
DENOTATIONAL SEMANTICS

Meven LENNON-BERTRAND
Lectures for Part II CST 2023/2024

1/72



PRACTICALITIES

• My mail: mgapb2@cam.ac.uk. Do not hesitate to ask questions!
• Course notes will be updated, keep an eye on the course webpage.

2/72

mailto:mgapb2@cam.ac.uk


INTRODUCTION



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/72



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/72



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/72



WHAT IS THIS COURSE ABOUT?

• Formal methods: tools for the specification, development, analysis and verification
of software and hardware systems.

• Programming language theory: how to design, implement and reason about
programming languages?

• Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

3/72



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.

• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).

4/72



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.
• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).

4/72



WHY SHOULD WE CARE?

• Insight: exposes the mathematical “essence” of programming language concepts.
• Language design: feedback from semantic concepts (monads, algebraic effects &
effect handlers…).

• Rigour: semantics is necessary to specify/justify formal methods (compilers, type
systems, code analysis, certification…).

4/72



STYLES OF FORMAL SEMANTICS

• Operational

: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic

: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/72



STYLES OF FORMAL SEMANTICS

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic

: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/72



STYLES OF FORMAL SEMANTICS

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/72



STYLES OF FORMAL SEMANTICS

• Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic: indirect meaning of a program in terms of a program logic to reason
about its properties (see Part II Hoare Logic & Model Checking).

• Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

5/72



DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Recursive program ↦ Partial recursive function

Boolean circuit ↦ Boolean function
…

Type ↦ Domain
Program ↦ Continuous functions between domains

6/72



DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Recursive program ↦ Partial recursive function

Boolean circuit ↦ Boolean function
…

Type ↦ Domain
Program ↦ Continuous functions between domains

6/72



PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

• mathematical object, implementation/machine independent;
• captures the abstract essence of programming language concepts;
• should relate to practical implementations, though…

Compositionality
• The denotation of a phrase is defined using the denotation of its sub-phrases.
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 .
• Much more flexible than whole-program semantics.

7/72



PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

• mathematical object, implementation/machine independent;
• captures the abstract essence of programming language concepts;
• should relate to practical implementations, though…

Compositionality
• The denotation of a phrase is defined using the denotation of its sub-phrases.
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 .
• Much more flexible than whole-program semantics.

7/72



INTRODUCTION
A BASIC EXAMPLE



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/72



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶
ranges over a set 𝕃 of locations

8/72



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/72



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/72



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛

ranges over integers

∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …
Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …
Commands

𝐶 ∈ 𝐂𝐨𝐦𝐦 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations

8/72



DENOTATION FUNCTIONS – NAÏVELY

A : 𝐀𝐞𝐱𝐩 → ℤ

B : 𝐁𝐞𝐱𝐩 → 𝔹

where
ℤ = {… , −1, 0, 1, …}

𝔹 = {true, false}

9/72



DENOTATION FUNCTIONS – NAÏVELY

A : 𝐀𝐞𝐱𝐩 → ℤ
B : 𝐁𝐞𝐱𝐩 → 𝔹

where
ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false}

9/72



ARITHMETIC EXPRESSIONS?

A
r
𝑛
z

= 𝑛

A
q𝐴1 + 𝐴2

y = A
q𝐴1

y + A
q𝐴2

y

AJ𝐿K = ???

10/72



ARITHMETIC EXPRESSIONS?

A
r
𝑛
z

= 𝑛

A
q𝐴1 + 𝐴2

y = A
q𝐴1

y + A
q𝐴2

y
AJ𝐿K = ???

10/72



DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)

C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where

⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

11/72



DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)

C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where

⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

11/72



DENOTATION FUNCTIONS

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
B : 𝐁𝐞𝐱𝐩 → (State → 𝔹)
C : 𝐂𝐨𝐦𝐦 → (State ⇀ State)

where⇀ denotes partial functions and

ℤ = {… , −1, 0, 1, …}
𝔹 = {true, false} .

11/72



SEMANTICS OF ARITHMETIC EXPRESSIONS

A
r
𝑛
z

= 𝜆𝑠 ∈ State. 𝑛

A
q𝐴1 + 𝐴2

y = 𝜆𝑠 ∈ State. Aq𝐴1
y (𝑠) + A

q𝐴2
y (𝑠)

AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)

12/72



SEMANTICS OF ARITHMETIC EXPRESSIONS

A
r
𝑛
z

= 𝜆𝑠 ∈ State. 𝑛

A
q𝐴1 + 𝐴2

y = 𝜆𝑠 ∈ State. Aq𝐴1
y (𝑠) + A

q𝐴2
y (𝑠)

AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)

12/72



SEMANTICS OF BOOLEAN EXPRESSIONS

BJtrueK = 𝜆𝑠 ∈ State. true

BJfalseK = 𝜆𝑠 ∈ State. false

B
q𝐴1 = 𝐴2

y = 𝜆𝑠 ∈ State. eq (Aq𝐴1
y (𝑠),Aq𝐴2

y (𝑠))
where eq(𝑎, 𝑎′) = { true if 𝑎 = 𝑎′

false if 𝑎 ≠ 𝑎′

13/72



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/72



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/72



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

This is compositionality!

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/72



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/72



SEMANTICS OF COMMANDS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

C
q
if 𝐵 then 𝐶 else 𝐶′y = 𝜆𝑠 ∈ State. if (CJ𝐵K (𝑠), CJ𝐶K (𝑠), Cq𝐶′y (𝑠))

where if(𝑏, 𝑥, 𝑥′) = { 𝑥 if 𝑏 = true
𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K (𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = { 𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

C
q𝐶; 𝐶′y = C

q𝐶′y ∘ CJ𝐶K
= 𝜆𝑠 ∈ State. Cq𝐶′y (CJ𝐶K (𝑠))

14/72



INTRODUCTION
A SEMANTICS FOR LOOPS



SEMANTICS OF LOOPS?

This is all very nice, but…

Jwhile 𝐵 do 𝐶K = ???

Remember:

• (while 𝐵 do 𝐶, 𝑠) → (if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip, 𝑠)
• we want a compositional semantic: we should give Jwhile 𝐵 do 𝐶K in terms of J𝐶K
and J𝐵K

15/72



SEMANTICS OF LOOPS?

This is all very nice, but…

Jwhile 𝐵 do 𝐶K = ???

Remember:

• (while 𝐵 do 𝐶, 𝑠) → (if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip, 𝑠)
• we want a compositional semantic: we should give Jwhile 𝐵 do 𝐶K in terms of J𝐶K
and J𝐵K

15/72



LOOP AS A FIXPOINT

Jwhile 𝐵 do 𝐶K = q
if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip

y
= 𝜆𝑠 ∈ State. if(J𝐵K , Jwhile 𝐵 do 𝐶K ∘ J𝐶K (𝑠), 𝑠)

Not a direct definition for Jwhile 𝐵 do 𝐶K… But a fixed point equation!
Jwhile 𝐵 do 𝐶K = 𝐹J𝐵K,J𝐶K(while 𝐵 do 𝐶)

where 𝐹𝑏,𝑐 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏, 𝑤 ∘ 𝑐(𝑠), 𝑠).

16/72



LOOP AS A FIXPOINT

Jwhile 𝐵 do 𝐶K = q
if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip

y
= 𝜆𝑠 ∈ State. if(J𝐵K , Jwhile 𝐵 do 𝐶K ∘ J𝐶K (𝑠), 𝑠)

Not a direct definition for Jwhile 𝐵 do 𝐶K… But a fixed point equation!
Jwhile 𝐵 do 𝐶K = 𝐹J𝐵K,J𝐶K(while 𝐵 do 𝐶)

where 𝐹𝑏,𝑐 : (State ⇀ State) → (State ⇀ State)
𝑤 ↦ 𝜆𝑠 ∈ State. if(𝑏, 𝑤 ∘ 𝑐(𝑠), 𝑠).

16/72



NOW WE HAVE A GOAL

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our Jwhile 𝐵 do 𝐶K?

Our occupation for the next few lectures…

17/72



NOW WE HAVE A GOAL

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our Jwhile 𝐵 do 𝐶K?

Our occupation for the next few lectures…

17/72



INTRODUCTION
A TASTE OF DOMAIN THEORY



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

18/72



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

18/72



AN EXAMPLE

q
while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)y

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is
(State ⇀ State):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = { [𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0.

18/72



THE POSET OF PARTIAL FUNCTIONS

Partial order ⊑ on 𝐷 (= State ⇀ State):
𝑤 ⊑ 𝑤 ′ if for all 𝑠 ∈ State, if 𝑤 is defined at 𝑠

then so is 𝑤 ′ and moreover 𝑤(𝑠) = 𝑤 ′(𝑠).
if the graph of 𝑤 is included in the graph of 𝑤 ′.

Least element ⊥ ∈ 𝐷:
⊥ = totally undefined partial function

= partial function with empty graph

19/72



THE POSET OF PARTIAL FUNCTIONS

Partial order ⊑ on 𝐷 (= State ⇀ State):
𝑤 ⊑ 𝑤 ′ if for all 𝑠 ∈ State, if 𝑤 is defined at 𝑠

then so is 𝑤 ′ and moreover 𝑤(𝑠) = 𝑤 ′(𝑠).
if the graph of 𝑤 is included in the graph of 𝑤 ′.

Least element ⊥ ∈ 𝐷:
⊥ = totally undefined partial function

= partial function with empty graph

19/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤1[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(⊥)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
undefined if 𝑥 ≥ 1

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤2[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(𝑤1)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ 𝑦] if 𝑥 = 1
undefined if 𝑥 ≥ 2

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤3[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = 𝐹(𝑤2)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] =
⎧⎪
⎨⎪
⎩

[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ 𝑦] if 𝑥 = 1
[𝑋 ↦ 0, 𝑌 ↦ 2𝑦] if 𝑥 = 2
undefined if 𝑥 ≥ 3

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ … ⊑ 𝑤∞?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



APPROXIMATING THE FIXED POINT

Define 𝑤𝑛 = 𝐹 𝑛(𝑤), that is {𝑤0 = ⊥
𝑤𝑛+1 = 𝐹(𝑤𝑛)

.

𝑤𝑛[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 0 ≤ 𝑥 < 𝑛
undefined if 𝑥 ≥ 𝑛

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ … ⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑖∈ℕ

𝑤𝑖 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 < 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 ≥ 0

20/72



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/72



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/72



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/72



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

21/72



WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝐹 )

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (by definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

• 𝑤∞ is a fixed point
• which moreover agrees with the operational semantics (!)

21/72



LEAST FIXED POINTS



LEAST FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

anti-symmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦

22/72



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

anti-symmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦

22/72



DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking
values in 𝑌 ;

Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if
graph(𝑓 ) ⊆ graph(𝑔).

23/72



DOMAIN OF PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Underlying set: partial functions 𝑓 with domain of definition dom(𝑓 ) ⊆ 𝑋 and taking
values in 𝑌 ;

Order: 𝑓 ⊑ 𝑔 if dom(𝑓 ) ⊆ dom(𝑔) and ∀𝑥 ∈ dom(𝑓 ). 𝑓 (𝑥) = 𝑔(𝑥), i.e. if
graph(𝑓 ) ⊆ graph(𝑔).

23/72



MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)

24/72



MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑) ⊑ 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)

24/72



LEAST FIXED POINTS
LEAST ELEMENTS AND PRE-FIXED POINTS



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

25/72



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

25/72



LEAST ELEMENT

An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

If it exists, it is unique , and is written ⊥𝑆 , or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

25/72



PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

26/72



PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

26/72



PRE-FIXED POINT

An element 𝑑 ∈ 𝐷 is a pre-fixed point of 𝑓 if it satisfies 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written
fix(𝑓 )

It is thus (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

26/72



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

The least pre-fixed point is a fixed point.

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

27/72



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

To prove fix(𝑓 ) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

27/72



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

27/72



PROOFS WITH LEAST FIXED POINTS

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

Application: least pre-fixed points of monotone functions are (least) fixed points.

ASYM

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))
fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))

𝑓 (fix(𝑓 )) = fix(𝑓 )

27/72


