
Example sheet 4
Random systems

Data Science—DJW—2025/2026

Questions labelled * are more challenging (but should still be attempted!). For some questions you can test your
answers using the online tester; there is a notebook with templates for answers and instructions for submission
on the course materials webpage. Following this example sheet is a page with hints for each question.

Question 1 (Fitting a Markov chain). We’re given a sequence [x0, x1, . . . , xn], and we decide to model it
as the Markov chain

Xi = µ+ λ(Xi−1 − µ) +N(0, σ2).

(When |λ| < 1 this tends to fluctuate around µ, as illustrated in lecture notes example 11.1.6, so it’s known as
a “mean-reverting random walk”.) Explain how to estimate λ, µ, and σ. [Optional: To test your code using the
online tester, fill in the answer template for fit_mrrw.]

Question 2*. Consider a dataset of average November temperatures in Cambridge. Let Tempi be the temper-
ature for record i in the dataset, i = 1, . . . , n, and let ti be the year. Assume the records are sorted in increasing
order of year, and that there are no gaps. Consider two models for this dataset: the rich model

Tempi = α+ γ(ti − 2000) + λTempi−1 +N(0, σ2)

and the simpler model
Tempi = α+ γ(ti − 2000) +N(0, σ2)

(a) Explain how to fit both models.
(b) Explain how to test the hypothesis that the simpler model is adequate.
[Optional: To test your code using the online tester, fill in the answer templates for fit_climate0, fit_cli-
mate1, and test_climate0.]

Question 3. We’re given a dataset of strings x(i), i = 1, . . . , n from alphabet W . Each string consisting of a
sequence of tokens, x(i) = x

(i)
1 x

(i)
2 · · ·x(i)

`i
where `i is the length of string i and x

(i)
j ∈ W for all i = 1, . . . , n and

j = 1, . . . , `i. We decide to model them using a Markov chain on an augmented alphabet W ∪ {∅,�} where ∅
denotes ‘start string’ and � denotes ‘end string’: start at ∅, then generate tokens until we hit �, and take our
generated string X to be the tokens between ∅ and �.

Using the probability model P(Xn+1 = v|Xn = u) = θu,v where θ is a (|W |+1)× (|W |+1) matrix, calculate
the maximum likelihood estimator for θ.

Question 4 (Causal diagrams). Consider this code for generating random variables X → Y → Z:

x = np.random.uniform()

y = np.random.binomial(n=1, p=x)

z = np.random.normal(loc=y, scale=ε)

Show that
PrY (1 | X = x, Z = z) =

x

x+ (1− x)e(1−2z)/2ε2
.

How does PrY (1 |X = x,Z = z) depend on x and z when ε ≈ 0? What if ε is very large?

Question 5 (Markov chains). Draw the state space diagram for this Markov chain.

1 def rw(MAX_STATE=9):

2 x = 0

3 while True:

4 yield x

5 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])

6 x = min(MAX_STATE, max(0, x + d))

Question 6. For the Cambridge weather simulator, example 11.1.1 in lecture notes, show that

P(X3 = r |X0 = g) =
∑
x1,x2

Pgx1
Px1x2

Px2r.

1

https://www.cl.cam.ac.uk/teaching/current/DataSci/materials.html

Question 7 (Stationarity). Consider a random walk on the vertices of the undirected graph below, as fol-
lows: each timestep we take one of the edges chosen at random, each edge from our current vertex equally likely.
Find the stationary distribution.

0 1

2

3

[Optional: To test your code using the online tester, fill in the answer template for graphrw_stationary.]

Question 8*. Let X0, X1, X2, . . . be a mean-reverting random walk, i.e. a Markov chain

Xi = µ+ λ(Xi−1 − µ) +N(0, σ2) where − 1 < λ < 1.

The stationary distribution for this process is a Normal distribution. Find its parameters.

Question 9 (Hidden Markov model). Consider a moving object with noisy location readings. Let Xn be
the location at timestep n ≥ 0, and Yn the reading. Here’s the simulator.

1 def hmm():

2 MAX_STATE = 9

3 x = numpy.random.randint(low=0, high=MAX_STATE+1) # initial location X0

4 while True:

5 e = numpy.random.choice([−1,0,1])

6 y = min(MAX_STATE, max(0, x + e)) # noisy reading of location

7 yield y

8 d = numpy.random.choice([−1,0,1], p=[1/4,1/2,1/4])

9 x = min(MAX_STATE, max(0, x + d)) # new location at next timestep

We’d like to infer the location Xn, given readings y0, . . . , yn.
(a) Give justifications for the following three equations, which give an inductive solution. First the base case,

Pr(x0 | y0) = const× Pr(x0)Pr(y0 | x0),

and next two equations for the induction step,

Pr(xn | h) =
∑
xn−1

Pr(xn−1 | h)Pr(xn | xn−1)

Pr(xn | h, yn) = const× Pr(xn | h)Pr(yn | xn).

In these two equations, h stands for (y0, . . . , yn−1), and we’ll assume we’ve already found Pr(xn−1 | h).
(b) Give pseudocode for a function that takes as input a list of readings [y0, . . . , yn] and outputs a probability

vector for the posterior distribution of Xn, in other words it returns [π0, . . . , πMAX_STATE] where

πx = P(Xn = x | y0, . . . , yn).

(c) If your code is given the input [3, 3, 4, 9], it should fail with a divide-by-zero error. Give an interpretation
of this failure.

[Optional: To test your code using the online tester, fill in the answer template for hmm_predict.]

Question 10. The code from question 9 can fail with a divide-by-zero error. This is undesirable in production
code! One way to fix the problem is to modify the Markov model to include a ‘random teleport’—to express
the idea ‘OK, our inference has gone wrong somewhere; let’s allow our location estimate to reset itself’. We
can achieve this mathematically with the following model: with probability 1− ε generate the next state as per
line 9, otherwise pick the next state uniformly from {0, 1, . . . , MAX_STATE}. Modify your code from question (b)
to reflect this new model, with ε = 0.01.

Alternatively, we could fix the problem by changing the model to express ‘OK, this reading is glitchy; let’s
allow the code to discard an impossible reading’. How might you change the Markov model to achieve this?

2

Hints and comments
Question 1. Follow the same pattern as example 12.1.1. You should conclude that you need to solve a
least-squares optimization for the model

xi ≈ µ+ λ(xi−1 − µ), 1 ≤ i ≤ n.

This isn’t a proper linear model, because proper linear models have to be “sum of unknown coefficient times
feature vector”, whereas this model is (µ− λµ)1 + λxi−1. Choose a different parameterization that makes this
a proper linear model (as we did in section 2.2.4 for a periodic model, and as you had to do for example sheet 1
question 8 for a piecewise linear model) i.e. in the form β0 + β1e1 for a feature vector e1 that you should
identify, use sklearn to compute β̂0 and β̂1, and translate back using the plug-in principle (as in example
sheet 1 question 5) to get λ̂ and µ̂.

Question 2. Fitting the rich model is much like question 1. Fitting the simpler model is a classic supervised
regression task, of the sort we’ve done many times already. Be careful about the vector sizes! For the rich
model, we can only use responses Temp2, . . . , Tempn. For the simpler model, we can use the all n records.

For the hypothesis test: call the rich model H1, and think of the simpler model (call it H0) as a restriction
on the parameters of H1, namely the restriction that λ = 0. What test statistic do you think would be useful
here?

Question 3. The answer is intuitively obvious, and you should remember it from MLRD tick 7:

θ̂uv =
transitions u → v

transitions from u
.

In MLRD, you just wrote down the answer, because it’s obvious! This question asks you to obtain it formally,
as a result of likelihood maximization. Take care to include ∅ and � properly in the likelihood expression,
and think about the constraints on the parameters you wish to estimate. Exercise 1.3.5 from lecture notes, on
fitting a categorical sample, is relevant.

Question 4. This is very similar to an example from lecture 15, in which we calculated

P
(
X1 = drizzle | X0 = rain, X2 = rain

)
.

Just use likelihood notation (Pr) instead of probability (P), to accommodate the fact that X and Z are contin-
uous random variables. (All the standard laws of probability still hold when we’re working with Pr; see lecture
notes section 11.2 for a little more discussion.)

The last part of the question is asking you to take limits as ε → 0 and as ε → ∞. As a sanity check, try to
give an intuitive explanation of your answer, in terms of how you’d predict Y in the case where (a) Z is almost
noiseless and (b) Z is very noisy.

Question 5. First identify the state space, i.e. the set of possible values for x. Looking at the code, we see
that x can only ever be an integer in {0, 1, . . . , 9}, so this is the state space. Next, draw arrows to indicate
transitions between states. Make sure that at every node you draw, the probabilities on all outgoing edges sum
up to one. You don’t need to draw every state in your state space diagram: just show a typical state, and also
the edge cases.

Question 6. There’s a brute force solution, very similar to example 11.2.1 from lecture notes: first use the
law of total probability to condition on X1 AND X2, giving us an expression that includes P(X2 = x2, X1 =
x1 |X0 = g), and then break this expression down further using the definition of conditional probability with
baggage {X0 = g}.

There’s also a more elegant solution based on a more sophisticated use of memorylessness, which says in its
most general form that “conditional on the present, the past and the future are independent”. This includes
the sort of equation stated at the top of section 11.2 of lecture notes,

P(X3 = x3 |X2 = x2, X1 = x1, X0 = x0) = P(X3 = x3 |X2 = x2),

but it also includes situations where there are gaps in the future e.g.

P(X3 = x3 |X1 = x1, X0 = x0) = P(X3 = x3 |X1 = x1) (present is x1)

3

and situations where there are gaps in the past, e.g.

P(X3 = x3 |X2 = x2, X0 = x0) = P(X3 = x3 |X2 = x2) (present is x2).

Can you use the gaps-in-the-past version to answer this question? Can you prove the gaps-in-the-past and the
gaps-in-the-future versions of memorylessness?

Question 7. First write out the transition probability: Pxy = 0 if there’s no x ↔ y edge, and Pxy = 1/nx

otherwise, where nx is the number of edges incident at vertex x. In indicator notation, Pxy = 1x↔y/nx.
In general it’s a good idea to try to solve the detailed balance equations first, and only if that fails is it worth

trying to solve the full stationarity equations. In this case the detailed balance equations do indeed work.
Can you find the solution for a general connected undirected graph?

Question 8. The state space is R which is not countable, so all the sum-based equations from lectures don’t
work. We have to go right back to the definition of stationarity: a distribution π is a stationary distribution if

X0 ∼ π =⇒ X1 ∼ π.

Review the calculations in section 11.4 where we derived π = πP for discrete state-space Markov chains, and
think: can I use similar reasoning to derive the parameters of the Normal distribution that the question tells
us is stationary?

Question 9. This is a hidden Markov model, familiar to you from IA MLRD:

X0 X1 X2 · · ·

Y0 Y1 Y2

Part (a). The second equation requires the law of total probability (with baggage), and the third equation
requires Bayes’s rule (with baggage h). ‘With baggage’ is described in section 11.2. The idea of these manipula-
tions is to put the probability expressions into a form where you can leverage memorylessness: “Xn is generated
based only on Xn−1, and Yn is generated based only on Xn”.

Part (b). Let π(n) be the probability vector at timestep n. Compute π(0) from the first equation. Then,
iteratively apply the next two equations, to compute π(n) from π(n−1). Your implementation should use two
matrices, Pij = P(Xn = j |Xn−1 = i) and Qxy = P(Yn = y |Xn = x). The first is the transition matrix that
we’re used to from Markov Chains, and the second is called the emission matrix.

4

Supplementary questions
These supplementary questions are not intended for supervision (unless your supervisor directs you otherwise).

Question 11 (Google PageRank). Consider a directed acyclic graph representing the web, with one vertex
per webpage, and an edge v → w if page v links to page w. Consider a random web surfer who goes from page
to page according to the algorithm

1 d = 0.85

2 def next_page(v):
3 neighbours = list of pages w such that v → w
4 a = random.choice(['follow_link','teleport'], p=[d,1−d])
5 if a=='follow_link' and len(neighbours) > 0:

6 return random.choice(neighbours)

7 else:

8 V = list of all web pages

9 return random.choice(V)

This defines a Markov chain. Explain why the chain is irreducible. Show that the stationary distribution π
solves

πv =
1− d

|V |
+ d

∑
u:u→v

πu

|Γu|

where |V | is the total number of web pages in the graph, and |Γu| is the number of outgoing edges from u.
Compute the stationary distribution for this random web surfer model, for a simple web graph of your choice.

Repeat with d = 0.05. What do you expect as d → 0? What do you expect if d = 1?
The equation for πv defines a scaled version of PageRank, Google’s original method for ranking websites.

Question 12. The Markov model for motion from question 5 is called a simple random walk (with boundaries);
it chooses a direction of travel independently at every timestep. This is not a good model for human movement,
since people tend to head in the same direction for a while before changing direction.
(a) Let Vn ∈ {−1, 0, 1} be a Markov chain: let Vn+1 = Vn with probability 0.9, and let Vn+1 be chosen

uniformly at random from {−1, 0, 1} with probability 0.1. Draw a state space diagram for this Markov
chain.

Interpret Vn as the velocity of our moving object at timestep n, and let Xn+1 = max(0,min(9, Xn + Vn)).
(b) Draw the state space diagram for (Xn, Vn).
(c) Give pseudocode to compute the stationary distribution.

Question 13. Here is the state space diagram for a Markov chain. Find a stationary distribution. Is it unique?

a b

α

β

1− α 1− β

Question 14. Here is the state space diagram for a Markov chain, with state space {0, 1, 2, . . . }. It is pa-
rameterized by α and β, with 0 < α < β and α + β < 1. Let πn = (1 − α/β)(α/β)n, n ≥ 0. Show that π is a
stationary distribution.

0 1 2 · · ·
α α α

ββ β

1− α

1− α− β 1− α− β

