $|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

IMP SYNTAX

Commands ranges over a set \mathbb{L} of locations
$C \in$ Comm ::= skip $|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

IMP SYNTAX

Arithmetic expressions

$$
A \in \operatorname{Aexp}::=\underline{n}|L| A+A \mid \ldots
$$

Commands

$$
C \in \operatorname{Comm}::=\operatorname{skip}|L:=A| C ; C \mid \text { if } B \text { then } C \text { else } C \mid \text { while } B \text { do } C
$$

IMP SYNTAX

ranges over integers
Arithmetic expressions

$$
A \in \operatorname{Aexp}::=\underline{\underline{n}}|L| A+A \mid \ldots
$$

Commands
$C \in \operatorname{Comm}::=\operatorname{skip}|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

IMP SYNTAX

Arithmetic expressions

$$
A \in \operatorname{Aexp}::=\underline{n}|L| A+A \mid \ldots
$$

Boolean expressions

$$
B \in \operatorname{Bexp}::=\text { true } \mid \text { false }|A=A| \neg B \mid \ldots
$$

Commands
$C \in \operatorname{Comm}::=$ skip $|L:=A| C ; C \mid$ if B then C else $C \mid$ while B do C

DENOTATION FUNCTIONS - NAÏVELY

$$
\mathcal{A}: \quad A \exp \rightarrow \mathbb{Z}
$$

where

$$
\mathbb{Z}=\{\ldots,-1,0,1, \ldots\}
$$

Denotation functions - naïvely

$$
\begin{array}{ll}
\mathcal{A}: & \operatorname{Aexp} \rightarrow \mathbb{Z} \\
\mathcal{B}: & \operatorname{Bexp} \rightarrow \mathbb{B}
\end{array}
$$

where

$$
\begin{aligned}
& \mathbb{Z}=\{\ldots,-1,0,1, \ldots\} \\
& \mathbb{B}=\{\text { true, false }\}
\end{aligned}
$$

ARITHMETIC EXPRESSIONS?

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\mathcal{A} \llbracket A_{1} \rrbracket+\mathcal{A} \llbracket A_{2} \rrbracket
\end{aligned}
$$

ARITHMETIC EXPRESSIONS?

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\mathcal{A} \llbracket A_{1} \rrbracket+\mathcal{A} \llbracket A_{2} \rrbracket \\
\mathcal{A} \llbracket L \rrbracket & =? ? ?
\end{aligned}
$$

$$
\text { State }=(\mathbb{Z} \rightarrow \mathbb{Z})
$$

DENOTATION FUNCTIONS

$$
\text { State }=(\mathbb{Z} \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \mathcal{A}: \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
& \mathcal{B}: \operatorname{Bexp} \rightarrow(\text { State } \rightarrow \mathbb{B})
\end{aligned}
$$

where

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\}
\end{aligned}
$$

DENOTATION FUNCTIONS

$$
\text { State }=(\mathbb{Z} \rightarrow \mathbb{Z})
$$

$$
\begin{aligned}
& \mathcal{A}: \text { Aexp } \rightarrow(\text { State } \rightarrow \mathbb{Z}) \\
& \mathcal{B}: \operatorname{Bexp} \rightarrow(\text { State } \rightarrow \mathbb{B}) \\
& \mathcal{C}: \operatorname{Comm} \rightarrow(\text { State } \rightarrow \text { State })
\end{aligned}
$$

where \rightharpoonup denotes partial functions and

$$
\begin{aligned}
\mathbb{Z} & =\{\ldots,-1,0,1, \ldots\} \\
\mathbb{B} & =\{\text { true }, \text { false }\}
\end{aligned}
$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =\lambda s \in \text { State. } n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\lambda s \in \text { State. } \mathcal{A} \llbracket A_{1} \rrbracket(s)+\mathcal{A} \llbracket A_{2} \rrbracket(s)
\end{aligned}
$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$
\begin{aligned}
\mathcal{A} \llbracket \underline{n} \rrbracket & =\lambda s \in \text { State. } n \\
\mathcal{A} \llbracket A_{1}+A_{2} \rrbracket & =\lambda s \in \text { State. } \mathcal{A} \llbracket A_{1} \rrbracket(s)+\mathcal{A} \llbracket A_{2} \rrbracket(s) \\
\mathcal{A} \llbracket L \rrbracket & =\lambda s \in \text { State. } s(L)
\end{aligned}
$$

SEMANTICS OF BOOLEAN EXPRESSIONS

$$
\begin{aligned}
\mathcal{B} \llbracket \mathrm{true} \rrbracket= & \lambda s \in \text { State. true } \\
\mathcal{B} \llbracket \mathrm{false} \rrbracket= & \lambda s \in \text { State. false } \\
\mathcal{B} \llbracket A_{1}=A_{2} \rrbracket= & \lambda s \in \text { State. eq }\left(\mathcal{A} \llbracket A_{1} \rrbracket(s), \mathcal{A} \llbracket A_{2} \rrbracket(s)\right) \\
& \text { where eq }\left(a, a^{\prime}\right)= \begin{cases}\text { true } & \text { if } a=a^{\prime} \\
\text { false } & \text { if } a \neq a^{\prime}\end{cases}
\end{aligned}
$$

$$
\mathcal{C} \llbracket \text { skip } \rrbracket=\lambda s \in \text { State. } s
$$

SEmANtics of commands

$$
\begin{aligned}
\mathcal{C} \llbracket \text { skip }= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases}
\end{aligned}
$$

SEmANTICS OF COMMANDS

$$
\begin{aligned}
\mathcal{C} \llbracket \text { skip』 }= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases}
\end{aligned}
$$

SEmANtics of commands

$$
\begin{aligned}
\mathcal{C} \llbracket s k i p \rrbracket= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases} \\
\mathcal{C} \llbracket L:=A \rrbracket= & \lambda s \in \text { State. } s[L \mapsto \mathcal{A} \llbracket A \rrbracket(s)] \\
& \text { where } s[L \mapsto n]\left(L^{\prime}\right)= \begin{cases}n & \text { if } L^{\prime}=L \\
s(L) & \text { otherwise }\end{cases}
\end{aligned}
$$

SEmANtics of commands

$$
\begin{aligned}
\mathcal{C} \llbracket s k i p \rrbracket= & \lambda s \in \text { State. } s \\
\mathcal{C} \llbracket \text { if } B \text { then } C \text { else } C^{\prime} \rrbracket= & \lambda s \in \text { State. if }\left(\mathcal{C} \llbracket B \rrbracket(s), \mathcal{C} \llbracket C \rrbracket(s), \mathcal{C} \llbracket C^{\prime} \rrbracket(s)\right) \\
& \text { where if }\left(b, x, x^{\prime}\right)= \begin{cases}x & \text { if } b=\text { true } \\
x^{\prime} & \text { if } b=\text { false }\end{cases} \\
\mathcal{C} \llbracket L:=A \rrbracket= & \lambda s \in \text { State. } s[L \mapsto \mathcal{A} \llbracket A \rrbracket(s)] \\
& \text { where } s[L \mapsto n]\left(L^{\prime}\right)= \begin{cases}n & \text { if } L^{\prime}=L \\
s(L) & \text { otherwise }\end{cases} \\
\mathcal{C} \llbracket C ; C^{\prime} \rrbracket= & \mathcal{C} \llbracket C^{\prime} \rrbracket \circ \mathcal{C} \llbracket C \rrbracket \\
= & \lambda s \in \operatorname{State} . \mathcal{C} \llbracket C^{\prime} \rrbracket(\mathcal{C} \llbracket C \rrbracket(s))
\end{aligned}
$$

INTRODUCTION

A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...
\llbracket while B do $C \rrbracket=$???

SEmANtics of LOOPS?

This is all very nice, but...

$$
\llbracket \text { while } B \text { do } C \rrbracket=? ? ?
$$

Remember:

- (while B do $C, s) \rightarrow($ if B then (C; while B do C) else skip, s)
- we want a compositional semantic: we should give \llbracket while B do $C \rrbracket$ in terms of $\llbracket C \rrbracket$ and $\llbracket B \rrbracket$
\llbracket while B do $C \rrbracket=\llbracket$ if B then (C; while B do C) else skip \rrbracket $=\lambda s \in$ State. $\mathrm{if}(\llbracket B \rrbracket, \llbracket$ while B do $C \rrbracket \circ \llbracket C \rrbracket(s), s)$

LOOP AS A FIXPOINT

$$
\begin{aligned}
\llbracket \text { while } B \text { do } C \rrbracket & =\llbracket \text { if } B \text { then }(C ; \text { while } B \text { do } C) \text { else skip } \rrbracket \\
& =\lambda s \in \text { State. } \operatorname{if}(\llbracket B \rrbracket, \llbracket \text { while } B \text { do } C \rrbracket ॰ \llbracket C \rrbracket(s), s)
\end{aligned}
$$

Not a direct definition for $\llbracket w h i l e B$ do $C \rrbracket$... But a fixed point equation!

$$
\llbracket \text { while } B \text { do } C \rrbracket=F_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\text { while } B \text { do } C)
$$

where $\quad F_{b, c}:($ State \rightharpoonup State $) \rightarrow($ State \rightharpoonup State $)$

$$
w \mapsto \lambda s \in \text { State. if }(b, w \circ c(s), s)
$$

NOW WE HAVE A GOAL

-Why/when does $w=F_{b, c}(w)$ have a solution?

- What if it has several solutions? Which one should be our \llbracket while B do $C \rrbracket$?

NOW WE HAVE A GOAL

-Why/when does $w=F_{b, c}(w)$ have a solution?

- What if it has several solutions? Which one should be our \llbracket while B do $C \rrbracket$?

Our occupation for the next few lectures...

INTRODUCTION

A TASTE OF DOMAIN THEORY

【while $X>0$ do $(Y:=X * Y ; X:=X-1) \rrbracket$

AN EXAMPLE

$$
\llbracket \text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) \rrbracket
$$

should be some w such that:

$$
w=F_{\llbracket X>0 \rrbracket, \llbracket Y:=X * Y ; X:=X-1 \rrbracket}(w)
$$

AN EXAMPLE

$$
\llbracket \text { while } X>0 \text { do }(Y:=X * Y ; X:=X-1) \rrbracket
$$

should be some w such that:

$$
w=F_{\llbracket X>0 \rrbracket, \llbracket Y:=X * Y ; X:=X-1 \rrbracket}(w) .
$$

That is, we are looking for a fixed point of the following $F: D \rightarrow D$, where D is (State - State):

$$
F(w)([X \mapsto x, Y \mapsto y])= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ w([X \mapsto x-1, Y \mapsto x \cdot y]) & \text { if } x>0\end{cases}
$$

The POSET OF PARTIAL FUNCTIONS

Partial order \sqsubseteq on D ($=$ State \rightharpoonup State):

$w \sqsubseteq w^{\prime} \quad$ if for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
if the graph of w is included in the graph of w^{\prime}.

The POSET OF PARTIAL FUNCTIONS

Partial order \sqsubseteq on D ($=$ State \rightharpoonup State):

$w \sqsubseteq w^{\prime} \quad$ if for all $s \in$ State, if w is defined at s then so is w^{\prime} and moreover $w(s)=w^{\prime}(s)$.
if the graph of w is included in the graph of w^{\prime}.

Least element $\perp \in D$:
$\perp=$ totally undefined partial function
= partial function with empty graph

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{1}[X \mapsto x, Y \mapsto y]=F(\perp)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ \text { undefined } & \text { if } x \geq 1\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{2}[X \mapsto x, Y \mapsto y]=F\left(w_{1}\right)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \mapsto 0, Y \mapsto y]} & \text { if } x=1 \\ \text { undefined } & \text { if } x \geq 2\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{3}[X \mapsto x, Y \mapsto y]=F\left(w_{2}\right)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ {[X \mapsto 0, Y \mapsto y]} & \text { if } x=1 \\ {[X \mapsto 0, Y \mapsto 2 y]} & \text { if } x=2 \\ \text { undefined } & \text { if } x \geq 3\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\ {[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\ \text { undefined } & \text { if } x \geq n\end{cases}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
\begin{gathered}
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\
\text { undefined } & \text { if } x \geq n\end{cases} \\
\qquad w_{0} \sqsubseteq w_{1} \sqsubseteq \ldots \sqsubseteq w_{n} \sqsubseteq \ldots
\end{gathered}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
\begin{gathered}
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\
\text { undefined } & \text { if } x \geq n\end{cases} \\
\qquad w_{0} \sqsubseteq w_{1} \sqsubseteq \ldots \sqsubseteq w_{n} \sqsubseteq \ldots \sqsubseteq w_{\infty} ?
\end{gathered}
$$

APPROXIMATING THE FIXED POINT

Define $w_{n}=F^{n}(w)$, that is $\left\{\begin{array}{ll}w_{0} & =\perp \\ w_{n+1} & =F\left(w_{n}\right)\end{array}\right.$.

$$
\begin{gathered}
w_{n}[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } 0 \leq x<n \\
\text { undefined } & \text { if } x \geq n\end{cases} \\
w_{0} \sqsubseteq w_{1} \sqsubseteq \ldots \sqsubseteq w_{n} \sqsubseteq \ldots \sqsubseteq w_{\infty} \\
w_{\infty}[X \mapsto x, Y \mapsto y]=\bigsqcup_{i \in \mathbb{N}} w_{i}= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x<0 \\
{[X \mapsto 0, Y \mapsto(x!) \cdot y]} & \text { if } x \geq 0\end{cases}
\end{gathered}
$$

$$
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y]
$$

WE HAVE OUR SEMANTICS

$$
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y]= \begin{cases}{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\ w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0\end{cases}
$$

(by definition of F)

We have our semantics

$$
\begin{aligned}
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y] & =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0
\end{array} \quad \text { (by definition of } F\right. \text {) } \\
& =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
{[X \mapsto 0, Y \mapsto(x-1)!\cdot x \cdot y]} & \text { if } x>0
\end{array} \text { (by definition of } w_{\infty}\right. \text {) }
\end{aligned}
$$

We have our semantics

$$
\begin{aligned}
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y] & =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0
\end{array} \quad \text { (by definition of } F\right. \text {) } \\
& =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
{[X \mapsto 0, Y \mapsto(x-1)!\cdot x \cdot y]} & \text { if } x>0
\end{array} \text { (by definition of } w_{\infty}\right. \text {) } \\
& =w_{\infty}[X \mapsto x, Y \mapsto y]
\end{aligned}
$$

We have our semantics

$$
\begin{aligned}
F\left(w_{\infty}\right)[X \mapsto x, Y \mapsto y] & =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
w_{\infty}[X \mapsto x-1, Y \mapsto x \cdot y] & \text { if } x>0
\end{array} \quad \text { (by definition of } F\right. \text {) } \\
& =\left\{\begin{array}{ll}
{[X \mapsto x, Y \mapsto y]} & \text { if } x \leq 0 \\
{[X \mapsto 0, Y \mapsto(x-1)!\cdot x \cdot y]} & \text { if } x>0
\end{array} \text { (by definition of } w_{\infty}\right. \text {) } \\
& =w_{\infty}[X \mapsto x, Y \mapsto y]
\end{aligned}
$$

- w_{∞} is a fixed point
- which moreover agrees with the operational semantics (!)

Least Fixed Points

Least Fixed Points
 POSETS AND MONOTONE FUNCTIONS

Partially ordered set

A partial order on a set D is a binary relation \sqsubseteq that is reflexive: $\forall d \in D . d \sqsubseteq d$ transitive: $\forall d, d^{\prime}, d^{\prime \prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d^{\prime \prime} \Rightarrow d \sqsubseteq d^{\prime \prime}$ anti-symmetric: $\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d \Rightarrow d=d^{\prime}$.

Partially ordered set

A partial order on a set D is a binary relation \sqsubseteq that is
reflexive: $\forall d \in D . d \sqsubseteq d$
transitive: $\forall d, d^{\prime}, d^{\prime \prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d^{\prime \prime} \Rightarrow d \sqsubseteq d^{\prime \prime}$
anti-symmetric: $\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \sqsubseteq d \Rightarrow d=d^{\prime}$.

Underlying set: partial functions f with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y;

Underlying set: partial functions f with domain of definition $\operatorname{dom}(f) \subseteq X$ and taking values in Y;
Order: $f \sqsubseteq g$ if $\operatorname{dom}(f) \subseteq \operatorname{dom}(g)$ and $\forall x \in \operatorname{dom}(f)$. $f(x)=g(x)$, i.e. if $\operatorname{graph}(f) \subseteq \operatorname{graph}(g)$.

A function $f: D \rightarrow E$ between posets is monotone if

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)
$$

A function $f: D \rightarrow E$ between posets is monotone if

$$
\forall d, d^{\prime} \in D . d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)
$$

$$
\operatorname{MoN} \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}
$$

Least Fixed Points

LEAST ELEMENTS AND PRE-FIXED POINTS

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x .
$$

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x
$$

If it exists, it is unique, and is written \perp_{S}, or simply \perp.

$$
\text { LEAST } \frac{x \in S}{\perp_{S} \sqsubseteq x}
$$

LEAST ELEMENT

An element $d \in S$ is the least element of S if it satisfies

$$
\forall x \in S . d \sqsubseteq x
$$

If it exists, it is unique, and is written \perp_{S}, or simply \perp.

$$
\operatorname{ASYM} \frac{\text { LEAST } \frac{\perp_{S}^{\prime} \in S}{\perp_{S} \sqsubseteq \perp_{S}^{\prime}} \quad \text { LEAST } \frac{\perp_{S} \in S}{\perp_{S}^{\prime} \sqsubseteq \perp_{S}}}{\perp_{S}=\perp_{S}^{\prime}}
$$

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
\operatorname{fix}(f)
$$

PRE-FIXED POINT

An element $d \in D$ is a pre-fixed point of f if it satisfies $f(d) \sqsubseteq d$.

The least pre-fixed point of f, if it exists, will be written

$$
\operatorname{fix}(f)
$$

It is thus (uniquely) specified by the two properties:

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

$$
\text { LFP-LEAST } \frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}
$$

PROOFS WITH LEAST FIXED POINTS

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

The least pre-fixed point is a fixed point.

Proofs with least fixed points

LFP-FIX $\overline{f(\mathrm{fix}(f)) \sqsubseteq \mathrm{fix}(f)}$
LEP-LEAST $\frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}$
To prove $\operatorname{fix}(f) \sqsubseteq d$, it is enough to show $f(d) \sqsubseteq d$.

PROOFS WITH LEAST FIXED POINTS

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

$$
\text { LFP-LEAST } \frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}
$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$
\text { ASYM } \frac{\text { LFP-FIX } \frac{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}{} \frac{\operatorname{fix}(f) \sqsubseteq f(\operatorname{fix}(f))}{f(\operatorname{fix}(f))=\operatorname{fix}(f)}}{\qquad}
$$

Proofs with least fixed points

$$
\text { LFP-FIX } \overline{f(\operatorname{fix}(f)) \sqsubseteq \operatorname{fix}(f)}
$$

$$
\text { LFP-LEAST } \frac{f(d) \sqsubseteq d}{\operatorname{fix}(f) \sqsubseteq d}
$$

Application: least pre-fixed points of monotone functions are (least) fixed points.

$$
\text { ASYM } \frac{\text { LFP-FIX } \frac{\operatorname{MON} \frac{\operatorname{LFP-FIX} \overline{f(f i x}(f)) \sqsubseteq \operatorname{fix}(f)}{f(f i x(f)) \sqsubseteq \operatorname{fix}(f)}}{f(f \operatorname{fix}(f))) \sqsubseteq f(f i x(f))}}{\text { LFP-LEAST } \frac{\operatorname{fix}(f) \sqsubseteq f(\mathrm{fix}(f))}{\operatorname{fix}(f)}}
$$

