Example sheet 3

Frequentist inference
Data Science—DJW—2025/2026

Questions labelled * are more challenging.

IFATFIRSTYOU/DONTT
SUCCEED

*TRY TRY AGAIN UNTIL YOUR FAILUREIS
STATISTICALLY SIGNIFICANT

Question 1. Sketch the cumulative distribution function, and calculate the density function, for
this random variable:
def rx():

ul = random.random()
u2 = random.random()
return min(ul,u2)

Question 2. We are given data x = [21, ..., ;] which we believe is sampled from Exp(u), and
further data y = [y1,. .., yn] which we believe is sampled from Exp(v).

(a)

We wish to test the hypothesis that 4 = v. Under this hypothesis, all the datapoints in x
and y are sampled from a commmon distribution Exp()\), where A is the common value of 4

and v. Find the maximum likelihood estimator \. Compute the p-value for this test, using
the test statistic © — fi, with parametric resampling.

Compute a 95% confidence interval for & — ji using parametric resampling. Explain carefully
the difference between your sampling methods for (a) and (b).

Repeat parts (a) and (b) using non-parametric resampling.

We wish to test the hypothesis that u < v. Compute the p-value for this test, using the
same test statistic as before.

[You can test your code using the online tester. There is a notebook with templates for answers
and instructions for submission on the Course Materials webpage.]

Question 3 (Cardinality estimation).

Let X be the maximum of m independent Uniform[0, 1] random variables. Find the likelihood
Prx (z;m).

Given an observed value z, what is the maximum likelihood estimator m?

Explain how to compute a 95% confidence interval for 7.


https://www.cl.cam.ac.uk/teaching/current/DataSci/materials.html

A common task in data processing is counting the number of distinct items in a collection. When
the collection is large, we may wish to use approrimate methods that only require O(1) extra
memory, such as the following: Given a collection of items aq,...,a,, compute the hash of each
item u; = h(a;), then compute x = max; u;. If the hash function is well designed, then each u;
can be treated as if it were sampled from Uniform[0,1], and distinct items will yield independent
samples. The more distinct items there are, the larger we expect x to be. Thus, we can use
x to estimate the number of distinct items. Read more: http://blog.notdot.net/2012/09/
Dam-Cool-Algorithms-Cardinality-Estimation

Question 4. We are given a dataset of (g;, z;,y;) records, i = 1,...,n, where g; € {1,2,3} is the
group that record ¢ belongs to, z; € R is a predictor variable, and y; € R is the response. We are
interested in the model

Yi~ Qg; + Bgi‘ri + N(0702)'
(a) Explain how to fit this model to the dataset.

(b)  We wish to test the hypothesis that 31 = S = 83. Suggest a test statistic, and describe how
to conduct the test.

Question 5*. (a) Itossa coin n times and get = heads. My model is that the number of heads
is Bin(n,d) and I wish to test the null hypothesis that § = 1/2. Explain how to find the
p-value for this test.

(b) I make many attempts at a task, and I have no successes at all, just a string of failures.
Modelling my attempts as independent random variables with success probability # and
failure probability 1 — 6, how many failures does it take for me to reject 6§ = 1/2 at p-value
5%?

Question 6. We have a climate dataset of (t, temp) pairs. Considered a model in which temper-
atures increase linearly,

temp ~ a + Sy sin(27t) 4 B2 cos(27t) 4 y(t — 2000) + Normal(0, o2).

Let 4 be the maximum likelihood estimator for the rate of temperature increase. Explain how to
find a 95% confidence interval for 4.

Question 7 (Confidence intervals for predictions). I have computed the maximum likeli-
hood estimators for all the parameters in the model in question 6, and I have used them to define
a temperature prediction function

def pred(tpes): return & + Bl sin(2rtpew) + Bg cos(2mtnew) + Y (tnew-2000)

Modify this code so that in addition to predicting the temperature it also produces a 95% confidence
interval for its prediction.

Question 8. If my p-value is 0.99, does that mean that Hy is super-duper likely?

Question 9 (Choosing the null)*. In question 5, you explained how to test the null hypothesis
Hy:6=1).

(a) Explain how to test the null hypothesis Hy : 8 > 1/2, and give code to compute the p-value.
(b)  Explain how to test the null hypothesis Hy : 6 # 1/2, and give code to compute the p-value.
(¢) In both cases, investigate which values of = cause you to reject Hy at threshold p < 0.05.


http://blog.notdot.net/2012/09/Dam-Cool-Algorithms-Cardinality-Estimation
http://blog.notdot.net/2012/09/Dam-Cool-Algorithms-Cardinality-Estimation

Hints and comments

Question 1. Work through exercise 5.3.4 in lecture notes, then apply the same strategy to this question.

Question 2. Check the definition of the Exponential distribution in lecture notes section 1.2, and watch out for
difference in convention between maths (which refers to the rate parameter p) and numpy (which refers to the
scale parameter 1/p). You should find the mles to be i = 1/Z, # = 1/g, A = 1/ where z is the concatenation
of z and y.

For part (a) look at exercise 9.3.2 in lecture notes. For (b) look at exercise 9.2.3. For (c) look at exercises 9.6.1
and 9.6.2. Think about whether your tests and confidence intervals should be one-sided or two-sided.

Part (d) asks you to consider a null hypothesis Hy that imposes the constraint ¢ < v on the parameters.
You need to maximize the likelihood Pr(data; u, ) under the Hy constraint, as described in section 9.3 under
“Tests on parameters”. (Here ‘data’ here refers to the entirety of the dataset, [z1,...,Zm,y1,...,Yn].) Try
fixing p and solving for #(u) using maths, and then solving for i numerically. Or, you might spot how to solve
it all with maths.

Question 3. Part (a) is similar to question 1. Part (b) is asking for the mle from a single datapoint, like
exercise 1.3.1 from lecture notes. For part (c¢) you need to resample the dataset (i.e. the single value X) under
fitted null hypothesis, and it’s easy to do this with parametric resampling. There’s a slick trick called Inversion
Sampling, not taught in this course, that you may like to look up.

Question 4. In this question you’re given a parametric model, and asked to test a hypothesis that restricts the
parameters. Look at section 9.3 of lecture notes under “Tests on parameters” for guidance, and at exercise 9.3.3
for inspiration,

How to choose the test statistic? This question tells us a general hypothesis Hi, namely that ¥ ~ «ay4 +
Bgx+ N (0, 0?); and it proposes a null hypothesis Hy that is a restriction on the parameters of Hy, namely that
Bo = B1 = PB2. Can you think up a test statistic using the Bg parameters from H1?7 Maybe also use B from Hy?

Next, ask yourself how your statistic would differ between the scenario where Hy is true, and the scenario
where Hj isn’t true — this will tell you what “more extreme” means, in the definition of p-value, and hence
whether to use a one-sided or two-sided test.

Question 5. For part (a), we're given a general parametric model H; that says X ~ Bin(n,#) and asked to
test a hypothesis Hy that restricts the parameters to = 1/2. Look at section 9.3 of lecture notes under “Tests
on parameters” for guidance. What test statistic shall we use? A good idea is to use the mle 6 from H;. You
should find that 6 = z /m, so in fact we might as well use x itself as the test statistic.

For this question, we can do much better than just giving pseudocode: we know the distribution that this
test statistic will have under Hyp, so we can write out the p-value exactly in terms of the cdf of the Binomial
distribution.

For part (b), just use your expression for the p-value from part (a), applied to data = 0. Your expression
will depend on n. Find the smallest n such that p < 0.05.

Question 6. Follow the general strategy from section 9.2 of lecture notes. In your answers for this question,
it’s a good idea to use sklearn wherever reasonable—there’s no point going through lots of algebra, when
there are fast easy routines that you can use. You can generate a synthetic dataset with np.random.nor-
mal(loc=pred, scale=g), as in exercise 9.2.4 lines 14-15, and you can compute the predicted temperatures
pred as in example 2.1.1 line 13.

Question 7. We want to generate a multiverse of synthetic datasets, and canvas the opinion of data scientists
across this multiverse. If a parallel-universe data scientist sees dataset X*, what value would they produce for
pred(th,e.,=2050)7 You just need to assemble a large collection of these predictions, then find a 95% confidence
interval in the usual way.

For an extra challenge, write your code so that it accepts a vector-valued tyeyw.

Question 9. As in question 2(d), the null hypothesis expresses a constraint on the parameters, so we need to
find the maximum likelihood under that constraint. For the test statistic, follow question 5, but think carefully
about what ‘more extreme’ means. For the investigation, I suggest you do this numerically, and then (if you
are bold and you remember the central limit theorem) try to answer mathematically.



Supplementary questions

These supplementary questions are not intended for supervision (unless your supervisor directs you
otherwise). Some of them require careful maths, some are best answered with coding, some are
philosophical.

Question 10. Sketch the cumulative distribution function, and calculate the density function,
for this random variable:
def rx():

u = random.random()

return u x (1-u)

Question 11. A point lightsource at coordinates (0,1) sends out a ray of light at an angle ©
chosen uniformly in (—m/2,7/2). Let X be the point where the ray intersects the horizontal line
through the origin. What is the density of X7

Note: This random variable is known as the Cauchy distribution. It is unusual in that it has
no mean.

@)
ﬂ
X

Question 12*. The dataset at https://www.cl.cam.ac.uk/teaching/current/DataSci/data/
responsetime_ms.txt is a list of web server response times, measured in milliseconds.

(a) Plot the empirical cumulative distribution function (ecdf) of this sample.
(b) Plot the empirical tail distribution function (etdf = 1 — ecdf), on a log-log plot.

(¢)  You should see that, for large enough response times, the etdf looks roughly like a (noisy)
straight line on a log-log plot. Using this observation, estimate the 99.9%ile and 99.99%ile
of response time.

Question 13. We are given a dataset x1,...,x, which we believe is drawn from Uniform|0, 6]
where 6 is unknown. Recall from Example Sheet 1 that the maximum likelihood estimator is
0 = max; ;. Find a 95% confidence interval for 9 both using parametric resampling and using
non-parametric resampling.

Question 14. I implement the two resamplers from question 13. To test them, I generate 1000
values from Uniform[0, 8] with § = 2, and find a 95% confidence interval for 6. I repeat this 20
times. Not once does my confidence interval include the true value, 8 = 2, for either resampler.
Explain.

Naive resampling (based on mle parameter estimates or on empirical distributions) is an heuristic,
not a perfect procedure. It works well for ‘central’ statistics like averages or sums. It doesn’t work
well for certain types of extreme statistics (like the mazimum of a dataset) nor for certain types of
distribution (like the uniform).

The idea of resampling is that we want to simulate novel unseen versions of the dataset. The best
way to do this is to use a model that we think is a good description for novel unseen data—in other
words, to use a model that fits a holdout dataset well. (See section 9 of lecture notes for a longer
discussion of generalization. That section of notes is non-examinable.) One ad hoc way to get better
generalization in this case is to use an unbiased estimator for 0 rather than a mazimum likelihood
estimator; though this is happenstance, not a general principle!

Question 15. Test the hypothesis that temperatures in Cambridge have not been changing, using
a non-parametric test.


https://www.cl.cam.ac.uk/teaching/current/DataSci/data/responsetime_ms.txt
https://www.cl.cam.ac.uk/teaching/current/DataSci/data/responsetime_ms.txt

In lectures we looked at several examples of tests using parametric resampling. We also looked at one
example of a test with non-parametric resampling, namely Fisher’s permutation test. Example 8.6.2
in lecture notes gives another illustration of non-parametric sampling for hypothesis tests.

For this dataset, it’s blindingly obvious that there is an annual cycle in temperatures, so your
resampling strategy must respect this. If there were no global warming, and you wanted to simulate a
January, how could you simulate it using the data in this dataset?

Second, the test statistic. You are at liberty to use any test statistic at all; it doesn’t have to be
linked to the resampling strategy. You might as well use 7 from question 6.

Question 16. We have a dataset x1, 2, ..., Z,, and we wish to model it as Normal(y, o) where
1 and o are unknown. How different are Bayesianist and frequentist confidence intervals for the
mean? To be concrete, let’s work with the first 10 values for temp in the climate dataset.

(a) Plot the log likelihood function logPr(xy,...,z,|u, o) as a function of p and o. (A code
skeleton is provided in https://github.com/damonjw/datasci/blob/master/ex/ex3.
ipynb.)

(b)  Using frequentist resampling, generate 50 resampled datasets, find the maximum likelihood
estimators & and & for each, and show these 50 points on your plot.

(c)  Using computational Bayesian methods, with priors z ~ Normal(0,102?) and o ~ T'(k =
2,0 = 1) (where k and 0 are as in the numpy documentation), sample 500 pairs from the
prior distribution and show them on your plot. Then compute the posterior weights of these
sampled pairs, and show the weighted pairs on your plot by setting the size of the plot marker
in proportion to weight.

(d) Find the 95% confidence interval (for fi in the frequentist case, and for (u | data) in the
Bayesianist case), and show them on your plot.

(e)  Repeat the exercise, using the first 100 values from the climate dataset.

You should see broadly similar outcomes, whether you’re plotting frequentist samples of (ji, &) or
whether you’re plotting the Bayesianist samples that get non-negligible weight. When there are more
datapoints, then the results are even more similar: there’s a very narrow peak in the log likelihood plot,
and the samples from both Bayesianist and frequentist approaches are heavily concentrated arount this
peak. (Though the naive computational Bayesian procedure we learnt in this course doesn’t work very
well when the log likelihood has such a sharp spike.)

Question 17. In hypothesis testing, what p-value would you expect if Hy is true?

This is a mindbender! At first glance it’s surprising that this question even has an answer that applies
to any sort of hypothesis testing. And it’s tricky to even work out what it’s asking us to prove. Think
of it this way ...

In frequentist inference, we decide on a sampling distribution X* that tells us what the dataset
might have been if Ho were true. We then compute the p-value by an operation on t(x) and on the
histogram of t(X™).

Now, if Hy were true, then the actual dataset x will look like a sample from X™. If we perform
the p-value operation not on the actual value t(x) but on a typical value t(X™), what’s the distribution
we’ll get for the p-value?

You can find the answer at https://en.wikipedia.org/wiki/Fisher's_method. The page
also describes how the answer can be used to combine the results of several independent tests.

Question 18. We are given a dataset x1,...,2z,. Our null hypothesis is that these values are
drawn from Normal(0,02), where o is an unknown parameter. Let
1 n
F(z) = - ;1[172-/& < 7]
i—

where 6 = /n=1)", x? is the maximum likelihood estimator for o. If the null hypothesis is
true, we'd expect F(z) to be reasonably close to ®(z), the cumulative distribution function for
Normal(0, 1), for all z. Suggest how to test the hypothesis that the dataset is indeed drawn from
Normal(0, o), using a test statistic based on F and ®.


https://github.com/damonjw/datasci/blob/master/ex/ex3.ipynb
https://github.com/damonjw/datasci/blob/master/ex/ex3.ipynb
https://en.wikipedia.org/wiki/Fisher's_method

This question is asing you to be creative in inventing a test statistic. If you don’t feel creative, look
up the Kolmogorov-Smirnov test on Wikipedia.

When we fit a linear model, there’s an assumption that the residuals are normally distributed (as
discussed in section 2.4). After fitting a linear model, it’s always worth testing whether the residuals
are indeed normally distributed, and this question gives you a way to do this test.

Question 19. A recent paper Historical language records reveal a surge of cognitive distortions in
recent decades by Bollen et al., https://www.pnas.org/content/118/30/e2102061118.full,
claims that depression-linked turns of phrase have become more prevalent in recent decades. This
paper reports both confidence intervals and null hypotheses. Explain how it is computes them, in
particular (1) the readout statistic, (2) the sampling method.

Skim-read the whole paper, and read the Materials and Methods section closely. Note that the word
‘bootstrapping’ is another name for ‘non-parametric resampling’. You can find a definition of z-score
on Wikipedia, but it doesn’t add anything to the explanation given in the paper.

In the notation used in this course, the dataset used in the paper is (x1,y1),. .., (Tk, yx) where y
is a vector

Yi = [yz:,1855, ceey yi,2020}

giving the prevalence of n-gram i in each year, and x; € {1,2,3,4,5} is the number of words in that
n-gram.

The readout statistic t(z1,...,zk) is well hidden, and you will have to dig through the whole paper
to find it.

Question 20. To allow for non-linear temperature increase, Example Sheet 1 suggested a model
with a step function,

temp ~ By sin(27t) + B2 cos(21t) + Ydecade + Normal(0, 02).

Find a 95% confidence interval for 420105 — J1980s. Conduct a hypothesis test of whether 19505 =
72010s-


https://www.pnas.org/content/118/30/e2102061118.full

