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Signals

» flow of information
» measured quantity that varies with time (or position)

» electrical signal received from a transducer
(microphone, thermometer, accelerometer, antenna, etc.)

» electrical signal that controls a process

Continuous-time signals: voltage, current, temperature, speed, ...

Discrete-time signals: daily minimum/maximum temperature,
lap intervals in races, sampled continuous signals, ...

Electronics (unlike optics) can only deal easily with time-dependent
signals. Spatial signals, such as images, are typically first converted into
a time signal with a scanning process (TV, fax, etc.).



Signal

processing

Signals may have to be transformed in order to

>
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amplify or filter out embedded information

detect patterns

prepare the signal to survive a transmission channel
prevent interference with other signals sharing a medium
undo distortions contributed by a transmission channel
compensate for sensor deficiencies

find information encoded in a different domain

To do so, we also need

>

>

methods to measure, characterise, model and simulate transmission
channels

mathematical tools that split common channels and transformations
into easily manipulated building blocks

Analog electronics

Passive networks (resistors, capacitors,
inductances, crystals, SAW filters),
non-linear elements (diodes, ...),
(roughly) linear operational amplifiers

Advantages: Ui

» passive networks are highly linear

Uout

over a very large dynamic range

_ 0 1I/VIC w(=21))
and large bandwidths

analog signal-processing circuits

require little or no power u LWW__;\/MWW

analog circuits cause little

additional interference L t
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Digital signal processing

Analog/digital and digital /analog converter, CPU, DSP, ASIC, FPGA.

Advantages:

» noise is easy to control after initial quantization

highly linear (within limited dynamic range)

complex algorithms fit into a single chip

>
>
» flexibility, parameters can easily be varied in software
>

digital processing is insensitive to component tolerances, aging,
environmental conditions, electromagnetic interference

But:

» discrete-time processing artifacts (aliasing)

» can require significantly more power (battery, cooling)

» digital clock and switching cause interference

Some DSP applications

communication systems
modulation/demodulation, channel
equalization, echo cancellation
consumer electronics

perceptual coding of audio and video (DAB,
DVB, DVD), speech synthesis, speech
recognition

music

synthetic instruments, audio effects, noise
reduction

medical diagnostics

magnetic-resonance and ultrasonic imaging,
X-ray computed tomography, ECG, EEG, MEG,
AED, audiology

geophysics

seismology, oil exploration

astronomy
VLBI, speckle interferometry

transportation

radar, radio navigation

security

steganography, digital watermarking, biometric
identification, surveillance systems, signals
intelligence, electronic warfare

engineering

control systems, feature extraction for pattern
recognition, sensor-data evaluation



Objectives

By the end of the course, you should be able to

» apply basic properties of time-invariant linear systems

» understand sampling, aliasing, convolution, filtering, the pitfalls of
spectral estimation

» explain the above in time and frequency domain representations

» use filter-design software

» visualise and discuss digital filters in the z-domain

» use the FFT for convolution, deconvolution, filtering

» implement, apply and evaluate simple DSP applications, e.g. in Julia

» apply transforms that reduce correlation between several signal sources

» understand the basic principles of several widely-used modulation and
image-coding techniques.

Textbooks

» R.G. Lyons: Understanding digital signal processing. 3rd ed.,
Prentice-Hall, 2010. (£73)

» Thomas Holton: Digital signal processing — principles and
applications. Cambridge University Press, 2021. (£85)

» A.V. Oppenheim, R.W. Schafer: Discrete-time signal processing. 3rd
ed., Prentice-Hall, 2007. (£47)

» J. Stein: Digital signal processing — a computer science perspective.
Wiley, 2000. (£133)

» S.W. Smith: Digital signal processing — a practical guide for
engineers and scientists. Newness, 2003. (£48)

» K. Steiglitz: A digital signal processing primer — with applications to

digital audio and computer music. Addison-Wesley, 1996. (£67)



Sequences and systems

A discrete sequence {z, }°° ___ is a sequence of numbers
ceey -2, L—1,T0, L1, L2, - - -

where x,, denotes the n-th number in the sequence (n € Z). A discrete
sequence maps integer numbers onto real (or complex) numbers.

We normally abbreviate {z,, }>2 ___ to {z,}, or to {zy } if the running index is not obvious.

The notation is not well standardized. Some authors write z[n] instead of x,,, others z(n).

Where a discrete sequence {x,, } samples a continuous function x(t) as

Tn = a(ts - n) = x(n/ fs),

we call tg the sampling period and fs = 1/t the sampling frequency.

A discrete system T receives as input a sequence {x,,} and transforms it
into an output sequence {y,} = T{x,}:

ot e discrete
R R R R | R I = systemT = ..., Y2, 91,Y0,Y—-1, - -
9
Some simple sequences
Un,
Unit-step sequence: 19 o o o
0, n<O
Uy =
1, n>0
*—o
-3-2-10 1 2 3 n
On
Impulse sequence: 1@
1 =
Gu=4 " "
0, n#0
— *—o o *—9o o
tn " tint 3-2-10 1 2 3...,
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Sinusoidial sequences

A cosine wave, amplitude A, frequency f, phase offset ¢:

x(t) = A-cos(2mft + ¢)

phase
Sampling it at sampling rate fs results in the discrete sequence {z,}:
T, = A-cos(2rtfn/fs + ¢) = A - cos(wn + )
where w = 27tf / f5 is the normalized angular frequency in radians/sample.

Julia example:

n = 0:40; fs = 8000

f = 400; x = cos.(2pi*f*n/fs)

sticks(n, x; shape=:circle) {
g

This shows 41 samples (=~ 1/200 s = 5 ms)
of an f = 400 Hz sine wave, sampled at T q P' q P'
s = 8 kHz.

Exercise: Try f = 0, 1000, 2000, 3000, 4000,

5000 Hz. Try negative f. Try sine instead of

cosine. Try adding phase offsets ¢ of +7/4, 1ol : | ‘ |
+7t/2, and %7t o 10 20 0 m

Properties of sequences

A sequence {z,} is

periodic= dk >0:Vne Z:x, = Tpik

Is a continuous function with period ¢, still periodic after sampling?

o

absolutely summable < Z |z, | < 00

n=—aoo

(0.@)
square summable < Z |2,]|* < 00 < ‘“energy signal’

n=—oo
N———
“energy”
k
0< lim x> < oo < “power signal”
S Y2 Zk‘ nl P &
n=—

\ . e
~"

“average power”

This energy/power terminology reflects that if U is a voltage supplied to a load
resistor R, then P = UI = U?/R is the power consumed, and [ P(t)dt the energy. It
is used even if we drop physical units (e.g., volts) for simplicity in calculations.
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A brief excursion into measuring signal intensity

Root-mean-square (RMS) signal strength
DC = direct current (constant), AC = alternating current (zero mean)
Consider a time-variable signal f(t) over time interval [t1,t2]:

2 f(r)dr

DC component = mean voltage =
2 — 1 Jy

AC component = f(t) — DC component

How can we state the strength of an AC signal?
The root-mean-square signal strength (voltage, etc.)

1 t2
rms = 2(7)dr
b_hL;f()

is the strength of a DC signal of equal average power.

RMS of a sine wave:

— A-si 2dr = — forall ke N. A R
\/27tk/0 [A - sin(T + ¢)]?dT 7 or a eN,A g€
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Perception of signal strength

Sensation limit (SL) = lowest intensity stimulus that can still be perceived

Difference limit (DL) = smallest perceivable stimulus difference at given
intensity level

Weber’s law

Difference limit A¢ is proportional to the intensity ¢ of the stimulus
(except for a small correction constant a, to describe deviation of
experimental results near SL):

Dg =c-(¢+a)

Fechner’s scale

Define a perception intensity scale ¢ using the sensation limit ¢ as the
origin and the respective difference limit A¢ = c- ¢ as a unit step. The
result is a logarithmic relationship between stimulus intensity and scale
value:

¢

= log .. ——
(0 ogc¢0

14



Fechner's scale matches older subjective intensity scales that follow
differentiability of stimuli, e.g. the astronomical magnitude numbers for
star brightness introduced by Hipparchos (=150 BC).

Stevens’ power law

A sound that is 20 DL over SL is perceived as more than twice as loud as
one that is 10 DL over SL, i.e. Fechner's scale does not describe well
perceived intensity. A rational scale attempts to reflect subjective
relations perceived between different values of stimulus intensity ¢.
Stanley Smith Stevens observed that such rational scales 1) follow a
power law:

Y ="k-(¢— ¢o)”
Example coefficients a: brightness 0.33, loudness 0.6, heaviness 1.45,
temperature (warmth) 1.6.

Units and decibel

Communications engineers often use logarithmic units:

» Quantities often vary over many orders of magnitude — difficult to
agree on a common Sl prefix (nano, micro, milli, kilo, etc.)

» Quotient of quantities (amplification/attenuation) usually more
interesting than difference

» Signal strength usefully expressed as field quantity (voltage, current,
pressure, etc.) or power, but quadratic relationship between these
two (P = U?/R = I?R) rather inconvenient

» Perception is logarithmic (Weber/Fechner law — slide 14)

Plus: Using magic special-purpose units has its own odd attractions (— typographers, navigators)

Neper (Np) denotes the natural logarithm of the quotient of a field
quantity F' and a reference value Fp. (rarely used today)

Bel (B) denotes the base-10 logarithm of the quotient of a power P and
a reference power Py. Common prefix: 10 decibel (dB) = 1 bel.

15
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Decibel

Where P is some power and Py a 0 dB reference power, or equally where
F'is a field quantity and Fy the corresponding reference level:

P F
10dB - lo — =20dB-lo —
£10 2} g10 Fy

Common reference values are indicated with a suffix after “dB":

0dBW =1W
0dBm =1mW = —-30dBW
0dBuV =1 uVv

0dBu =0.775V =v600 Q x 1 mW
0 dBspr = 20 puPa (sound pressure level)
0 dBs. = perception threshold (sensation limit)

0 dBFS = full scale (clipping limit of analog/digital converter)

Remember:

3dB = 2x power, 6 dB = 2Xx voltage/pressure/etc.
10 dB = 10x power, 20 dB = 10x voltage/pressure/etc.

W.H. Martin: Decibel — the new name for the transmission unit. Bell Syst. Tech. J., Jan. 1929.
ITU-R Recommendation V.574-4: Use of the decibel and neper in telecommunication.

Types of discrete systems

discrete
ey L2, L1, X0, X —15 - — systemT %...,yz,yl,yo,y_l,...

A causal system cannot look into the future:
Yn = f(Tn, Tn_1,%n_2,...)
A memory-less system depends only on the current input value:
Yn = f(n)
A delay system shifts a sequence in time:
Yn = Tn—d
T is a time-invariant system if for any d
{yn} =T{zn} <= A{yn—da} =T{zn-a}.
T is a linear system if for any pair of sequences {x,,} and {z] }

T{a -z, +b-2}=a -T{x,} +b-T{x}.

17
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Example: M-point moving average system

+Tp—1+ Ty

Tn— 41+

Ln—k

_1M—1
yn_M

k=0

It is causal, linear, time-invariant, with memory. With M = 4:

K

R
3
3
D
0
X—()

)

S25268)

M;"
A

0
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Example: exponential averaging system

—|N

a -+ (1l—a) yp_1= aZ(l O A
k=0

Yn
It is causal, linear, time-invariant, with memory. With «

+X

o—y
N
S
}“{5 ‘

20



Example: accumulator system

n
Yn = Z Tk

k=—o0

It is causal, linear, time-invariant, with memory.

21

Example: backward difference system

Yn = Tp — Tp-—1

It is causal, linear, time-invariant, with memory.

22



Other examples

Time-invariant non-linear memory-less systems:
Yn = T2, Yp = l0gr Tp, Yn = max{min{|256x, |,255},0}

Linear but not time-invariant systems:

Tn, 1 >0 k-times expansion/decimation:
Yn = - =Tp Uy
0, n<0 e k|n
Yn =
Yn = T|n/a 0, kin

Linear time-invariant non-causal systems:
1
Yn = §($n—1 + $n+1)

9 )
sin(mkw
Y = k;g Ttk % -[0.5+ 0.5 - cos(7tk /10)]

Constant-coefficient difference equations

Of particular practical interest are causal linear time-invariant systems of

the form
NU \1/
N
-1
yn:bO'xn_Zak'yn—k: —a <
1
k=1 6_\
/ Yn—1
L1
Block diagram representation N
of sequence operations: G'/ Yn—2
xl i
—a
N T Tp + T 3 | y
Addition: () n—3
Multiplication Tn a axy,
by Constant: The ak and bm are

constant coefficients.

Ln—1

Delay:

N

23
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or

In Tn—-1 ITn—2 Tn—3
51 n 51 n 51 "
M
Un =Y bm Tn-m bo by by bs
m=0
® + +
Yn
or the combination of both: _1
J Y !
-1 —1
z z
bl /-D —a1
N M Tp_1 N Yn—1
Za’k'yn—k — Z bm'xn—m 1 ]
k=0 m=0 z b z
2 N
+
Tp—2 N7 Yn—2
z_l b _a z_l
| S 3 |
Ln—3 N~ Yn—3

Implementations: DSP.jI's £ilt(b, a, x), MATLAB's filter, scipy.signal.lfilter.

Convolution

Another example of a LTI systems is

oo

Yn = E ag - Tn—k

k=—o00

where {ay} is a suitably chosen sequence of coefficients.

This operation over sequences is called convolution and is defined as

oo

{pn} * {Qn} — {rn} — VneZ:r,= Z Pk - Qn—k-

k=—o0

If {yn} = {an}*{x,} is a representation of an LTI system T', with
{yn} = T{x,}, then we call the sequence {a,,} the impulse response of

T, because {an} =T{0,}, as {an} * {0n} ={an}, Dk dIn_i = an.

If f and g are continuous functions, their convolution is defined similarly as the integral
o
(O = [ F@lt - )ds.

But what is the continuous equivalent of {§,,}? More on that later ...

25
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Convolution examples

A B C D
E F AxB AxC

o Lt

C=*A AxE

NS .

Properties of convolution

For arbitrary sequences {p,.}, {¢.}, {rn} and scalars a, b:

» Convolution is associative

AR

D=E

e

AxF

i

27

({pn} *{gn}) * {rn} = {pn} * ({an} * {rn})

» Convolution is commutative

{pn} *{an} = {an} * {pn}

» Convolution is linear

{pn}*{a-qu+b-mn} =a-({pn} *{qn}) +b-({Pn} *{rn})

» The impulse sequence (slide 10) is neutral under convolution

{pn} = {00} = {0n} * {pn} = {Pn}

» Sequence shifting is equivalent to convolving with a shifted impulse

{pn—d}n — {pn} * {5n—d}n

28



All LTI systems just apply convolution

Proof:

Any sequence {x, } can be decomposed into a weighted sum of shifted

impulse sequences:
o

{zn} = Z Tk {0n—k}

k=—o0

Let's see what happens if we apply a linear*) time-invariant**) system T
to such a decomposed sequence:

T{zn)} _T< S o {5“}) 2N a - T{Su-r)

DS e (b} 2 T} = ( > wk-{énk}> “T{5)

k=—o0 k=—o0

= {xn} *T{0n} q.e.d.

= The impulse response T{6,,} fully characterizes an LTI system.

Direct form | and |l implementations

-1 —1

V —=) J ) 7 )

—ay b1

<

3

N
\i&
T
Ny

3

N
)
t)
)
)

—ay by

)

3

b
\i&
T
Ny

3

b
)
t)
)
)

b3

The block diagram representation of the constant-coefficient difference
equation on slide 25 is called the direct form | implementation.

The number of delay elements can be halved by using the commutativity
of convolution to swap the two feedback loops, leading to the direct form
Il implementation of the same LTI system.

These two forms are only equivalent with ideal arithmetic (no rounding errors and range limits).

29
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Convolution: optics example

If a projective lens is out of focus, the blurred image is equal to the
original image convolved with the aperture shape (e.g., a filled circle):

image plane  focal plane

é_

Original image I, blurred image B =1 x h, i.e.

B(z,y) = // Iz—z',y—y')-h(z',y")-dz'dy’ S

Convolution: electronics example

Uin |G — Uout

UM

t

L —e

Any passive network (resistors, capacitors, inductors) convolves its input
voltage U;, with an impulse response function h, leading to
Uout = Uiy x h, that is

Usuelt) = / T Ut — 1) () - dr

— 0

In the above example:

—C RC ,

[]i _Uout dUout o L'elg_é tZO
R Codt h(t)_{ 0, t<0

31
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Adding sine waves

Adding together sine waves of equal frequency, but arbitrary amplitude

and phase, results in another sine wave of the same frequency:
Az -sin(wt 4+ 1) + Az - sin(wt + p2) = A -sin(wt + @)

Why?

Think of A -sin(wt + ) as the height of
an arrow of length A, rotating 5= times per second,

with start angle ¢ (radians) at t = 0. A A2
Consider two more such arrows, R
of length A; and A5, Aq

with start angles 1 and (. wit g

Ay and Aj; stuck together are as high as A, P1

all three rotating at the same frequency.

But adding sine waves as vectors (A1, 1) and (A2, ¢2) in polar coordinates is cumbersome:

Ajpsin Y1 + Ajssin ©2

A= /A% + A2 + 2A,A — 1), tang =
\/ T+ A5 +2A1Arcos(p2 — 1), tane Aj cos p1 + Ap cos 7

Cartesian coordinates for sine waves

Sine waves of any amplitude A and phase (start angle) ¢ can be
represented as linear combinations of sin(wt) and cos(wt):

33

A -sin(wt + ) = x - sin(wt) + vy - cos(wt) cos(wt) = sin(wt + 90°)

where

xr=A cos(p), y=A-sin(p)

and

A= /22 + 92, tanQO:%.

Base: two rotating arrows with start angles 0° [height = sin(w)] and 90° [height = cos(w)].

Adding two sine waves as vectors in Cartesian coordinates is simple:
fi(t) = 1 - sin(w) + y1 - cos(w)
f2(t) = x2 - sin(w) + y2 - cos(w)
f1(t) + fa(t) = (21 + 22) - sin(w) + (1 + y2) - cos(w)

A -sin(y)

34



Why are sine waves useful?

1) Sine-wave sequences form a family of discrete
sequences that is closed under convolution with
arbitrary sequences.

Convolution of a discrete sequence {x,,} with another sequence {h,,} is
nothing but adding together scaled and delayed copies of {z,}.
Think again of {h,} as decomposed into a sum of impulses:

{zn}* {hn} ={zn} * Z hic - {0n—k}n = Z hig - ({zn} * {0n—k}n)
k k
— Z hk : {xn—k:}n
k

If {x,,} is a sampled sine wave of frequency f, i.e.
Tn = Ay - sin(2rtft + ¢,)

then {yn} = {xn} * {hn} =D, bt - {&n—k}n is another sampled sine
wave of frequency f, i.e. for each {h,,} there exists a pair (4, ¢,) with

Yn = Ay - sin(2tft + ¢y)

The equivalent applies for continuous sine waves and convolution. 35

Why are sine waves useful?

2) Sine waves are orthogonal to each other

The term “orthogonal” is used here in the context of an (infinitely dimensional)
vector space, where the “vectors” are functions of the form f: R — R
(or f: R — C) and the scalar product is defined as

fro= [ 1) gvat
Over integer (half-)periods:

m,n € Nym #n = / sin(nt) sin(mt)dt = 0
0
m,n € N = / sin(nt) cos(mt)dt =0

We can even (with some handwaving) extend this to improper integrals:

/ sin(wit 4+ ¢1) - sin(wat + o) dt “=" 0

= wiFw V (pl—g02:(2k+1)7T/2 (kGZ)

They can be used to form an orthogonal function basis for a transform.
36



[ TIsin(1t)-sin(2t)
sin(1t)
sin(2t)
_1 | | |
0 1.5708 3.1416 4.7124 6.2832
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Why are exponential functions useful?

Adding together two exponential functions with the same base z, but
different scale factor and offset, results in another exponential function
with the same base:

A]. . zt‘i‘@l + A2 . Zt+(p2 — A]. . zt . ZSOI + A2 . Zt . 2802

= (A;- 29 4+ 45-29) - 2= A4

Likewise, if we convolve a sequence {z,} of values

-3 -2 _—1 2 .3
AR A A W A

xn = 2" with an arbitrary sequence {h,,}, we get {y,} = {2"} * {h,},

oo oo oo

Un= > Tng-he= Y 2"Fhp=2" )" 2F.hy=2" H(2)

where H(z) is independent of n.

Exponential sequences are closed under convolution with
arbitrary sequences.

The same applies in the continuous case.
38



Why are complex numbers so useful?

1) They give us all n solutions ( “roots”) of equations involving
polynomials up to degree n (the “+/—1 =] " story).

2) They give us the “great unifying theory” that combines sine and
exponential functions:

1 . .
cos(f) = 5 (ejg—l—e_ﬂ)
1 . .
sin(f) = % (el — e 1)
or .
— = | pilwt+ep) —j(wt+ep)
cos(wt + ¢) 5 (e +e )
or
cos(wn + ) = R = R[(})" . eI¥]
sin(on + ) = (@) = J[(el¥)" - el

Notation: R(a + jb) := a, (a + jb) := b and (a + jb)* := a — jb, where j> = —1 and a,b € R.

Then R(z) = (= + 2*) and S(z) = 2%(13 — ™) forall z € C.

We can now represent sine waves as projections of a rotating complex
vector. This allows us to represent sine-wave sequences as exponential
sequences with basis e/*.

A phase shift in such a sequence corresponds to a rotation of a complex
vector.

3) Complex multiplication allows us to modify the amplitude and phase
of a complex rotating vector using a single operation and value.

Rotation of a 2D vector in (z,y)-form is notationally slightly messy, but
fortunately j> = —1 does exactly what is required here:

(n)=Co ) ()
Y3 Yo X2 Y (3,93)

_ L1T2 — Y1Y2 (—yp, 22)
T1Y2 + T2y1 ’\

\ ($2>y2)
21 =1+ jy1, 22 =T2+ JY2 \ (z1,91)
N\ A

21+ 20 = 122 — Y1y2 + j(T1y2 + 22y1)

39
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Complex phasors

Amplitude and phase are two distinct characteristics of a sine function
that are inconvenient to keep separate notationally.

Complex functions (and discrete sequences) of the form
(A-e¥). et = A.l@H9) = A [cos(wt 4 ¢) + j - sin(wt + ¢)]

(where j2 = —1) are able to represent both amplitude A € R" and phase
¢ € [0,27) in one single algebraic object A -el¥ € C,

Thanks to complex multiplication, we can also incorporate in one single
factor both a multiplicative change of amplitude and an additive change
of phase of such a function. This makes discrete sequences of the form

jwn

eigensequences with respect to an LTI system T, because for each w,
there is a complex number (eigenvalue) H(w) such that

T{eny = H(w) - {2n}

In the notation of slide 38, where the argument of H is the base, we would write H(ej‘b).

Recall: Fourier transform

We define the Fourier integral transform and its inverse as

Flowin = o) = | T o) e st gy

— 0O

FUGNY) = o) = /OO G(f)- M d

— 0

Many equivalent forms of the Fourier transform are used in the literature. There is no strong
consensus on whether the forward transform uses e 2" Jf* and the backwards transform e2”jft, or
vice versa. The above form uses the ordinary frequency f, whereas some authors prefer the angular
frequency w = 27t f:

F{hO}w) = Hw) = a/_m h(t) - e Tt gt

FUHHWI) = ht) = B/_MH(M)_e:l:jwtdw

This substitution introduces factors o and 8 such that a8 = 1/(27t). Some authors set « = 1
and 8 = 1/(27), to keep the convolution theorem free of a constant prefactor; others prefer the

unitary form a = 8 = 1/+/27, in the interest of symmetry.

41
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Properties of the Fourier transform

If
x(t) eo X(f) and  y(t) eo Y(f)

are pairs of functions that are mapped onto each other by the Fourier
transform, then so are the following pairs.

Linearity:
ax(t) +by(t) eo aX(f)+0bY(f)

Time scaling:

2(at) oo ix(f)

Frequency scaling:

o(2) oo e

a

Time shifting:
z(t — At) oo X(f)- e 2mifAL
Frequency shifting:
(t) - AT .o X(f - Af)
Time reversal:
z(—t) oo X(-=f)
Complex conjugate:

z"(t)
2" (1)

“(=1)

X
X*(f)

51

Parseval’s theorem (total energy):

[ topae =[x



Fourier transform example: rect and sinc

The Fourier transform of the “rectangular function”

: 1
1 if ‘t‘ <53 1
rect(t)=¢ 1 if|t|=13 )
0 otherwise 10 1
2 2

is the “(normalized) sinc function”

F{rect(t)}(f) = / Cemiftdy =

1
2

sinTtf
mf

= sinc(f)

and vice versa
F{sinc(t)}(f) = rect(f).

Some noteworthy properties of these functions:
> [0 sinc(t)dt =1= [0 rect(t)dt 1

> sinc(0) = 1 = rect(0) 0 ‘ /\
~_— ‘ —

> VYn € Z\ {0} :sinc(n) =0

45

Convolution theorem

Convolution in the time domain is equivalent to (complex) scalar
multiplication in the frequency domain:

FUS*9)(8)) = FLf()) - Flo(t)y

Proof: 2(r) = [, z(s)y(r — s)ds <= [ z(r)e”"dr= [ [ z(s)y(r — s)e” 1 dsdr =

[ox(s) [ y(r — s)e 7 drds = [ x(s)e™“° [ y(r — s)e 1@(r=s)dpds “TE°

[ z(s)e™1% [, y(t)e™ “tdtds = [ a(s)e™“ds - [, y(t)e I“tdt.

Convolution in the frequency domain corresponds to scalar multiplication
in the time domain:

FLf(E) - 9(@)} = FLf()} + Flg(t)}

This second form is also called “modulation theorem”, as it describes what happens in the
frequency domain with amplitude modulation of a signal (see slide 53).

The proof is very similar to the one above.

Both equally work for the inverse Fourier transform:
FHE O} =F HF(NY FHGU)}
FHFW) -GNy =F HF(NY = FHGW))
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Dirac delta function

The continuous equivalent of the impulse sequence {4,,} is known as
Dirac delta function §(z). It is a generalized function, defined such that

>

1
5(z) = {O, x#0 /

oo, =20
/ d(x)de = 1
0 x

and can be thought of as the limit of function sequences such as

B 0, |z| > 1/n
o) = nll—>moo{ n/2, |x|<1l/n

or
2, 2

d(z) = lim N ena

n—oo \/_

The delta function is mathematically speaking not a function, but a distribution, that is an
expression that is only defined when integrated.

Some properties of the Dirac delta function:

/ T @)@ —a)dr = f(a)

/ et2mizaqy  — d(a)

w .
Z e:i:ZTCyLma _ Z 5 x—z/a
\a|

1=—00 1=—00

d(ax) = —di(z)

Fourier transform:

FLo(6)}(f) = /_OO o(t) e dt = & = 1

(6. @)

FH1Mt) = / 1 - e’mItdf = &(t)

— 00



Linking the Dirac delta with the Fourier transform

The Fourier transform of 1 follows from the Dirac delta’s ability to

sample inside an integral:
g(t) = FH(F(9))(t)

= / (/ g(s) - e 2mifs . ds) 2Tt g f
:/ (/ o 2mifs | 2Tift df)  g(s) - ds
= / (/ e 2mif(s=t) . df) - g(s) - ds

d(s—t)

So if § has the property

g(t):/_m 5(s — 1) - g(s) - ds

then -
/ e 2= g f = (s —t)

/oo 2t df = 5(t) 10 cos(2mfit) = S(t)
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Sine and cosine in the frequency domain

1 , 1 . 1 _ 1 _
cos(2mfot) = = e2mifot | — o —2mifot sin(27fot) = — e2mifot _ = o—2mjfot

2 2
Fleosufot)} (1) = 50(f = fo) + 50(7 + fo)

Fsin(refot) ) = =304 = o) + 300 + fo)

2] 2]

r r
N\ 3 N\ 3
2 S 2 S
7 1.
5) 5)

/!

—fo Jo / —Ifo /o

As any z(t) € R can be decomposed into sine and cosine functions, the spectrum of any
real-valued signal will show the symmetry X (—f) = [X(f)]*, where * denotes the complex
conjugate (i.e., negated imaginary part).

Fourier transform symmetries

We call a function z(t)

odd if z(—t) = —z(t)
— 2

and -* is the complex conjugate, such that (a + jb)* = (a — jb).
Then

N

even if x(—t

x(t) is real X(=f)=[X(NI
x(t) is imaginary X(=f)=-[X(NI
x(t) is even X(f) is even

z(t) is odd X(f) is odd

X(f) is real and even
X(f) is imaginary and odd
X(f) is imaginary and even
X(f) is real and odd

x(t) is real and odd
x(t) is imaginary and even
x(t) is imaginary and odd

(A A R A

(t)
(t)
(t)
(t)
x(t) is real and even
(t)
(t)
(t)
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Example: amplitude modulation

Communication channels usually permit only the use of a given frequency
interval, such as 300-3400 Hz for the analog phone network or 590-598
MHz for TV channel 36. Modulation with a carrier frequency f. shifts
the spectrum of a signal z(¢) into the desired band.

Amplitude modulation (AM):

y(t) = A - cos(2mtf.) - x(t)

X(f) Y(f)
1. Al
i 0 [ o f ke 0 ko f

The spectrum of the baseband signal in the interval —f; < f < fi is
shifted by the modulation to the intervals +f. — fi < f < £ f. + fi.

How can such a signal be demodulated?
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Sampling using a Dirac comb

The loss of information in the sampling process that converts a
continuous function x(t) into a discrete sequence {x,} defined by

Tn = 2(ts - n) = z(n/ fs)
can be modelled through multiplying z(¢) by a comb of Dirac impulses
s(t)y=ts - Y O(t—ts-n)

to obtain the sampled function

(1) = z(t) - s(¢)

The function Z(¢) now contains exactly the same information as the
discrete sequence {x, }, but is still in a form that can be analysed using
the Fourier transform on continuous functions.
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The Fourier transform of a Dirac comb

S(t):ts i 5(t_ts77,) Z e27TJm‘/z‘

n=—oo nN=—oo

is another Dirac comb

S(f) = { Z 5(t—tn} f) =

/ i 5(t — ten) e 2Tt = Z 5(]“——)
s(t) S(f)

LI L]

2t —t. 0 t. 2t t —2fi —f. O f. 2f f
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Sampling and aliasing

—® sample

” \ (\@\\7\\\ )

|
W

Sampled at frequency fs, the function cos(27tf) cannot be distinguished
from cos[2nt(k fs £ f)] for any k € Z.
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Frequency-domain view of sampling

~

(1) s(t) 2(t) .
N N A e d
y AN R //

. ' N s

/\ | T | yT
/

0 t —1/f: 0 1/f t —1I/fs 0 1/|fs

X(f) S(f) X(f)
NANNAN
>3 pr—
0 f _fs fs f _IfS 0 fI.S

Sampling a signal in the time domain corresponds in the frequency
domain to convolving its spectrum with a Dirac comb. The resulting
copies of the original signal spectrum in the spectrum of the sampled
signal are called “images"”.

Discrete-time Fourier transform (DTFT)

The Fourier transform of a sampled signal

o

Bt)=ts - Y an-0(t—ts-m)

n=—oo

IS

FROI) = X(f) = /

— 0o

B(t)-e Tt =t - Y @y, e IR

The inverse transform is
0= [ R()-emiiaf o = [
—00 —fs/2

The DTFT is also commonly expressed using the normalized frequency
w= 27(% (radians per sample), and the notation

X(e3*) = an e Iwn

is customary, to highlight both the periodicity of the DTFT and its
relationship with the z-transform of {z,} (see slide 124).

f/2 .
X(f)-e*™r=mdf.



0.8 1

0.6 1

04 r

0.2 1

oe—e—e *—0—9@
-5 0 5

time-domain samples

1l &
0.8 1
0.6
04
0.2 1
oe—e—o o *—9o oo
-5 0 5

time-domain samples

0.8 r

0.6 1

0.4 r

0.2 1

oe—e *—0—0—9@
-5 0 5

time-domain samples

1 L 4

0.8 1

0.6 1

04

0.2 1

06— 9o o —0 o o 0o o
-5 0 5

time-domain samples

DTFT real
DTFT imag

Sam Yorr Yamr 0 Yam Yer Yam 0w

DTFT frequency (1 period)

DTFT real
DTFT imag

Sam Yorr Yam 0 Yam Yorw Yam 0w

DTFT frequency (1 period)

DTFT real
DTFT imag

Sam Yo Yam 0

DTFT frequency (1 period)

Yar Yom Y%am w

DTFT real
DTFT imag

Sam Yorr Yam 0 Yam Yorw Yam 0w

DTFT frequency (1 period)
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0.8 1

0.6 1

04 r

0.2 1

oo

-5

0
time-domain samples

05 ¢

O

0®

-05

05 ¢

0
time-domain samples

-05

0
time-domain samples

0.8 1

0.6 1

04

0.2 1

06—o o o o o

-5

0
time-domain samples

——0—0—0

5

-2

-2

-2

DTFT real
DTFT imag

-1 Yarw Yor Yaw 0 Yam Yom Yam 0w

DTFT frequency (1 period)

DTFT real
DTFT imag

A
NIVINV

- Yaw Yor Yamw 0 Yam Yeom Yam 0w

DTFT frequency (1 period)

DTFT real
DTFT imag

\/

L L

L

L

\/

L L L

- Yaw Yor Yamw 0

Yar Yom Y%am w

DTFT frequency (1 period)

DTFT real
DTFT imag

S

- Yaw Yor Yam 0 Yam Yem Yam 0w

DTFT frequency (1 period)
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Properties of the DTFT

The DTFT is periodic:
X(f)=X(f+kf) or X(e¥) = X(l¥H2™))  vkez

Beyond that, the DTFT is just the Fourier transform applied to a discrete
sequence, and inherits the properties of the continuous Fourier transform,

e.g.
» Linearity
» Symmetries

» Convolution and modulation theorem:
{zn}* {yn} = {2} <= X(/) Y (™) = Z(eV)

and

Tn Yo = 2n > X (). Y(el—9N)do = Z(el?)

—Tr
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Nyquist limit and anti-aliasing filters

If the (double-sided) bandwidth of a signal to be sampled is larger than
the sampling frequency fs, the images of the signal that emerge during
sampling may overlap with the original spectrum.

Such an overlap will hinder reconstruction of the original continuous
signal by removing the aliasing frequencies with a reconstruction filter.

Therefore, it is advisable to limit the bandwidth of the input signal to the
sampling frequency fs before sampling, using an anti-aliasing filter.

In the common case of a real-valued base-band signal (with frequency
content down to 0 Hz), all frequencies f that occur in the signal with
non-zero power should be limited to the interval —f/2 < f < fs/2.

The upper limit f;/2 for the single-sided bandwidth of a baseband signal
is known as the “Nyquist limit".
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Nyquist limit and anti-aliasing filters

Without anti-aliasing filter With anti-aliasing filter
X(f) FUCA s X(f) Iim'i\iyiu?: /2
— anti-aliasing filter | | —
N_ . :|
VARN
| |
| |
| |
0 f —f 0 f S

double-sided bandwidth

reconstruction filter

X(f) X /

W\M

2. —f. 2f —f 0 f  2f

Anti-aliasing and reconstruction filters both suppress frequencies outside | f| < fs/2.

Reconstruction of a continuous band-limited waveform

The ideal anti-aliasing filter for eliminating any frequency content above
fs/2 before sampling with a frequency of fs has the Fourier transform

NERT
H(f){ 0 it !f\>% = rect(tsf).

This leads, after an inverse Fourier transform, to the impulse response

h(t) = fs- sinmtfs _ 1 - sinc <£> :

mfs s

The original band-limited signal can be reconstructed by convolving this
with the sampled signal Z(¢), which eliminates the periodicity of the
frequency domain introduced by the sampling process:

z(t) = h(t) * Z(t)

Note that sampling h(t) gives the impulse function: h(t) - s(t) = §(¢t).
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Impulse response of ideal low-pass filter with cut-off frequency f;/2:

-3 -25 -2 -15 -1 -0.5 (} S 1 15 2 25 3
t.
s

Reconstruction filter example

—® sampled signal
interpolation result
scaled/shifted sin(x)/x pulses
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If before being sampled with z,, = x(t/fs) the signal z(t) satisfied the
Nyquist limit

Fa®)(n = [ a0 e a=0 foralIf] > §

— 00

then it can be reconstructed by interpolation with h(t) = + sinc <ti)

x(t):/w h(s)- 2(t — s) - ds

<1 s >
:/_Oogsmc <Z> -tsn_z_:ooxn-é(t—s—ts-n)-ds
= Z xn/ sinc (t_) 0(t—s—1ts-n)-ds
o +_ ts . 0 .
= nzz_oo Ty, - SINC (Tn> = n:z_:oo Tn, - sinc(t/ts —n)
= sinTt(t/ts — n)
%
= n(t/ts — n)
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Reconstruction filters

The mathematically ideal form of a reconstruction filter for suppressing
aliasing frequencies interpolates the sampled signal x,, = x(ts - n) back
into the continuous waveform

o

B sinTt(t/ts — n)
W= D e T Ty

n=—oo

Choice of sampling frequency

Due to causality and economic constraints, practical analog filters can only
approximate such an ideal low-pass filter. Instead of a sharp transition between the
“pass band” (< fs/2) and the “stop band” (> fs/2), they feature a “transition band”
in which their signal attenuation gradually increases.

The sampling frequency is therefore usually chosen somewhat higher than twice the
highest frequency of interest in the continuous signal (e.g., 4x). On the other hand,
the higher the sampling frequency, the higher are CPU, power and memory
requirements. Therefore, the choice of sampling frequency is a tradeoff between signal
quality, analog filter cost and digital subsystem expenses.
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Interpolation through convolution

71

Band-pass signal sampling

Sampled signals can also be reconstructed if their spectral components
remain entirely within the interval n- fi/2 < |[f| < (n+1) - fs/2 for some
n € N. (The baseband case discussed so far is just n = 0.)

X(f) anti- allasmg filter X(f) reconstruction filter
. R N\
|
I I (\ h (\ h
é T T
i, 0 2t “fo o 0 kS f
n =2

In this case, the aliasing copies of the positive and the negative
frequencies will interleave instead of overlap, and can therefore be
removed again later by a reconstruction filter.

The ideal reconstruction filter for this sampling technique will only allow frequencies in the interval
[n- fs/2,(n+1) - fs/2] to pass through. The impulse response of such a band-pass filter can be
obtained by amplitude modulating a low-pass filter, or by subtracting two low-pass filters:

n7et]s/2 2n+1 in7t(n + 1) f in 7ttn f,
h(t) = Ssmrtf/ .cos(27rz€fS n:— >:(n+1) SSInTt(n—i— ) f: sin 7ttn f

it fs /2 nt(n+1)f O minfs
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Spectrum of a periodic signal

A signal z(t) that is periodic with frequency f, can be factored into a
single period z(t) convolved with an impulse comb p(¢). This
corresponds in the frequency domain to the multiplication of the
spectrum of the single period with a comb of impulses spaced f, apart.

(1) i(t) p(t)

/\ /\ /\ /\ N N AN
S0 1/t t 150 1/f
X(f) X(f) P(f)

A NAN\NNAN

1111

_fPO fP f f _fpo fp f

Spectrum of a sampled signal

A signal z(t) that is sampled with frequency fs has a spectrum that is

periodic with a period of fs.

() s(1) #(1)
/\\/ AA .
' — ]\\ A~ 7|\/
0 / “1f 0 1/f t _1f0 1/f ¢
X(f) S(f) X(f)
A A
* —
0 ! hf f 50 fs f




Continuous vs discrete Fourier transform

» Sampling a continuous signal makes its spectrum periodic

» A periodic signal has a sampled spectrum

We sample a signal z(t) with fs, getting Z(¢). We take n consecutive
samples of Z(t) and repeat these periodically, getting a new signal Z(t)

with period n/fs. Its spectrum X (f) is sampled (i.e., has non-zero
value) at frequency intervals f;/n and repeats itself with a period fs.

Now both #(t) and its spectrum X (f) are finite vectors of length n.

4

#(t)

/A

el 1.

L X

(f)

) TTAn¢

_n/fs ! f510f51

_>________

[
|
|
[
|
|
|
|
N

Js

If 2(¢) has period t, = n - t,, then after sampling it at rate 5 we have

B(t) = m(t)-s(t) =ts- Y wi0(t—tsi) =

1=—00

and the Fourier transform of that is

f%ﬂﬂﬂf»=iﬂﬂ::/

(0. @)

n—1 ;
=t Y Y ape IR

l=—00 1=0

Recall that > "2

1=— 00

After substituting k :=

X(kfp) =~

Show that Xy = X+, for all k € Z.

:t27tjiaca

i(t) - e 2T bt

E:e27rjfnl§:xz

l——oo

[e@)

f

Z sz (t—ts-(i+nl))

l=—00 1=0

7

A

tsn Zl (f_%fs)

a\ Zl_—oo 5(x —i/a) and mapz = f, a =
% and f = kf,

Zd(kfp lf,) sz e 2%

7

n

Is

ifkeZ
ifk¢Z

-~

X

—2mjfi

and 7 = 1[.



Discrete Fourier Transform (DFT)

n—1 1 n—1
_oxiik ik
Xk:E T;-e 2 ) xk:_E Xi-e27”n
n
=0 i=0
The n-point DFT multiplies a vector with an n x n matrix
1 1 1 1 - 1
1 e 2min e—2min e 2mis e e~ 27 nd
1 e 2mn 27 o—2mj 8 EEECED)
Fp = 1 e—27-cj% e_zﬂj% e_2”j% o =27 3(nn—1)
1 e—27tj"T_1 e_zﬂj@ o= 27] 3(nn*1) o e_27_[j(n712r£n71)
Zo Xo Xo o
z1 Xl Xl 1
x X 1 X x
F, - 2 = 2 | i 2 _ 2
Ln—1 Xn-1 Xn-1 Ln—1

Discrete Fourier Transform visualized

/t} s (» (& (& (3 t}\ (1‘0\ /Xo\
o - S T X1
& oo S oG o & Lo X,
(= L & SR v | X5
(o & (o & (o (e T4 X4
s O SR, o e L5 Xs
& b o P P Do D 6 X

\L} D D D \/ \x7/ \X7)

The n-point DFT of a signal {z;} sampled at frequency f; contains in
the elements X to X, /> of the resulting frequency-domain vector the
frequency components 0, fs/n, 2fs/n, 3fs/n, ..., fs/2, and contains in
Xpn—1 downto X, /> the corresponding negative frequencies. Note that
for a real-valued input vector, both Xg and X, /» will be real, too.

Why is there no phase information recovered at fs/27

7
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Inverse DFT visualized

(b B b B b b B b X\
o @D O o @ X(;
P D o D P D Do D X,

1l & & < X3 | _
8| (B @ (B @ (<@ & @ Xo |
rart AR oA §5
RS0 0 B JAC VA

Fast Fourier Transform (FFT)

n—1 -
(fn{xz' ?__ol)k = e MW
i=0
- Z Toi - On/2 4 e Z Taig1 € O/
i=0 1=0

n_q _onik n_q
(‘Fg{xzz}f_o )k + e 2y (‘/—-'721{562@'4_1}1-2_0 )k’ k <

(fg {$2i}£gl>k + e (7:?; {CU21+1};_51) , k2>

k-3

_n
2

The DFT over n-element vectors can be reduced to two DFTs over

Lo
I1
T2
I3
T4
Is
Te
x7

N3

N3

n/2-element vectors plus n multiplications and n additions, leading to

log, n rounds and n log, n additions and multiplications overall,
compared to n? for the equivalent matrix multiplication.

A high-performance FFT implementation in C with many processor-specific optimizations and

support for non-power-of-2 sizes is available at https://www.fftw.org/. Julia wrapper: FFTW. jl

Some CPU vendors offer even faster ones, such as the Intel Math Kernel Library (MKL) or
Arm Performance Libraries. Hardware implementations: https://www.spiral.net/.
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Efficient real-valued FFT

The symmetry properties of the Fourier transform applied to the discrete
Fourier transform {X;}7" )" = F,.{x;}"~;' have the form

Viizi= R(z:) <— Vi:Xpi= X;
Viix,i=] -S(z:) <= Vi:X,_i=-X;

These two symmetries, combined with the linearity of the DFT, allows us to
calculate two real-valued n-point DFTs

(XS = Fulelliy XS = Faled Vs

simultaneously in a single complex-valued n-point DFT, by composing its input
as

ri=x; + - x]
and decomposing its output as

1

X; — X,
2_]( n— ’L)

_ %(Xi LXE) XU =
where X,, = Xp.

To optimize the calculation of a single real-valued FFT, use this trick to calculate the two half-size
real-value FFTs that occur in the first round.

Fast complex multiplication

Calculating the product of two complex numbers as
(a+ jb) - (c+ jd) = (ac — bd) + j(ad + be)

involves four (real-valued) multiplications and two additions.

The alternative calculation

a = a(c+d)
(a+jb)-(c+jd)=(a—B)+ jla+~v) with B = d(a+D)
v = ¢(b—a)

provides the same result with three multiplications and five additions.

The latter may perform faster on CPUs where multiplications take three
or more times longer than additions.

This “Karatsuba multiplication” is most helpful on simpler microcontrollers. Specialized
signal-processing CPUs (DSPs) feature 1-clock-cycle multipliers. High-end desktop processors use
pipelined multipliers that stall where operations depend on each other.
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Recap: Fourier transforms

(e .e]
Fourier transform: X(w) = / x(t) - et dt
— 0
» time domain: continuous

» freq. domain: continuous
o
Discrete-time Fourier transform (DTFT): X(e¥) = Z T - €I
n=oo

» time domain: discrete sequence

» freq. domain: continuous
-1
. . . o —2mjnk
Discrete Fourier transform (DFT): Xy = Z Ty - € l
n=0

» time domain: periodic discrete-sequence (degree-/ vector)
» freq. domain: periodic discrete-sequence (degree-l vector)

» also: the result of sampling the DTFT of an [-sample finite-support
sequence {:L’n}ln_:lo at frequencies w = 27(% for k € {0,...,l—1}

Fast Fourier transform (FFT):
» a fast algorithm for calculating the DFT (in nlogn steps)

FFT-based convolution

Calculating the convolution of two finite sequences {x;}" " and {y;}/'='
of lengths m and n via

min{m—1,:}
Z; = Z Tj-Yi—j, 0<i<m+n-1
j=max{0,i—(n—1)}
takes mn multiplications.

Can we apply the FFT and the convolution theorem to calculate the
convolution faster, in just O(m logm + nlogn) multiplications?

{zi} = F 1 (Flai} - Flui})

There is obviously no problem if this condition is fulfilled:
{z;} and {y;} are periodic, with equal period lengths

In this case, the fact that the DFT interprets its input as a single period
of a periodic signal will do exactly what is needed, and the FFT and
inverse FFT can be applied directly as above.
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In the general case, measures have to be taken to prevent a wrap-over:

A B F'[F(A)-F(B)]

Lulli

A B’ F[F(A)-F(BY)]

|l

Both sequences are padded with zero values to a length of at least m +n — 1.

This ensures that the start and end of the resulting sequence do not overlap.
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Zero padding is usually applied to extend both sequence lengths to the
next higher power of two (2/'°&2(m+7=11) "which facilitates the FFT.

With a causal sequence, simply append the padding zeros at the end.

With a non-causal sequence, values with a negative index number are
wrapped around the DFT block boundaries and appear at the right end.
In this case, zero-padding is applied in the center of the block, between
the last and first element of the sequence.

Thanks to the periodic nature of the DFT, zero padding at both ends has
the same effect as padding only at one end.

If both sequences can be loaded entirely into RAM, the FFT can be
applied to them in one step. However, one of the sequences might be too
large for that. It could also be a realtime waveform (e.g., a telephone
signal) that cannot be delayed until the end of the transmission.

In such cases, the sequence has to be split into shorter blocks that are
separately convolved and then added together with a suitable overlap.
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Each block is zero-padded at both ends and then convolved as before:
| |

|
|
\\ | I/ I/
¥ f
B | \ R \I

The regions originally added as zero padding are, after convolution, aligned to
overlap with the unpadded ends of their respective neighbour blocks. The

overlapping parts of the blocks are then added together.
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Deconvolution

A signal u(t) was distorted by convolution with a known impulse
response h(t) (e.g., through a transmission channel or a sensor problem).
The “smeared” result s(¢) was recorded.

Can we undo the damage and restore (or at least estimate) u(t)?




The convolution theorem turns the problem into one of multiplication:

s(t) = / u(t —7) - h(r) - dr
s = uxh

Fls} = Flu}-F{h}

Flup = F{s}/F{h}
uw = F YF{s}/F{n}}

In practice, we also record some noise n(t) (quantization, etc.):

o(t) = s(t) + n(t) = / u(t = 7) - h(r) - dr + n(t)

Problem — At frequencies f where F{h}(f) approaches zero, the noise
will be amplified (potentially enormously) during deconvolution:

i=F H{F{c}/F{h}} =u+ F H{F{n}/F{h}}

89

Typical workarounds:

» Modify the Fourier transform of the impulse response, such that
|F{h}(f)| > € for some experimentally chosen threshold .

» If estimates of the signal spectrum |F{s}(f)| and the noise
spectrum |F{n}(f)| can be obtained, then we can apply the
“Wiener filter” (“optimal filter")

FSP
W) = F SR + IF ()P

before deconvolution:

i=F YW F{c}/F{h}}
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frequency [Hz]

frequency [Hz]

Vowel “A" sung at varying pitch
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(w, fs, bits) = wavread("sing.wav")
s = spectrogram(w[:,1], 2048; fs, window=hamming)
ps = 10*logl0. (power(s)); mx = maximum(ps)
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-90
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heatmap(time(s), freq(s), ps; xlabel="time [s]", ylabel="frequency [Hz]",

x1im=(0, 4.5), ylim=(0, 8000.0), clim=(mx-70, mx))

Different vowels at constant pitch
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Spectral estimation
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We introduced the DFT as a special case of the continuous Fourier
transform, where the input is sampled and periodic.

If the input is sampled, but not periodic, the DFT can still be used to
calculate an approximation of the Fourier transform of the original
continuous signal. However, there are two effects to consider. They are
particularly visible when analysing pure sine waves.

Sine waves whose frequency is a multiple of the base frequency (fs/n) of
the DFT are identical to their periodic extension beyond the size of the
DFT. They are, therefore, represented exactly by a single sharp peak in
the DFT. All their energy falls into one single frequency “bin” in the
DFT result.

Sine waves with other frequencies, which do not match exactly one of the
output frequency bins of the DFT, are still represented by a peak at the
output bin that represents the nearest integer multiple of the DFT's base
frequency. However, such a peak is distorted in two ways:

» Its amplitude is lower (down to 63.7%).

» Much signal energy has “leaked” to other frequencies.
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input freq.

DFT index

The leakage of energy to other frequency bins not only blurs the estimated spectrum.
The peak amplitude also changes significantly as the frequency of a tone changes from
that associated with one output bin to the next, a phenomenon known as scalloping.
In the above graphic, an input sine wave gradually changes from the frequency of bin
15 to that of bin 16 (only positive frequencies shown).
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Windowing
Sine wave Discrete Fourier Transform
1 - : 300 -
200
0|
100
-1 ! , 0
0 200 400 0 200 400
Sine wave multiplied with window function Discrete Fourier Transform
1 : 100
0 50
-1 0

0 200 400 0 200 400
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The reason for the leakage and scalloping losses is easy to visualize with the
help of the convolution theorem:

The operation of cutting a sequence of the size of the DFT input vector out of
a longer original signal (the one whose continuous Fourier spectrum we try to
estimate) is equivalent to multiplying this signal with a rectangular function.
This destroys all information and continuity outside the “window"” that is fed
into the DFT.

Multiplication with a rectangular window of length T in the time domain is
equivalent to convolution with sin(7w fT") /(7 fT) in the frequency domain.

The subsequent interpretation of this window as a periodic sequence by the
DFT leads to sampling of this convolution result (sampling meaning
multiplication with a Dirac comb whose impulses are spaced fs/n apart).

Where the window length was an exact multiple of the original signal period,
sampling of the sin(xw fT') /(7 fT) curve leads to a single Dirac pulse, and the
windowing causes no distortion. In all other cases, the effects of the convolution
become visible in the frequency domain as leakage and scalloping losses.
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Some better window functions

1t i
0.8} i
0.6 i
04 .
0.2} i

— Rectangular window

oL — Triangular window n
— Hann window
—— Hamming window

0 0.2 0.4 0.6 0.8 1

All these functions are 0 outside the interval [0,1].
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i
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Hamming window
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Numerous alternatives to the rectangular window have been proposed
that reduce leakage and scalloping in spectral estimation. These are
vectors multiplied element-wise with the input vector before applying the
DFT to it. They all force the signal amplitude smoothly down to zero at
the edge of the window, thereby avoiding the introduction of sharp jumps
in the signal when it is extended periodically by the DFT.

Three examples of such window vectors {w; }/'—; are:

Triangular window (Bartlett window):

7
i=1—]1— —
v | n/z‘

Hann window (raised-cosine window, Hanning window):

w; = 0.5 — 0.5 X cos <27r ! )

n_

Hamming window:

w; = 0.54 — 0.46 X cos <2w ! )
n—1
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Does zero padding increase DFT resolution?

The two figures below show two spectra of the 16-element sequence
s; = cos(27t - 3i/16) + cos(27t - 4i/16), i€40,...,15}.
The left plot shows the DFT of the windowed sequence
T = Si - wi, i € {0,...,15}
and the right plot shows the DFT of the zero-padded windowed sequence

r_ Si - Ws, ZE{O,,].S}
=1 o, i € {16,...,63)

where w; = 0.54 — 0.46 X cos (27i/15) is the Hamming window.

DFT without zero padding DFT with 48 zeros appended to window

4 4 -

Rl

0GE: 405}
0 5 10 15 0 20 40 60
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Applying the discrete Fourier transform (DFT) to an n-element long
real-valued sequence samples the DTFT of that sequence at n/2 + 1
discrete frequencies.

The DTFT spectrum has already been distorted by multiplying the
(hypothetically longer) signal with a windowing function that limits its
length to n non-zero values and forces the waveform down to zero
outside the window. Therefore, appending further zeros outside the
window will not affect the DTFT.

The frequency resolution of the DFT is the sampling frequency divided by
the block size of the DFT. Zero padding can therefore be used to increase
the frequency resolution of the DFT, to sample the DTFT at more
places. But that does not change the limit imposed on the frequency
resolution (i.e., blurriness) of the DTFT by the length of the window.

Note that zero padding does not add any additional information to the
signal. The DTFT has already been “low-pass filtered” by being
convolved with the spectrum of the windowing function. Zero padding in
the time domain merely causes the DFT to sample the same underlying
DTFT spectrum at a higher resolution, thereby making it easier to
visually distinguish spectral lines and to locate their peak more precisely.

105

Digital filters

Filter: suppresses (removes, attenuates) unwanted signal components.

» low-pass filter — suppress all frequencies above a cut-off frequency

» high-pass filter — suppress all frequencies below a cut-off frequency,
including DC (direct current = 0 Hz)

» band-pass filter — suppress signals outside a frequency interval
(= passband)

» band-stop filter (aka: band-reject filter) — suppress signals inside a single
frequency interval (= stopband)

» notch filter — narrow band-stop filter, ideally suppressing only a single
frequency

The term “filter” is sometimes extended to other LTI systems, e.g.

» all-pass filter — maintains amplitude for all frequencies, but modifies phase

» comb filter — adds an echo to create frequency-dependent interference
For digital filters, we also distinguish

> finite impulse response (FIR) filters

» infinite impulse response (IIR) filters

depending on how far their memory reaches back in time.
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Window-based design of FIR filters

Recall that the ideal continuous low-pass filter with cut-off frequency f.
has the frequency characteristic

_ 1< fe _ f
H(f)= { 0 if|f|> f. = rect (2_fc>
and the impulse response

h(t) = 2fc% = 2f - sinc(2fc - t).

Sampling this impulse response with the sampling frequency fs of the
signal to be processed will lead to a periodic frequency characteristic,
that matches the periodic spectrum of the sampled signal.

There are two problems though:
» the impulse response is infinitely long
» this filter is not causal, that is h(t) # 0 for t < 0
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Solutions:

» Make the impulse response finite by multiplying the sampled h(t)
with a windowing function

» Make the impulse response causal by adding a delay of half the
window size

The impulse response of an n-th order low-pass filter is then chosen as

Sin[zﬂ(i — n/2)fc/fs] W
on(i —n/2)fo/fs

where {w;} is a windowing sequence, such as the Hamming window

hz’ - 2fc/fs :

w; = 0.54 — 0.46 x cos (27i/n)

with w; = 0 for 2 < 0 and 7 > n.

Note that for f. = fs/4, we have h; = 0 for all even values of i. Therefore, this special case
requires only half the number of multiplications during the convolution. Such “half-band” FIR
filters are used, for example, as anti-aliasing filters wherever a sampling rate needs to be halved.
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FIR low-pass filter design examples

order n = 30
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FIR low-pass filter design example (DSP.jl)

order: n = 30, cutoff frequency (—6 dB): fc = 0.25 x f;/2, window: Hamming

using DSP; b = digitalfilter(Lowpass(0.25), FIRWindow(hamming(30)))
f = convert(ZeroPoleGain, PolynomialRatio(b, [1])); H, w = freqresp(f)

o] 025 r [ X))
1.0
0.20 > °
05 .
0.15
X
g 00 r o 010 |
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_05 -
° T
0.00 -ooo"”‘ "?’000000
o | ol
; R o) ; ; ; ; ;
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Re(x)
T
0 -
0.7
. -10 /2t
[a1]
E /4
- L ()
% 20 %]
S © 0 r
-~ <
= o
E- -30 —m/4
© —m/2 b
—40 |
—0.757
_50 Lu . . . . _x L . . \ .
0 /4 /2 0.75m T 0 /4 /2 0.75m ™
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Filter performance

An ideal filter has a gain of 1 in the pass-band and a gain of 0 in the stop
band, and nothing in between.

A practical filter will have
» frequency-dependent gain near 1 in the passband
» frequency-dependent gain below a threshold in the stopband
» a transition band between the pass and stop bands

We truncate the ideal, infinitely-long impulse response by multiplication
with a window sequence.

In the frequency domain, this will convolve the rectangular frequency
response of the ideal low-pass filter with the frequency characteristic of
the window.

The width of the main lobe determines the width of the transition band,
and the side lobes cause ripples in the passband and stopband.
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Low-pass to band-pass filter conversion (modulation)

To obtain a band-pass filter that attenuates all frequencies f outside the
range fi < f < fn, we first design a low-pass filter with a cut-off
frequency (fn — fi)/2. We then multiply its impulse response with a sine
wave of frequency (fi + fi)/2, effectively amplitude modulating it, to
shift its centre frequency. Finally, we apply a window function:

sin[rt(i — n/2)(fo — fi)/ fs]
(i —n/2)(fo — i)/ fs

hi = (fa— fi)/fs- -cos[rti( fr + fi)/ fs] - wi

H(f)

TR

—fo —fi O£ f _hoh Sshi fo=hphoo Lphof
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Band-pass filter example (modulation)
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Low-pass to high-pass filter conversion (freq. inversion)

In order to turn the spectrum X (f) of a real-valued signal x; sampled at
fs into an inverted spectrum X'(f) = [X(fs/2 — f)]* = X(f £ fs/2), we
merely have to shift the periodic spectrum by fs/2:

X'(f) X(f)
NV
A T 5o & f

This can be accomplished by multiplying the sampled sequence x; with
y; = cosTifst = cosi = el”™, which is nothing but multiplication with
the sequence

.,1,-1,1,-1,1,—-1,1,—-1,...

So in order to design a discrete high-pass filter that attenuates all
frequencies f outside the range f. < |f| < fs/2, we merely have to
design a low-pass filter that attenuates all frequencies outside the range
—fo < f < fe, and then multiply every second value of its impulse
response with —1.
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High-pass filter example (freq. inversion)
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Linear phase filters

A filter where the Fourier transform H(f) of its impulse response h(t) is
real-valued will not affect the phase of the filtered signal at any
frequency. Only the amplitudes will be affected.

VfFER:H(f)e R <= VteR:h(t)=[h(-1)]"

A phase-neutral filter with a real-valued frequency response will have an
even impulse response, and will therefore usually be non-causal.

To make such a filter causal, we have to add a delay At (half the length
of the impulse response). This corresponds to multiplication with
e 2™fAt in the frequency domain:

h(t — At) eo H(f) e 2M/A!

Filters that delay the phase of a signal at each frequency by the time At
therefore add to the phase angle a value —27tjfAt, which increases
linearly with f. They are therefore called linear-phase filters.

This is the closest one can get to phase-neutrality with causality.
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Finite impulse response (FIR) filter

M
Yn = Z bm *Tn—m
m=0
M =3
Tn Tp—1 Lp—2 Lp—3
21 21 271
bo b1 b> b3
Ja /N
&) &) &) ;
n

(see slide 25)

Transposed implementation:
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Infinite impulse response (IIR) filter

N M
E ak * Yn—k = E b - Tp—m Usually normalize: ag =1
m=0

k=0
M N
Yn = <Z bm *Tn—m — Zak‘ : ynk) /Clo
m=0

k=1
: : : max{M, N} =
Direct form | implementation: “filter order”
~1
v e v
—1 —1
z z
bl /-D —ai
Ln—1 p Yn—1
-1 —1
z z
b2 CD —an
-1 —1
z z
| bs De B T
Tn—3 ~ Yn—3
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Infinite impulse response (lIR) filter — direct form Il

M N
Yn = (Z b - Tp—m — Zakz : ynk> /ao
m=0 k=1

Direct form II: Transposed direct form Il:
-1 —1
N \1/ N k/T\/
~1
z _
~ —ai bl -~ < 1
® ® by I —m
@
~1
N —ao z b2 - Z_l
® ® by I —ap
@
~1
—as z | b3 271
b3 K—Ji—\ —as
U
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Polynomial representation of sequences

We can represent sequences {x,,} as polynomials:

0. @]

X(v) = Z Tpv"

n=—oo

Example of polynomial multiplication:

(1 + 2v + 30?) - (2+1)
2 4+ 4dv + 602
+ v + 202 + 38
=2 4+ 5v + 8 4+ 33

Compare this with the convolution of two sequences (in Julia):
conv([1 2 3], [2 1]) == [2 5 8 3]
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Convolution of sequences is equivalent to polynomial multiplication:

{hn} x{zn} = {uwm} = wyn= Z hi + Tn—k
ol
H(w) X(v) = ( Z h,ﬂ)”) : ( Z xnv”>

= Z Z hk-xn_k-v”

n=—oo k=—o0

Note how the Fourier transform of a sequence can be accessed easily
from its polynomial form:

X(e %) = i Tpe 0

n=—oo
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Example of polynomial division:

oo

1

—14+av+a®v?>+ad+... = g av"
1—av ?
n—
1 + av + a®v?® +
1—av ‘ 1
1 — av
Tn Yn av 5
+ \1/ av — a‘v
y a’v?
a | a?v? —  a303
Yn—1

Rational functions (quotients of two polynomials) can provide a
convenient closed-form representations for infinitely-long exponential
sequences, in particular the impulse responses of IIR filters.

The z-transform

The z-transform of a sequence {x,} is defined as:

X(z) = Z Tpz "

n=—oo

Note that this differs only in the sign of the exponent from the polynomial representation discussed
on the preceding slides.

Recall that the above X(z) is exactly the factor with which an
exponential sequence {z"} is multiplied, if it is convolved with {x,}:

(2"} {an) = {yn}

oo oo

= Yn = Z VR =27 Z z_kxk:z”-X(z)

k=—o0 k=—o00
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The z-transform defines for each sequence a continuous complex-valued
surface over the complex plane C.

For finite sequences, its value is defined across the entire complex plane
(except possibly at z =0 or |z] = o).

For infinite sequences, it can be shown that the z-transform converges
only for the region

Ln+1
Ln

LTn+1
Ln

lim
n—oo

< |z| < lim

n——oo

The z-transform identifies a sequence unambiguously only in conjunction with a given region of
convergence. In other words, there exist different sequences, that have the same expression as their
z-transform, but that converge for different amplitudes of z.

The z-transform is a generalization of the discrete-time Fourier
transform, which it contains on the complex unit circle (|z| = 1):

L FEON) = X(@2) = 3w

n=—00
where w = 271%.
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Properties of the z-transform

If X(z) is the z-transform of {x,}, we write here {z, } oo X(z).
If {x,,} o X(2) and {y,,} o Y(2), then:
Linearity:

{ax, + by, } eo aX(z) + bY (2)
Convolution:

{Zn} * {yn} o0 X(2) - Y(2)
Time shift:

{Tnin} o0 2" X (2)

Remember in particular: delaying by one sample is multiplication with z 1.
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Time reversal:
{r_n} o0 X(z71)
Multiplication with exponential:
{a "z, } oo X(az)
Complex conjugate:
{27} o0 X7(27)

Real /imaginary value:

Rz} oo S(X(2) + X7(=))

(S{zn}} oo %(X(z) ~X*(2)

Initial value:

xo = lim X(z)

Z—> 00

if x,, =0 foralln <0
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Some example sequences and their z-transforms:

. X(2)
S 1
z 1
U z—1 1-— 271
a™u, -
z—a 1—az1
z
N,
(z — 1)
nzun Z(z i 1)
(2 —1)3
an &
e Uy,
z —e?
n—1 1
a(n—k) N —
(k B 1)6 Un—k (Z _ ea)k
o 2?sin(p) + zsin(w — )
sin(wn + @)un 22 — 2z cos(w) + 1
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Example:

What is the z-transform of the impulse response {h,, }
of the discrete system vy,, = x,, + ay,_1?

Tn Yn
Yn = Tp + QYn—1 V
Y(z) = X(2) + az 1Y (2) .
Y(z)— az_lY(z) = X(2) 1

Y(2)(1—az™t) = X(2)
Y(2) 1 oz
X(z) l—az! z-a

Since {yn} = {hn} *x{x,}, we have Y (z) = H(z) - X(2) and therefore

_ Y(z2) I
X(z) z-—a

H(Z) :1+az_1+a22_2+...

where polynomial long division returns the causal impulse response
ho=1hi=a,hy=a°,....,h, =a" foralln >0

We have applied here the linearity of the z-transform, and its time-shift and convolution properties.
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z-transform of recursive filter structures

. -1
Consider the discrete system defined by Zn b _ —~ ~ 9% In
= 7
k m Z_l b . 2_1
1 —u1
Z aj - yn—l — bl “ L1 Ty 1 %9(+> <+>e% Yn—1
1=0 1=0
Z_l ... D z_l
or equivalently P = ..
k m Zil bm —ag Zil
aoYn + Z ap - Yn—1 = Z b - Tn—i Tn—m Yn—k
=1 1=0

m k
Yn = CLO_1 ’ (Zbl " Lp—] — Zal 'ynl)
(=0 =1

What is the z-transform H(z) of its impulse response {h,,}, where

{yn} = {hn} *{zn}?
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Using the linearity and time-shift property of the z-transform:

k m
Zal “Yn—t = ) br-xpny
1=0 1=0
k m
Z az Y (2) = Z bzt X(2)
1=0 1=0

k m
Y(z) Z a2zt = X(2) Z bzt
1=0 1=0

Y(z) _ Yilobiz™
H(Z) = X(Z) = Zf:;)alz—l

Cbo bzt F b P b

H =
(2) ag+arz7l +axz=2+---+apz""k
. -1
The z-transform of the impulse re- =z, bo OH—=® ag Yn
sponse {h,} of the causal LTI system v v
defined by z b a z71
k Tn—1 :+> <+: Yn—1
m

Do ayaot = b

1=0 1=0 .m0 HO=—]
with {y,} = {h,} * {x,} is the Y u
rational function e S ok

H(Z) _ bo + blz_l + bzz_2 4+ o+ bz ™

ag + alz—l 4+ a2z—2 4+ 4 akz—k’
(b, # 0, ag # 0) which can also be written as
_ 2" ZZTZO blZm_l P . boz™ + blzm_l + b2zm_2 +.--+0b,

H(z) = — |
m Zf:o ah-l 2™ agZF Rl aph 2 4 yay

H(z) has m zeros and k poles at non-zero locations in the z plane, plus
k —m zeros (if K > m) or m — k poles (if m > k) at z = 0.
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This function can be converted into the form

. [[a-c =71 , [[Gz—)
H(Z) — 0 . =1 — _0 . Zk;—m . l:l

[z—d)

=1

ag  k
[Ja—d =1
=1

where the ¢; are the non-zero positions of zeros (H(c¢;) = 0) and the d;
are the non-zero positions of the poles (i.e., z — d; = |H(z)| — o) of
H(z). Except for a constant factor, H(z) is entirely characterized by the
position of these zeros and poles.

On the unit circle z = e, H(e/“) is the discrete-time Fourier transform
of {h,} (w= nf/%). The DTFT amplitude can also be expressed in
terms of the relative position of e/ to the zeros and poles:

o bo Hzn;ﬂejw — ¢
H(e™)| = |—| =
ao| [[_;le —di
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Example: a single-pole filter

Consider this |IR filter: Its z-transform

z, 0.8 Y _ 0.8 _ 0.8z
: ® V s HE) =102 27~ 2202
51 has one pole at z = d; = 0.2 and one
0.2 I zero at z = 0.
Wimplitude |H (2)]:

ap =1, a; = —0.2,
bo = 0.8

Impulse Response

0.8¢

g
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o
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o
o (S}

2 4
n (samples)

o

134



Magnitude Response

Magnitude

0.8}

0.75}

0.7}

0 0.2 0.4 0.6 0.8
Normalized Frequency (xn rad/sample)

Run this LTI filter at sampling frequency fs and test it with sinusoidial

input (frequency f, amplitude 1): x,, = cos(27tfn/ fs)
Output:  y, = A(f) - cos(2rtfn/fs + 0(f))

What are the gain A(f) and phase delay 6(f) at frequency f?
Answer:

A(f) = [H (P F)

. 25 j27’tf/fs angle
_ 27rf/fsy — -1 \S{H(e )} &
G(f) = ZH(e ) = tan %{H(eﬂﬂf/fs)} + kT[ iﬁ;iip

Example: f; = 8kHz, f = 2kHz (normalized frequency f/% = 0.5) = Gain A(2 kHz) =

it /aN | _ | 0.8 | _ | _0.8j(—j—0.2) | _ 10.8—0.16j| _ /0.8240.162 _
|H(e/™/?)| = [H(j)| = oz | = (j—o{a(ij—n.m} = | " o0 =/ e =0.784. ..

Visual verification in Julia: Lar
—+—X
n =0:15; fs = 8000 -y (time domain)
£ = 1500 -<y (z-transform)
X = cos.(2pixf*n/fs) 1.0
b= 1[0.8]; a=[1, -0.2]
yl = filt(b, a, x)
z = exp(lim*2pixf/fs) 0.5
H=0.8%2z/ (z-0.2) ' X
A = abs(H)
theta = atan(imag(H), real(H))
y2 = A * cos.(2pixf*n/fs.+theta) 00k
plot(n, [x y1 y21;

color=[:blue :green :red], i
shape=[:+ :diamond :x], —05}
msize=6, mswidth = 4,
label=["x" "y (time domain)";;
"y (z-transform)"],
ylim=(-1.1, 1.5), -1.0

size=(250, 400)) 0 5 10

15

135

136



_ _ 1
H(z) = 557 = 1975

z Plane
- 1
@
a
>
g O .......... @ A
ko))
@
£
_l et
-1 0 1
Real Part
_ z _ 1
H(z) = 255 = =595
z Plane
- 1
@
o
>
g O .......... @ ...... X
k)
@
£
-1 0 1
Real Part
H(z) = 2 = 2
z—1 1—z—1
z Plane
- 1
a
a
>
g O .......... @ ....... X -
ko))
@
£
-1 0 1
Real Part
z 1
H(z)= ;57 = 171
z Plane
- 1
a
a
>
g O .......... O ........ -
ko))
@
£
-1 0 1
Real Part

How do poles affect time domain?

Impulse Response

1®

0.5

Amplitude

0
0 10 20 30
n (samples)

Impulse Response

R
. %
o
2
5 05
S
<
0
0 10 20 30
n (samples)
137
Impulse Response
L
Q
©
2
o 05
S
<
0
0 10 20 30
n (samples)
Impulse Response
20 - : 9
@ Y
©
2
5 10
S
<
0
0 10 20 30

n (samples)

138



=
—

N
~—

Imaginary Part

H(z)

Imaginary Part

H(z

N

Imaginary Part

H(z)

Imaginary Part

2

1

— z —
T (2—0.9-ei7/6).(2—0.9-e—i7/0)

z Plane
1 o
of-- ....... C; ...... .
: X
-1 e
-1 0 1

Real Part

2

Amplitude

1-1.8cos(w/6)z—140.92-2—2

Impulse Response

2
1l
0
-1
0 10 20 30
n (samples)
1

— z —
- (Z_ejw/6).(z_e—j7r/6) -

z Plane
X
O .......... C; ......
' X
-1 SN
-1 0 1

Real Part

2

1—2cos(m/6)z— 1422

Impulse Response

5
Q
ER
5 0
E ©
-5
0 10 20 30

n (samples)

_ z
T (2—0.9-eI7/2).(2—0.9-e—i7/2)

z Plane
O
0 ....... C; ......
1 Cx
-1 0 1
Real Part
.z 1
T z4+1 T 142zt
z Plane
1
0 X ....... O EEEEREREE
-1 0 1
Real Part

— 1
~ 1-1.8cos(m/2)z—140.92.2 2

Impulse Response
1@

Amplitude
o

0 10 20 30
n (samples)

Impulse Response

Amplitude
o

0 10 20 30
n (samples)

1
~ 1+40.92.2—2

139

140



lIR filter design goals

The design of a filter starts with specifying the desired parameters:

» The passband is the frequency range where we want to approximate
a gain of one.

» The stopband is the frequency range where we want to approximate
a gain of zero.

» The order of a filter is the maximum of the number of zeros or poles
it has in the z-domain, which is the maximum delay (in samples)
needed to implement it.

» Both passband and stopband will in practice not have gains of
exactly one and zero, respectively, but may show several deviations
from these ideal values, and these ripples may have a specified
maximum quotient between the highest and lowest gain.

» There will in practice not be an abrupt change of gain between
passband and stopband, but a transition band where the frequency
response will gradually change from its passband to its stopband
value.

141

lIR filter design techniques

The designer can then trade off conflicting goals such as: small transition
band, low order, low ripple amplitude or absence of ripples.

Design techniques for making these tradeoffs for analog filters (involving
capacitors, resistors, coils) can also be used to design digital IIR filters:

Butterworth filters: Have no ripples, gain falls monotonically across the pass
and transition band. Within the passband, the gain drops slowly down to

1-— \/m (=3 dB). Outside the passband, it drops asymptotically by a factor
2™V per octave (N - 20 dB/decade).

Chebyshev type | filters: Distribute the gain error uniformly throughout the
passband (equiripples) and drop off monotonically outside.

Chebyshev type Il filters: Distribute the gain error uniformly throughout the
stopband (equiripples) and drop off monotonically in the passband.

Elliptic filters (Cauer filters): Distribute the gain error as equiripples both in
the passband and stopband. This type of filter is optimal in terms of the
combination of the passband-gain tolerance, stopband-gain tolerance, and
transition-band width that can be achieved at a given filter order.
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lIR filter design in MATLAB

The aforementioned filter-design techniques are implemented in the
MATLAB Signal Processing Toolbox in the functions butter, chebyl,
cheby2, and ellip. They output the coefficients a,, and b,, of the
difference equation that describes the filter.

These can be applied With 4+ Eilter Designer - [untitled.fda *] A_DOxX
filter to a sequence, or NEE&R| & QE_\EE@\IEéﬂ* 0 -BLORE| W
Current Filter Infermation ~ Filter Specifications
can be visualized with
- Mag. (dB)
zplane as poles/zeros in s g |
. . . e S:CUDHS . .
the z-domain, with impz S 3 ] the i
) . 1 )
as an impulse response,
and with freqz as an ke ; S =
. ___ Fltermenager.. | pass Foiop
amplitude and phase e — e e
®! | ownass T || © specify order: o || unts: H Unis: dB |
spectrum. B o oo E]| D R
© Bandpass Minimurn erder Apass: I
. . . ) Bandstop — Optons Fpass: 9600
Ca I | f 1 lt erDe S lgner for s] D\h‘erent\:(:r ~| || match exactly: @ Fop: [0 Astop: |80
. . | Design Metho
an interactive GUI. = (N r—
&
[Ready

MATLAB Filter Designer
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Cascade of filter sections

Higher-order IIR filters can be numerically unstable (quantization noise).

A commonly used trick is to split a higher-order IIR filter design into a
cascade of [ second-order (biquad) filter sections of the form:

In /-D bo /-D Yn
N \l/ U
1
z 1 2
—as bl H _ bo + blz + b2z
G’) 6’) (2) 1+a1z7 +apz2
1
z
—ax L1 by

Filter sections Hy, Hy, ..., H; are then applied sequentially to the input
sequence, resulting in a filter

l l
br.o + bk 1z_1 + by, 22_2
H — H — 9 ) 9
(Z) ]!;[1 k?(z) ]!;[1 1+ak,12_1+ak72z_2

Each section implements one pair of poles and one pair of zeros. Jackson’s algorithm for pairing
poles and zeros into sections: pick the pole pair closest to the unit circle, and place it into a
section along with the nearest pair of zeros; repeat until no poles are left.
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Butterworth filter design example

z Plane Impulse Response
1 1 ' '
$ 05 e
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E 3 50|
5 3
© ©
= T
-60 ‘ -100 ‘
0 0.5 1 0 0.5 1
Normalized Frequency (xn rad/sample) Normalized Frequency (xn rad/sample)

order: 1, cutoff frequency (—3 dB): 0.25 x f/2
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Butterworth filter design example

z Plane Impulse Response
1 1 ' '
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order: 5, cutoff frequency (—3 dB): 0.25 x f;/2
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Chebyshev type | filter design example

Magnitude (dB)

order: 5, cutoff frequency: 0.5 X fs/2, pass-band ripple: —3 dB
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Elliptic filter design example

z Plane Impulse Response
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order: 5, cutoff frequency: 0.5 X fs/2, pass-band ripple: —3 dB, stop-band ripple: —20 dB
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Notch filter design example

z Plane Impulse Response
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order: 2, cutoff frequency: 0.25 X fs/2, —3 dB bandwidth: 0.05 x f;/2
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Peak filter design example

z Plane Impulse Response
1 1 ' '
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order: 2, cutoff frequency: 0.25 X f5/2, —3 dB bandwidth: 0.05 x f;/2

Summary: FIR vs IR filters

FIR filters:
+ easy to construct linear-phase filters (symmetric impulse response)

+ numerically stable

No poles means: none can get dangerously close to the unit circle.

— higher order, i.e. computationally expensive

[IR filters:

+ can achieve given transition bands with lower order, i.e.
computationally less expensive, as a few multiplications and delays
can achieve long impulse responses (slowly decaying oscillations)

— can become numerically unstable
(i.e., impulse response not absolutely summable)

— generally not linear phase, and less control over phase behaviour
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Zero-phase IR filtering (fi1tfilt)

In non-realtime applications, where the entire input sequence is available
in advance, a simple trick can be used to apply an IIR filter H without
causing any phase change in the filtered signal.

@ apply the (causal) filter H normally in forward direction
® time-reverse the resulting sequence

© apply the filter H again (i.e., in backwards direction)
O time-reverse the resulting sequence again

This is equivalent of applying the filter twice, once normally and once
with a time-reversed impulse response.

Reversing a real-valued sequence in the time domain corresponds to taking the complex conjugate
in the frequency domain.

Resulting filter G (for h,, € R):

{9n} = {hn} * {hon}
G(el¥) = H(e) - H(e™) = H(e!) - H*(e!) = [H (M)

Basic idea in Julia (omitting any optimization, padding, initialization):
filtfilt(b, a, x) = reverse(filt(b, a, reverse(filt(b, a, x))))
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Random variables, vectors, and processes

Let S be the set of all possible outcomes (results) of some experiment.
We call S the sample space of that experiment.

A random variable X is a function
X:S—F

that assigns to each outcome ¢ € S a value X(() € E, where usually
ECRor ECC.

A random vector X(¢) = (x1(¢),x2(C), ..., xn(¢))T is a vector of n
randoﬁm variables, or equivalently a random variable that outputs vectors,
e.g. X(¢) e R™.

A continuous-time random process X : S — E® is a function that maps
each experimental outcome ¢ € S onto a continuous-time function (%),
and a discrete-time random process X : S — E% maps each outcome (
onto a discrete sequence {z¢ , }n.

The ensemble of a random process is the set of all functions (or
sequences) from which it picks its output.

In the following, we will usually omit outcome parameter ¢ from random variables, etc., for
notational convenience, and use boldface roman to distinguish random variables from samples.
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Random sequences

A discrete-time random process or random sequence {x,} can also be
thought of as a discrete sequence of random variables

ey X 2, X _1,X0,X1,X2,...

Each time we repeat an experiment, we observe one realization or sample
sequence

ey 2, T 1,0, L1,T2,...
of that random process. (We cannot observe the outcome ( directly.)

Each individual random variable x,, in a random sequence is
characterized by its probability distribution function

Py, (a) = Prob(x,, < a)

and the entire random process is characterized completely by all joint
probability distribution functions

Pxnl,m,xnk(al, cooyak) = Prob(x,, <ai A AKXy, < ag)

for all possible sets {x,,,,...,Xy, } and all £ > 0.
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Two random variables x,, and x,, are called independent if

Py, x,, (a,b) = Px, (a)- P, (b)

The derivative py, (a) = Py (a) is called the probability density function.
This helps us to define quantities such as the

> expected value E(x,,) = [ apx, (a)da
mean-square value (average power) E(|x,|?) = [|a|*px, (a) da
variance Var(x,) = E[|x, — E(x,)I?] = E(|x,|?) — |E(x,)]|?

correlation Cor(X,,%m) = E(x,, - x,)

vvyvyy

covariance Cov(x,,Xm) = E[(x, — E(x4)) - (X, — E(x:1))"] =
E(x,x.) — E(xn)E(x:)"

The expected value E(-) is a linear operator: E(ax) = aE(x) and
E(x+y) = E(x) + E(y).

Variance is not linear, but Var(ax) = a*Var(x) and, if x and y are
independent, Var(x +y) = Var(x) + Var(y).
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Stationary processes

A random sequence is called strict-sense stationary if

PXn1+l,---,Xnk+l(a17 SR akﬁ) = Pxnla-'-7xnk (alv SR akﬁ)
for any shift [ and any number k, that is if all joint probability

distributions are time invariant.

If the above condition holds at least for £k = 1, then the mean
E(Xn) = My,
and variance
2 2
E(|x, —m|") = Oy
are constant over all n. (o, is also called standard deviation).
If the above condition holds in addition also for &k = 2, we call the

random sequence wide-sense stationary (WSS).

If a sequence is strict-sense stationary, it is always also wide-sense stationary, but not vice versa.
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A wide-sense stationary random process {x,,} can not only be

h ized by i =E d vari 2 -E — 2
characterized by Its mean m, = E(X, ) and variance o, = Xy — My
over all sample positions n.

It can, in addition, also be characterized by its autocorrelation sequence
¢m(k) = E(XnJrk : X:’L)

The autocorrelation sequence of a zero-mean version of a sequence is
called the autocovariance sequence

Yeu (k) = E[(Xntk — mz) - (Xn — m)"] = ¢ze(k) — |mx‘2

"

where v,,(0) = o

A pair of stationary random processes {x,,} and {y,} can, in addition,
be jointly wide-sense stationary and therefore be characterized by their
crosscorrelation sequence

Gay(k) = E(Xntk - ¥5)
Their crosscovariance sequence is then

*

7$y(k) = E[(Xn—f—k - m:c) ) (Yn - my)*] = bey(k) — Mg,

The complex conjugates * are only needed with complex-valued sequences.
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Ergodic processes

If ..., x_»,X_1,Xp,X1,X>2,...I1s a WSS random sequence, then we can
estimate the mean value and auto-correlation sequence from these
random variables from any location n as

m, = E(xy)

Qb:c:c(k) - E(Xn—i—erz)

What if we have just one sample sequence ..., x_»,x_1,%0,21,22,...7
If we still can estimate mean and auto-correlation from that as

1 & 1 &
My = LIi_)mOO L1 ; T, ~ ~ ;xn for large N
o T o
Gor(k) = lim ST D Tk N D nnits

then we call the process mean ergodic and correlation ergodic, resp.

Ergodicity means that single-sample-sequence time averages are identical to averages over the
entire ensemble for a random process, or, in other words, variation along the time axis looks similar

to variation across the ensemble.
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Deterministic crosscorrelation sequence

For deterministic finite-energy sequences {x,} and {y,}, we can define
their crosscorrelation sequence as

0. @) oo
Cay(k) = Z Tith " Y; = Z T Yi—p-

1=—00 1=—00

If {«,,} is similar to {y,, }, but lags I elements behind (z,, &= y,_;), then ¢y, (1) will be a peak in
the crosscorrelation sequence. It can therefore be used to locate shifted versions of a known
sequence in another one.

Swapping the input sequences mirrors the output sequence: cuy (k) = ¢, (—k).

This crosscorrelation sequence is essentially just convolution, with the
second input sequence mirrored:

{cay(n)} = {an} x{y"0n}
It can therefore be calculated equally easily via the DTFT:
Cuy(e) = X(e) - Y ()

DSP.jl's xcorr function calculates the crosscorrelation sequence for two finite sequences (vectors),
equivalent to xcorr(x,y) = conv(x,reverse(conj(y)))
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Using xcorr to estimate the crosscorrelation

Given two m-samples long finite sequences {z, }" ; and {y,}™",
sampled from two jointly correlation-ergodic WSS processes {x,,} and
{yn}, we can estimate their crosscorrelation sequence

Cbscy(k) = E(Xn+k " ¥n)
for lags —m < k < m using the estimator

min{m,m—k}

A 1
Puy(k) = m Z (Tntk - Un)

n=max{1l,1-k}

In other words, we calculate the deterministic cross-correlation sequence
of both sample sequences, and then divide the result for each lag k by
the length of the overlap, m — |k|, e.g. as in

xcorr(x,y) ./ xcorr(ones(length(x)), ones(length(y))) ==
xcorr(x,y) ./ [1:m; m-1:-1:1]

But as k approaches £m the overlap drops and the variance of the
estimate raises! For a fixed variance, keep the overlap fixed.

Example: estimating the auto-correlation/covariance of a periodic signal with xcorr

100 0.35 r

B ——Xcorr(x,x) —xcorr(x, x)/o

0.30
0.25
0.20
0.15 |
0 100 200 300 400 500 600 0 100 200 300 400 500 600
25 ——XCorr(x, Xx—) 20 —xcorr(x, x1)

20
15 151
10
5 F
1 1 1 1 1 1 1 0 b
0 100 200 300 400 500 600 0 100 200 300

x1 = rand(60); x = repeat(xl, 5); m = length(x)

mu = mean(x); o = [1:m; m-1:-1:1]

plot(plot. ([xcorr(x, x), xcorr(x, x)./o, xcorr(x, x.-mu), xcorr(x, x1)])...;
label=["xcorr(x,x)" "xcorr(x, x)/o" "xcorr(x, x\u2212\uB5)" "xcorr(x, x1)"],
layout=(2,2))
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Demonstration of covert spread-spectrum communication:

n = randn(10000); a = 0.3; 1 = 1000

pattern = rand((-a, a), 1)

b0 = [zeros(2000); pattern; zeros(7000)]

bl = [zeros(4000); -pattern; zeros(5000)]

r=mn .+ b0 .+ bl

f1 = plot([n b0 bl r] .- [0 -3 -4 -7]; label = ["n" "bO" "bi" "r"], yticks= 1)

x = conv(r,reverse(pattern))
# or: x = xcorr(r,pattern)
f2 = plot(x; label="xcorr")

xlims!(f1, 1, length(n)+1)
xlims! (£2, 1, length(n)+1)
plot(f1, £2; layout=(2,1))

2000 4000 6000 8000 10000

2000 4000 6000 8000 10000
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Deterministic autocorrelation sequence

Equivalently, we define the deterministic autocorrelation sequence in the
time domain as

0o
C:c:c(k) = Z xi-l—kx;k
1=—00

This is just the sequence convolved with a time-reversed version of itself:
{coa(k)} = {xi} « {o7;}
This corresponds in the frequency domain to
Cuu(e?) = X (/) - X" (e!) = | X ().

In other words, the DTFT C,,.(e) of the autocorrelation sequence
{czz(n)} of a sequence {z,} is identical to the squared amplitudes of
the DTFT, or power spectrum, of {x,}.

This suggests, that the DTFT of the autocorrelation sequence of a
random process might be a suitable way for defining the power spectrum
of that random process.

What can we say about the phase in the Fourier spectrum of a time-invariant random process?
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Power spectrum of a random sequence

For a zero-mean wide-sense stationary random sequence {x, } with
absolutely summable autocorrelation sequence

Qbm(k) = E(Xn-i—k : Xn)
we call the DTFT

(b:vw(ejw) = i Prz(n) - e dun

n=—oo

of its autocorrelation sequence the power density spectrum (PDS) or
power spectrum of {x,}.

The power spectrum is real, even', non-negative and periodic.

T for real-valued sequences
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The autocorrelation of a sequence {x,,} with power spectrum ®_,(e*) is

1 [ o
a1 = 5 [ @ra(ei)ed

—Tr

Since the variance of {x,} is

T

1 y
Var(x,,) = ¢42(0) = o /_W b, (e')dw
we can interpret
1 s y

L / &0 (5)dis
27'tﬂ

7s
as the variance of the output of an ideal band-pass filter applied to {x, }
with cut-off frequencies 0 < f| < f}.
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Filtered random sequences

Let {x,} be a random sequence from a WSS random process. The output

(e @] o0
Yn = Z hi - Xp—k = Z hn—k - Xk

k=—o0 k=—o0

of an LTI applied to it will then be another random sequence, characterized by

my = E(yn) _E<Z P - X k>_ > bk E(xn-k)=ma > hy

k=—o0 k=—oco k=—o0
and
& ber(k) = E(xnsr-x;)
Pyy(k) = Z Gaz(k —1)cnn(i), where . )
i=—oo cnn(k) = Do hivkhi.

In other words:

{oyu(n)} = {cnn(n)} * {¢zz(n)}
{y } { } { } = CDyy(er) — |H(er)’2 . (D:cx(ejw)
Similarly:

Gy (N = {hn} *{Psz(n
U L0 B A

®ya(e) = H(eY): ®u(e)
Summary:
*{hn *{h _n
ol = {had s {xa} = {ea)} 3 (6,0} "5 {0y (n)}
Proofs:
Qbyx(l) = E(X; : yn—|—l) =E (XIL : Z hk . Xn+lk> =
k=—oc0
= > hiE(xp Xngiok) =Y bk Gaa(l — k)
k=—o0 k=—o0
¢yy(l) = E(yil 'Yn+l) =E ( Z hi Xn—k: : Z hm 'Xn—l—lm> =
k=—o0 m=—00
= > hi > e B Xngim) =
k=—o0 m=—00
k=—o0 m=—0o0

k=—o0 1=—00 1=—00 k=—o0
N

-~
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White noise

A random sequence {x, } is a white noise signal, if m, = 0 and
buex(k) = 020k

The power spectrum of a white noise signal is flat:
®yu(e) = 02

A commonly used form of white noise is white Gaussian noise (WGN),
where each random variable x,, is independent and identically distributed
(i.i.d.) according to the normal-distribution probability density function

1 _(@=mg)?

r)= ——e i
pxn( ) \/@

Application example:

Where an LTI {y,} = {hn} * {x,} can be observed to operate on white
noise {x, } with ¢,.(k) = 023}, the crosscorrelation between input and
output will reveal the impulse response of the system:

Pya (k) = a7 - hy
where ¢y (k) = ¢, (—k) = E(¥ntx - X,,)-
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Demonstration of covert spread-spectrum radar:

x beam
return

PRI 'Hlﬂ'l\'“l

0 2500 5000 7500 10000

4000 ®

3000

2000

1000

0 00 %00 ®pgp0 0000 ,°%°0%®e0 069 00 008®g500,00000

—20 -10 0 10 20

x = randn(10000) # outgoing radar beam

h = [0, O, 0.4, 0, 0, 0.3, 0, O, 0.2, 0, O] # target impulse response
y = conv(x, h) # return signal

f1 = plot(l:length(x), x; label = "x beam")

plot!(f1, 1:length(y), y .- 5, label = "y return", yticks=[])

c = conv(reverse(x),y) # detected target echos

lags = -20:20

f2 = sticks(lags, c[(length(c)-length(h))+2 .+ lags .+ 1];
markershape=:circle, legend=false)

plot(f1, £2; layout=(2,1))
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Dot product on complex vectors and sequences

Given vectors x,y € R"™, the dot product (or scalar product)
n
roy=aly=) wy
i=1

leads to the Euclidean norm /z - x = VaTx = ||z|| > 0 with:

r-r=2'z=0 = z=(0...0)".

But if 2,y € C™, this (“positive definiteness”) no longer works. Example:

(1j)(}):1—120

Solution: define dot product over complex vectors as

n
roy=a'y =yle=> zy;
i=1
such that [[z]|? =z -2 = 2M2 = Y xiar = > |2y)?.

Similarly for cross-correlation of random variables and sequences.

Spectral estimation: periodogram

Estimate amplitude spectrum of the noisy discrete sequence

xr = sin(2mjk x 8/64) + sin(2mjk x 14.32/64) + n; with ¢nn (i) = 46,

4 # block length

000 # blocks averaged

: (n*m)

randn(n*m) +

sin. (2*pi*k * 8.00 ./ n) +
sin. (2*pixk * 14.32 ./ n)

6
1
1

X BB

s1 = abs.(fft(x[1:n])/n)
s2 = abs.(fft(x[1:8n])/8n)

sl

s1 Absolute values of a single 64-element DFT of {z,}%", (rect. window).

The flat spectrum of white noise is only an expected value. In a single
discrete Fourier transform of such a sequence, the significant variance of
the noise spectrum becomes visible. It almost drowns the two peaks from
the sine waves.

s2 Absolute values of a single 512-element DFT of {x,, }222; (rect. window).
With an 8x larger window, the bandwidth of each frequency bin is now
reduced 8%, so the sine functions stand out better from the noise.
However, the variance in each frequency bin relative to the expected value

remains the same.
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Spectral estimation: averaging

Estimate amplitude spectrum of the noisy discrete sequence

xr = sin(2mjk x 8/64) + sin(2mjk x 14.32/64) + n; with ¢nn (i) = 46,

4 # block length
000 # blocks averaged
: (n*m)
andn (n*m) +
sin. (2*pi*k * 8.00 ./ n) +
sin. (2*pixk * 14.32 ./ n)
xx = reshape(x, n, m)

6
1
1
r

X BB

s3 = mean(abs. (fft(xx, 1)/n),dims=2)
S4 s4 = abs.(mean(fft(xx, 1)/n,dims=2))

s3 {x,}2"%° cut into 1000 consecutive 64-sample windows, showing the
average of the absolute values of the DFT of each window.
Non-coherent averaging: discard phase information first.

This better approximates the shape of the power spectrum: with a flat noise floor.

s4 Same 1000 windows, but this time the complex values of the DFTs

averaged before the absolute value was taken = coherent averaging.

Because DFT is linear, this is identical to first averaging all 1000 windows and then applying
a single DFT and taking its absolute value.

The windows start 64 samples apart. Only periodic waveforms with a period length that
divides 64 are not averaged away. This periodic averaging step suppresses both the noise
and the second sine wave.

Welch's method for estimating PSD

“Periodogram”: Single-rectangular-window DTFT power spectrum of a
random sequence {z, }: | X (w)[? with X(w) = Zf::ol T, - e 2w,

Problem: %ﬁj‘;ﬁ;l does not drop with increasing window length V.

“Welch's method” for estimating the PSD makes three improvements:

» Reduce leakage using a non-rectangular window sequence {w;}
(“modified periodogram™)

» To reduce the variance, average K periodograms of length N.

» Triangular, Hamming, Hanning, etc. windows can be used with 50%
overlap (L = N/2), such that all samples contribute with equal

weight.
_ . 0<k< K
Likn = Tk-L4+n * Wn, 0 <n< N
N-1
Xp(@) =Y gy e 2
n=0
] K1
P) = = S 1Xu(@)P
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Periodic averaging

If a signal z(t) has a periodic component with period length ¢,, then we
can isolate this periodic component from discrete sequence x,, = x(n/fs)
by periodic averaging

L

N
_ . 1 1
Tn :Lh_)moo L1 i:Z_aner ~ N;xnﬂ,i, nef{0,...,p—1}

but only if the period length in samples p = ¢, - fs is an integer.

Otherwise {x,, } may need to be interpolated and resampled at an integer multiple of tp_l first.

Periodic averaging of x(t) corresponds in the time domain to convolution
with a windowed Dirac comb a(t) = w(t) - Y, d(t — tpi):

z(t) = /:c(t — s)-a(s)ds

In the frequency domain, this means multiplication with an t;l spaced
Dirac comb that has been convolved with W ( f).
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Parametric models of the power spectrum

If we understand the physical process that generates a random sequence,
we may be able to model and estimate its power spectrum more
accurately, with fewer parameters.

If {x,,} can be modeled as white noise filtered by an LTI system H(e®),
then N N
b, (e)) = o, | H(e™) 2.

Often such an LTI can be modeled as an IIR filter with

bo+b1z7t+ bz 24+ bpzT™
ag+ a1zt +axz 2+ +agzF’

H(el) =

The auto-regressive moving-average model ARMA(k, m) is

m k
Xp = E by - Wp_1 — E aj - Xp_j
1=0 =1

where {w, } is stationary white noise with variance o2,
There is also the simpler AR(k) model x,, = w,, — Zle a; - Xp_j.
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IQ sampling / downconversion / complex baseband signal

Consider signal z(t) € R in which only frequencies fi < |f| < f are of
interest. This band has a centre frequency of f. = (fi + fi)/2 and a
bandwidth B = f, — f. It can be sampled efficiently (at the lowest
possible sampling frequency) by downconversion:

» Shift its spectrum by — f:
y(t) = a(t) - e 2!

» Low-pass filter it with a cut-off frequency of B/2:

z(t) = B/O;(T) -sinc((t — 7)B) -dr eo Z(f)=Y(f) - rect(f/B)

» Sample the result at sampling frequency fs > B:

zn = 2(n/ fs)
X(f) o(f + fo)
E S
_]Icc 0 fc f _Ifc 0 ]éc f
Y(f) anti-aliasing filter Z(f) Z(f)
7 /
| 1| seﬂ;e
_2Ifc _Ifc —2_;3 0 é ]LLC | f _2Ifc _Ifc 0 é JLLc | f

Shifting the center frequency f. of the interval of interest to 0 Hz (DC)
makes the spectrum asymmetric. This leads to a complex-valued
time-domain representation

(3F : Z(f) # [Z(= )] = Tt : 2(t) € C\ R).
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|Q upconversion / interpolation

Given a discrete sequence of downconverted samples z,, € C recorded
with sampling frequency fs at centre frequency f. (as on slide 177), how
can we reconstruct a continuous waveform Z(t) € R that matches the
original signal x(¢) within the frequency interval fi to f,?

Reconstruction steps:
» Interpolation of complex baseband signal (remove aliases):

o

Et)= ) zn-sinc(t- fo—n)

n=—oo

» Upconvert by modulating a complex phasor at carrier frequency f..
Then discard the imaginary part (to reconstruct the negative
frequency components of the original real-valued signal):

F(t) = 23%(5(75) - e2ﬂfct>
= 2?)?((8?(5(75)) + j%(%(t))) + (cos 27t fct + jsin 27cht)>
= 2R(Z(t)) - cos2mfct — 23 (5(t)) - sin 27 fct

Recall that 2R(c) = ¢+ ¢* for all ¢ € C. 170

Example: 1Q downconversion of a sine wave

What happens if we downconvert the input signal
A 27Tj ft+jo A —2mjft—j¢
:c(t):A-cos(2tht—|—gb)=§-e AR + e SR

using centre frequency f. and bandwidth B < 2f. with |f — f.| < B/2?

After frequency shift:

y(t) — .fL'(t) . e_27r.jfct — é . eznj(f_fc)t'i_qu _|_ é . e_27-[j(f+fc)t_j¢

2 2
After low-pass filter with cut-off frequency B/2 < f. < f + fc:

Z(t) — % . ezﬂj(f_fc)t+j¢

After sampling:

Zn = é . e27rj(f_fC)n/fs+J.¢
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Software-defined radio (SDR) front end

IQ downconversion in SDR receiver:

z(t) —

X) = sample—>Q
N
—90° | y(t) 2(t) Zn
> = sample ———> |

The real part ®(z(t)) is also known as “in-phase” signal (1) and

cos(27mf.t) the imaginary part 3(=(t)) as “quadrature” signal (Q).
|IQ upconversion in SDR transmitter:
%\iv =< 5 k—Q
I(t) <7 +90° | 3(t) 2(t) zn
K< == 5§ k—I
In SDR, «(t) is the antenna voltage and z,, appears on the
COS(2T[fCt) digital interface with the microprocessor.

SDR front-end hardware examples

Low-cost USB-dongle receivers: ~£20
Realtek RTL2832U/R820T (RTL-SDR)

USB2, fs < 2.5 MHz, f. = 24-1776 MHz, 8-bit 1Q samples

https://osmocom.org/projects/rtl-sdr/wiki

E2TUs68 1.1

Mid range transceivers: £250—-£2k
HackRF One, Ettus USRP B200/N200, etc.
USB3 or 1-Gbit Ethernet, f¢ = 10-50 MHz,

fc = 0—-6 GHz, 16-bit 1Q samples

SDR front ends are also

surveillance,

radars, etc.

commonly used today in
military radios, spectrum

amateur-radio

stations, mobile-phone base
stations, MRI machines,

High-end measurement kit: £3k—£40k

National Instruments (NI), Rohde&Schwarz, etc.
10 Gbit/PCle, FPGA, B, f; = 60-1000 MHz,

fc = 0-14 GHz, float32 1Q samples in volts
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Visualization of |Q representation of sine waves

&

x(t) —

N
—90° | y(t)

= 1—>Q

z(t)

&

cos(27tf.t)

== > |

Recall these products of sine and cosine functions:

» cos(z) - cos(y) = 3 cos(z — y) + 5 cos(z + y)

>

sin(x)

- sin(y) = 4 cos(z — y) —

3 cos(z + y)

» sin(z) - cos(y) = 3 sin(z — y) + 3 sin(z + y)
Consider: (with x = 27tf.t)

>

vvyYVvyyvyy

sin(z) = cos(z — 3m)

cos(x) -
sin(x)
sin(x)
cos(x) -

sin(x)

-cos(z — @) =

cos(z) = 3 + } cos2z
1

- sin(z) = 3 — 3 cos2z
-cos(x) = 0+ 1 sin2z
cos(x — @) = % cos(p) +
sin(p) + % sin(2z — )

2
1
2

3 cos(2x — )

|Q representation of amplitude-modulated signals

Assume voice signal s(t) contains only frequencies below B/2.

Antenna signal amplitude-modulated with carrier frequency f.:

x(t) = s(t) - A - cos(2mf.t + )

After 1Q downconversion with centre frequency f! ~ f:

z(t) = é - s(t) - o270 i(fe—fOt+iep

With perfect receiver tuning f! = fe:

z(t) = g - s(t) - el®

Reception techniques:

» Non-coherent demodulation (requires s(t) > 0):

s(t) = Z1=(1)]

Slz(t)]
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»
N

» Coherent demodulation (requires knowing ¢ and f! = f.):

s(t) = FR[=(t) - e7¥]
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|Q representation of frequency-modulated signals

In frequency modulation, the voice signal s(t) changes the
carrier frequency fo: fo(t) = fc+ k- s(t)

Compared to a constant-frequency carrier signal cos(27tf.t + ), to allow variable frequency, we
need to replace the phase-accumulating term 27tf.t with an integral 27t [ fc(¢)dt.

Frequency-modulated antenna signal:

z(t) = A - cos :271- /Ot[fC + k- s(r)]dT + gp]

- t
= A - cos |2nf.t 4 27k - / s(T)dT + @]
i 0

After IQ downconversion from centre frequency f:

2(t) = > 27k J§ s(T)dT+je

Therefore, s(t) is proportional to the rotational rate of z(t).
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Frequency demodulating 1Q samples

Determine s(t) from downconverted signal z(t) = 4 . e2mik Jy s(T)d7+ie

First idea: measure the angle Zz(t), where the angle operator / is
defined such that Zael® = ¢ (a,¢ € R,a > 0). Then take its derivative:

d

s(t) = T d —/2(t)

Problem: angle ambiguity, £ works only for —t < ¢ < 7.

Ugly hack: MATLAB function unwrap removes 27t jumps from sample sequences

Better idea: first take the complex derivative

dzsgt) _ % omjk - s(t) - €2k J s(r)dr+je
S[z(1)]

then divide by z(¢): 22

Other practical approaches: /\
> s(t) oS |40 22 (0)| /12(0) \szan
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Digital modulation schemes

Pick z,, € C from a constellation of 2" symbols to encode n bits:

ASK

16QAM

BPSK

QPSK

00

Basic model of a modem

D

=
.
K/
NI

.
W
-
|/

187

bits | symbols | impulses | transmit filter IQ
b; € {0,1} 1 a€es 13" aid(t — its) «hy(t) "| upconversion
Y
noise | LTI channel
+n(t) g *he(t)
Y
. data . receive filter IQ
< : < | < <
bits slicer sampling (1) downconv.

|Q up/down conversion:

only required for pass-band channels (e.g., radio)
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Pulse Amplitude Modulation (PAM)

Baseband transmission (e.g., for wires), no 1Q up/down conversion

» binary PAM: q, € S ={-A4,A} CR

1 bit/symbol = bit rate (bit/s) = symbol rate (baud)

» m-ary PAM: q; GSZ{Al,...,Am}CR

k = log, m bit/symbol = bit rate (bit/s) > symbol rate (baud)
> bit sequence {b;} — symbol sequence {a;},
ai = f(bkis - bpitk—1)

Pulse generator (symbol rate fs = t_1):

2(t) = Za - O(t — its)

Transmit filter: z = 2 x he, X(f) = X(f) - He(f)
2(t) = a; - he(t — its)

2

Channel: -
A1) = /0 he(s)z(t — s)ds + n(t)
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PAM reception

Receive filter applied to channel output z(t):

y(t) = /OOO h(s)z(t — s)ds

Initial symbol pulses Z(t) have now passed through three LTls:

y=hx2
h = hy % he x hy
H(f) = H(f) H(f) Hd(f)

Sample y(t) at times t,, = nts + tq with delay t4 where pulse magnitude
is largest:

yn = y(nts + tq) = Z a;h((n —i)ts + tg) + vy

where v, = v(nts + tq) is the sampled noise v = n * h,.

Data slicer: compare y,, against thresholds and convert detected nearest
symbol a;, € S back into bits b}, ..., b}, 11
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Synchronization

The receiver needs to know the times t,, when to sample y(t).
» Local clock generators have temperature-dependent frequency drift.

» In some transmission systems, the transmitter provides the sample
clock on a separate wire (or wire pair).

For example: DVI and HDMI video cables contain four wire pairs: three transmitting
red/green/blue pixel bytes (using an 8b/10b line encoding), and one providing a pixel clock
signal, which the receiver multiplies 10X to get a bit clock.

» More commonly, the receiver has to extract the sample clock from
the received signal, for example by tracking the phase of transitions
(phase locked loop, PLL).

This works reliably only if there are regular transitions.

® Some systems use a line encoding (e.g., Manchester code, 8b/10b
encoding) to ensure regular transitions.

Some line encodings add a spectral line at the symbol rate, which the receiver can
extract with a band-pass filter, others first require a non-linear step, e.g. squaring.

® Others use a scrambler: the data bits b; are XORed with the output
of synchronized deterministic random-bit generators (e.g., a
maximum-length linear feedback shift register), in both the sender
and recipient, to make long runs of the same symbol unlikely.
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Intersymbol interference

For notational convenience: set ty = 0 and allow h(t) to be non-causal.
Yn = anh(0) + Z a;h((n —1)ts) + v,
i#n
Ideally, we want
1, =0
0, 1#0

otherwise y,, will depend on other (mainly previous) symbols, not just on
a, = intersymbol interference. (See also: interpolation function)

h(ity) =

Nyquist ISI criterion

Un =an +0n & B(t)- ) Ot —its) = 5(t)
& H(f)*stCS(f—ifs):l
& ZH(f—ifs):ts
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Some possible pulse-shape choices

> h(t) = rect(t/t,) @0 H(f) = tssinc(f/f)

Rectangular pulses may be practical on fibre optics and short cables, where there are no
bandwidth restriction. Not suitable for radio: bandwidth high compared to symbol rate.

> h(t) = sinc(t/ts) o H(f) = tsrect(f/fs)

Most bandwidth efficient pulse shape, but very long symbol waveform, very sensitive to
clock synchronization errors.

» Raised-cosine filter: rectangle with half-period cosine transitions

tSa |f‘§t5/2_5
H(f) = tscos® 5(|f| —ts/2+ B), ts/2—B <|f| <ts/2+ B
0, |f| >ts/2+ 05

cos 2m 3t

h(t) = sinc(t/ts)m

Transition width (roll-off) 8 with 0 < 8 < ¢,/2; for 8 = 0 this is H(f) = ts rect(f/ fs)-
» Gaussian filter: both h(t) and H(f) are Gaussians (self-Fourier)

Fastest transition without overshot in either time or frequency domain, but does not satisfy
Nyquist ISI criterion.

Optimal transmit and receive filtering

Nyquist ISI criterion dictates H(f) = Hi(f) - H(f) - Hi(f).

Bandwidth limits guide choice of Hy(f), and channel dictates H(f) and
N(f).

How should we then choose Hi(f) H.(f)?

Select a received pulse spectrum P,(f), e.g. raised cosine. Then for some
arbitrary gain factor £ > 0:

H(f) = He(f) - He(f) - H(f) = k- P(f)

Optimal filters

Minimize noise variance Var(v,) = [ N(f)|H(f)|?df at slicer relative to
symbol distance.

1
2

R(f)
H, =

S WA AT
() =k [PV

If N(f) and H(f) are flat: |H,(f)| = |H(f)|/K, e.g. root raised cosine.
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Audiovisual data compression

Structure of modern audiovisual communication systems:

. sensor -+ perceptual entropy channel
signal : > . > . > :
sampling coding . coding coding
:
|
:
| Y
|
|
! noise »  channel
|
|
|
:
| Y
|
human § disola _ perceptual | entropy channel
senses | Py decoding | 1 | decoding decoding

Audio-visual lossy coding today typically consists of these steps:

» A transducer converts the original stimulus into a voltage.

» This analog signal is then sampled and quantized.

The digitization parameters (sampling frequency, quantization levels) are preferably chosen

generously beyond the ability of human senses or output devices.

» The digitized sensor-domain signal is then transformed into a
perceptual domain.
This step often mimics some of the first neural processing steps in humans.

» This signal is quantized again, based on a perceptual model of what level

of quantization-noise humans can still sense.

» The resulting quantized levels may still be highly statistically dependent.
A prediction or decorrelation transform exploits this and produces a less

dependent symbol sequence of lower entropy.

» An entropy coder turns that into an apparently-random bit string, whose

length approximates the remaining entropy.

The first neural processing steps in humans are in effect often a kind of decorrelation transform;
our eyes and ears were optimized like any other AV communications system. This allows us to use

the same transform for decorrelating and transforming into a perceptually relevant domain.
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Outline of the remaining lectures

» Quick review of entropy coding

» Transform coding: techniques for converting sequences of
highly-dependent symbols into less-dependent lower-entropy
sequences.

® run-length coding
® decorrelation, Karhunen-Loeve transform (PCA)
® Discrete cosine transform

» Introduction to some characteristics and limits of human senses

® perceptual scales and sensitivity limits
® colour vision

» Quantization techniques to remove information that is irrelevant to
human senses

Entropy coding review — Huffman

1
1.00 Entropy: H = g p(a) - log, (@)
«
0 1 acA p
= 2.3016 bit
0.40 0.60
0 1 0 1
% w
0.20 0.20 u 0.25
0.35 0 1
Mean codeword length: 2.35 bit X
0.10
0.15
Huffman’s algorithm constructs an optimal code-word tree for a set of 0 1
symbols with known probability distribution. It iteratively picks the two
elements of the set with the smallest probability and combines them into y z
a tree by adding a common root. The resulting tree goes back into the 0.05 0.05

set, labeled with the sum of the probabilities of the elements it combines.
The algorithm terminates when less than two elements are left.
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Entropy coding review — arithmetic coding

Partition [0,1] according 0.0 0.35 0.55 075  0.90.951.0
to symbol probabilities: I l l l rT1

u v w X y z

Encode text wuvw ... as numeric value (0.58...) in nested intervals:

1.0 0.75 0.62,— 0.5885 0.5850

[z [z [z [z
4 4 Y Y Y
X X X X X
w w w w w
v v v 1% v
u u u u u
0.0 L oss— 05| 0.5745 0.5822\L
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Arithmetic coding

Several advantages:

» Length of output bitstring can approximate the theoretical
information content of the input to within 1 bit.

» Performs well with probabilities > 0.5, where the information per
symbol is less than one bit.

» Interval arithmetic makes it easy to change symbol probabilities (no
need to modify code-word tree) = convenient for adaptive coding

Can be implemented efficiently with fixed-length arithmetic by rounding
probabilities and shifting out leading digits as soon as leading zeros

appear in interval size. Usually combined with adaptive probability
estimation.

Huffman coding remains popular because of its simplicity and lack of patent-licence issues.
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Coding of sources with memory and correlated symbols

Run-length coding:

Predictive coding:

encoder decoder
f(t) %\ a(t) a(t) %\ f(t)
predictor predictor
P(f(t=1), f(t=2), ...) P(f(t=1), f(t=2), ...)
Delta coding (DPCM): Plx) = =«
Linear predictive coding:  P(x1,...,x,) = Z a;T;
i=1
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Old (Group 3 MH) fax code

pixels | white code black code
> Run—length encoding plus modified Humean 0 00110101 0000110111
code 1 | 000111 010
» Fixed code table (from eight sample pages) 2 | 0111 11
P separate codes for runs of white and black 2 }82? (lJ(l)l
pixels 5 | 1100 0011
» termination code in the range 0—63 switches 6 1110 0010
between black and white code 7 1111 00011
» makeup code can extend length of a run by a 8 | 10011 000101
multiple of 64 9 10100 000100
o 10 00111 0000100
P termination run length 0 needed where run 11 01000 0000101
length is a multiple of 64 12 001000 0000111
» single white column added on left side before 13 | 000011 00000100
transmission 14 110100 00000111
» makeup codes above 1728 equal for black and 15 | 110101 000011000
white 16 101010 0000010111
» 12-bit end-of-line marker: 000000000001 (can 63 | 00110100 000001100111
be prefixed by up to seven zero-bits to reach 64 11011 0000001111
next byte boundary) 128 | 10010 000011001000
Example: line with 2 w, 4 b, 200 w, 3 b, EOL — 192 010111 000011001001
1000/011]010111|10011|10|000000000001 .. o .
1728 010011011 0000001100101
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Newer (JBIG) fax code

Performs context-sensitive arithmetic coding of binary pixels. Both encoder and
decoder maintain statistics on how the black/white probability of each pixel
depends on these 10 previously transmitted neighbours:

?

Based on the counted numbers npjack and nunite of how often each pixel value
has been encountered so far in each of the 1024 contexts, the probability for
the next pixel being black is estimated as

Nplack 1 1
Nwhite + Mblack + 2

Pblack =

The encoder updates its estimate only after the newly counted pixel has been

encoded, such that the decoder knows the exact same statistics.

Joint Bi-level Expert Group: International Standard 1SO 11544, 1993.
Example implementation: https://www.cl.cam.ac.uk/~mgk25/jbigkit/
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Statistical dependence

Random variables X, Y are dependent iff dz, y:
PX=xANY =y)#P(X=2x) P(Y =vy).
If X,Y are dependent, then

= dr,y: PX=z|Y=y)#PX=2z)V
P(Y =y|X=z)# P(Y =y)

= H(X|Y)<HX) Vv HY|X) < H(Y)

Application

Where z is the value of the next symbol to be transmitted and y is the
vector of all symbols transmitted so far, accurate knowledge of the
conditional probability P(X = z | Y = y) will allow a transmitter to
remove all redundancy.

An application example of this approach is JBIG, but there y is limited to
10 past single-bit pixels and P(X =z | Y = y) is only an estimate.
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Practical limits of measuring conditional probabilities

The practical estimation of conditional probabilities, in their most general
form, based on statistical measurements of example signals, quickly
reaches practical limits. JBIG needs an array of only 2! = 2048 counting
registers to maintain estimator statistics for its 10-bit context.

If we wanted to encode each 24-bit pixel of a colour image based on its
statistical dependence of the full colour information from just ten
previous neighbour pixels, the required number of

(2°")" ~ 3 x 10%

registers for storing each probability will exceed the estimated number of
particles in this universe. (Neither will we encounter enough pixels to
record statistically significant occurrences in all (224)!0 contexts.)

This example is far from excessive. It is easy to show that in colour
images, pixel values show statistical significant dependence across colour
channels, and across locations more than eight pixels apart.

A simpler approximation of dependence is needed: correlation.

Correlation

Two random variables X € R and Y € R are correlated iff

E{X-EX)]-[Y —E(Y)]} #0

where E(---) denotes the expected value of a random-variable term.
Dependent but not correlated:

1 R XK s

Correlation implies dependence, but X %
dependence does not always lead to ki x .
correlation (see example to the right). z -
However, most dependency in audio- 0 g 2
visual data is a consequence of corre- X §
lation, which is algorithmically much - o
easier to exploit. 1 ot e |
1 0 1

Positive correlation: higher X < higher Y, lower X < lower Y
Negative correlation: lower X < higher Y, higher X < lower Y
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Correlation of neighbour pixels

Values of neighbour pixels at distance 1 Values of neighbour pixels at distance 2
256 256

X x
x
x X

192 192

128

128

64 64

0 64 128 192 256 0 64 128 192 256

Values of neighbour pixels at distance 4 Values of neighbour pixels at distance 8
256 256

X REXX
x

192 x X 192

128 x 128

64 64

0 64 128 192 256 0 64 128 192 256
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Covariance and correlation

We define the covariance of two random variables X and Y as
Cov(X, Y) = E{[X — E(X)] - [Y — E(Y)]} = E(X - Y) — E(X) - E(Y)
and the variance as Var(X) = Cov(X, X) = E{[X — E(X)]?}.

The Pearson correlation coefficient

_ Cov(X,Y)
v/ Var(X) - Var(Y)

PX.Y

is a normalized form of the covariance. It is limited to the range [—1, 1].

If the correlation coefficient has one of the values px v = %1, this
implies that X and Y are exactly linearly dependent, i.e. Y = aX + b,
with a = Cov(X,Y)/Var(X) and b = E(Y) — E(X).
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Covariance Matrix

For a random vector X = (X1, X2,...,X;,) € R" we define the
covariance matrix

Cov(X) = E (X — E(X)) - (X~ E(X))T) = (Cov(X;,X;)), ; =

/ COV(Xl, Xl) COV(Xl, Xg) COV(}(l7 X3) st COV(Xl, Xn)
COV(XQ, Xl) COV(Xz, X2) COV(XQ, X3) s COV(X2, Xn)
COV(X3, Xl) COV(X3, X2) COV(X3, X3) cet COV(X3, Xn)

\ Cov(X,,X1) Cov(X,,X2) Cov(X,,X3) - Cov(Xn,X,)

The elements of a random vector X are uncorrelated if and only if
Cov(X) is a diagonal matrix.

Cov(X,Y) = Cov(Y, X), so all covariance matrices are symmetric:
Cov(X) = Cov' (X).

209

Decorrelation by coordinate transform

Neighbour-pixel value pairs Decorrelated neighbour—pixel value pairs
256 320
256}
1921
192}
128} 1 128}
64|
64|
O,
0 : : : -64 : : : : :
0 64 128 192 256 -64 0 64 128 192 256 320

Probability distribution and entropy

correlated value pair (H = 13.90 bit) Idea: Take the values of a group of cor-

decorrelated value 1 (H = 7.12 bit) related symbols (e.g., neighbour pixels) as
decorrelated value 2 (H = 4.75 bit a random vector. Find a coordinate trans-

matrix) that leads to a new random vector
whose covariance matrix is diagonal. The
B vector components in this transformed co-

“ ordinate system will no longer be corre-
lated. This will hopefully reduce the en-
) : 2l tropy of some of these components.

—64 0 64 128 192 256 320 210

/\\ form (multiplication with an orthonormal




Theorem: Let X;E R™ and Y € R" be random vectors that are linearly
dependent with Y = AX + b, where A € R"*™ and b € R" are
constants. Then

E(Y) = A-EX)+b
Cov(Y) = A-Cov(X) AT

Proof: The first equation foIIgws from the linearity of the expected-value
operator E(-), as does E(A - X - B) = A - E(X) - B for matrices A, B,
With that, we can transform

Cov(¥) = E((Y-E(Y)-(¥Y-E(Y)))
= E((AX - AE(X)) - (AX — 4E(X))")
— E (A()Z _EX))- (X - E(X’))TAT)
= A-E((X-EX)- (X-EX)T)-AT
= A-Cov(X)-AT
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Quick review: eigenvectors and eigenvalues

We are given a square matrix A € R™"*". The vector x € R" is an
eigenvector of A if there exists a scalar value A € R such that

Az = \z.

The corresponding ) is the eigenvalue of A associated with x.

The length of an eigenvector is irrelevant, as any multiple of it is also an
eigenvector. Eigenvectors are in practice normalized to length 1.

Spectral decomposition

Any real, symmetric matrix A = AT € R"*" can be diagonalized into the
form

A=UNUT,

where A = diag(A1, A2, ..., Ay) is the diagonal matrix of the ordered
eigenvalues of A (with Ay > A\» > --- > \,,), and the columns of U are
the n corresponding orthonormal eigenvectors of A.
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Karhunen-Loeve transform (KLT)

We are given a random vector variable X € R". The correlation of the
elements of X is described by the covariance matrix Cov(X).

How can we find a transform matrix A that decorrelates X, i.e. that
turns Cov(AX) = A - Cov(X) - AT into a diagonal matrix? A would
provide us the transformed representation Y = AX of our random
vector, in which all elements are mutually uncorrelated.

Note that Cov(X) is symmetric. It therefore has n real eigenvalues
A1 > X > -+ > )\, and a set of associated mutually orthogonal
eigenvectors by, by, ..., b, of length 1 with

We convert this set of equations into matrix notation using the matrix
B = (b1,bs,...,b,) that has these eigenvectors as columns and the
diagonal matrix D = diag(A1, A2, ..., A,,) that consists of the
corresponding eigenvalues:

Cov(X)B = BD
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B is orthonormal, that is BBT = I.

Multiplying the above from the right with BT leads to the spectral
decomposition B
Cov(X) = BDB'

of the covariance matrix. Similarly multiplying instead from the left with
BT leads to .
B"Cov(X)B =D

and therefore shows with
Cov(B™X) =D

that the eigenvector matrix BT is the wanted transform.
The Karhunen-Loéve transform (also known as Hotelling transform or
Principal Component Analysis) is the multiplication of a correlated

random vector X with the orthonormal eigenvector matrix BT from the
spectral decomposition Cov(X) = BDBT of its covariance matrix. This

leads to a decorrelated random vector BTX whose covariance matrix is
diagonal.
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Karhunen-Loeve transform example |

colour image

The colour image (left) has m = r? pixels, each
of which is an n = 3-dimensional RGB vector

T
Iy = (T2,ys 9z,y> ba,y)

The three rightmost images show each of these
colour planes separately as a black/white

image.

We want to apply the KLT on a set of such R™
colour vectors. Therefore, we reformat the
image I into an n X m matrix of the form

T1,1 1,2 1,3 *° Torr
S=1 911912913 grr

bi,1 bi2 b1z - by

red channel

green channel

“m — 1" because S. only estimates the mean]

Cc,d —

C

1 m

:_ZSc,i7 §:

m i=1

1

m

blue channel

and the covariance matrix

[

0.4839
0.4456
0.3411

0.0328 0.0256 0.0160
= | 0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

Karhunen-Loeve transform example |

The resulting covariance matrix C' has three eigenvalues 0.0622, 0.0025, and 0.0006:

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

0.0328 0.0256 0.0160
0.0256 0.0216 0.0140
0.0160 0.0140 0.0109

It can thus be diagonalized as

( 0.0328 0.0256 0.0160

0.7167
0.5833
0.3822

—0.5509
0.1373
0.8232

—0.4277
0.8005
—0.4198

0.0256 0.0216 0.0140) —C=U-D-U"=

0.0160 0.0140 0.0109

0.7167 —0.5509 —0.4277 0.0622 0 0
0.5833 0.1373 0.8005 0 0.0025 0
0.3822 0.8232 —0.4198 0 0 0.0006

= 0.0622

= 0.0025

= 0.0006

(e.g. using MATLAB's singular-value decomposition function svd).

0.7167
0.5833
0.3822

—0.5509
0.1373
0.8232

—0.4277
0.8005
—0.4198

We can now define the mean colour vector

)

1 Z(Sc,i - Sc)(sd,i - gd)
1=1

0.7167 0.5833 0.3822
—0.5509 0.1373 0.8232
—0.4277 0.8005 —0.4198
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Karhunen-Loeve transform example |

Before KLT: We finally apply the orthogonal 3 X 3 transform
matrix U, which we just used to diagonalize the
covariance matrix, to the entire image:

Sl Sl S
T=U".|s— 5,8 - 5
S3 S5 - 55
red green 5 5 IS
After KLT: -
_ ) +15 85 -5
l'// ‘[\l ' S3 S3 . e S3
4 E=X
= The resulting transformed image
: ‘ e U1l UL2 UL3 ot Upp
v v T=| vig vi2 v13 *-* Uprp
Projections on eigenvector subspaces: w11 Wi W13t Weop

consists of three new “colour” planes whose
pixel values have no longer any correlation to
the pixels at the same coordinates in another
plane. [The bear disappeared from the last of
these (w), which represents mostly some of the
v=w=0 w=20 original green grass in the background.]

Photo courtesy of Robert E. Barber
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Spatial correlation

The previous example used the Karhunen-Loéve transform in order to
eliminate correlation between colour planes. While this is of some
relevance for image compression, far more correlation can be found
between neighbour pixels within each colour plane.

In order to exploit such correlation using the KLT, the sample set has to
be extended from individual pixels to entire images. The underlying
calculation is the same as in the preceding example, but this time the
columns of S are entire (monochrome) images. The rows are the
different images found in the set of test images that we use to examine
typical correlations between neighbour pixels.

In other words, we use the same formulas as in the previous example, but this time n is the
number of pixels per image and m is the number of sample images. The Karhunen-Loéve
transform is here no longer a rotation in a 3-dimensional colour space, but it operates now in a
much larger vector space that has as many dimensions as an image has pixels.

To keep things simple, we look in the next experiment only at m = 9000 1-dimensional “images”
with n = 32 pixels each. As a further simplification, we use not real images, but random noise
that was filtered such that its amplitude spectrum is proportional to 1/ f, where f is the frequency.
The result would be similar in a sufficiently large collection of real test images.
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Karhunen-Loéve transform example |l

Matrix columns of S filled with samples of 1/f filtered noise

Covariance matrix C' Matrix U with eigenvector columns
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Matrix U’ with normalised KLT Matrix with Discrete Cosine
eigenvector columns Transform base vector columns

Breakthrough: Ahmed/Natarajan/Rao discovered the DCT as an
excellent approximation of the KLT for typical photographic images, but

far more efficient to calculate.
Ahmed, Natarajan, Rao: Discrete Cosine Transform. IEEE Transactions on Computers, Vol. 23,
January 1974, pp. 90-93.
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Discrete cosine transform (DCT)

The forward and inverse discrete cosine transform

Cu (2x + 1)ur
Sy = Sy COS ~—
N 25N
N-1
Cl 2 1
Sy = Sucos( v+ Dum
u=0 N/2 2N
with .
c, =4 v2 "7
1 u>0

is an orthonormal transform:

Cos N

2¢ + Lur  Cy 2z +1u'm {

N-1 4 (
; —N/2 cos N N7

N

DCT base vectors for N = 8:

1 u=1u

0 u#ud
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Discrete cosine transform — 2D

The 2-dimensional variant of the DCT applies the 1-D transform on both
rows and columns of an image:

Cy, Cy

Suv = )
’ \/N/2 \/N/2
o 2z 4+ Dur 2y + 1)vw
Z stycos N cos N
=0 y=0
Spy =
= 2z + Dur  (2y+ 1)vrw
Z Z + Sy, COS N cos N
u=0 v=0 \/N/z \/N/z

A range of fast algorithms have been found for calculating 1-D and 2-D
DCTs (e.g., Ligtenberg/Vetterli).
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Whole-image DCT

2D Discrete Cosine Transform (log10) Original image

50 1 50

100 { 100

150 1 150

200{ 1200
2501 0 20 _
WOV el 300 14 4 \amie
3O i 350 {8
400 4004 =

450 1 450

500

500{EMdEE B :
100 200 300 400 500 100 200 300 400 500

Photo courtesy of SIPI,
University of Southern
California
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Whole-image DCT, 80% coefficient cutoff

80% truncated 2D DCT (log10) 80% truncated DCT: reconstructed image

50 50

100 100 {

150 150

200 - {1 2001
250 . 1o 2509

300 300 fens

350 § 350

400 400 {

450 450

500
100 200 300 400 500 100 200 300 400 500

500
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Whole-image DCT, 90% coefficient cutoff

90% truncated 2D DCT (log10) 90% truncated DCT: reconstructed image

50
100

150
200
250
300 1A

350
400
450

500
100 200 300 400 500 100 200 300 400 500

226



Whole-image DCT, 95% coefficient cutoff

95% truncated 2D DCT (log10)

50
100
150
200
250 =
300
350
400
450

500
100 200 300 400 500

95% truncated DCT: reconstructed image

YT T
i L ot

50
100 {:
150 {
2001
250 { |
300 {4
350 4
400
450 |
500 1

Whole-image DCT, 99% coefficient cutoff

99% truncated 2D DCT (log10)

50
100
150
200
250
300
350
400
450

500
100 200 300 400 500
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Base vectors of 8x8 DCT
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RGB video colour coordinates

Hardware interface (VGA): red, green, blue signals with 0-0.7 V

Electron-beam current and photon count of cathode-ray displays are
roughly proportional to (v — vg)”, where v is the video-interface or
control-grid voltage and -y is a device parameter that is typically in the
range 1.5-3.0. In broadcast TV, this CRT non-linearity is compensated in
cameras (gamma compression, (...)}/7). A welcome side effect is that it
approximates Stevens' scale and therefore helps to reduce perceived noise.

Software interfaces map RGB voltage linearly to {0,1,...,255} or 0-1.

How numeric RGB values map to colour and luminosity can depend on
the hardware, operating system or device driver.

The “sRGB" standard aims to standardize the meaning of an RGB value
with the parameter v = 2.2 and with standard colour coordinates of the

three primary colours.
https://www.w3.org/Graphics/Color/sRGB, IEC 61966-2-1 at https://bsol.bsigroup.com/
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YUV video colour coordinates

Contrast sensitivity
- N
o
T

=)
T

Luminance

Red-Green

Blue-Yellow

L 1 I ! Iy

Plane for Y=0.3

0.1 0.3 1 3 10
Spatial frequency (cycles/degree)

B: ........... 3

Plane for U=0

Plane for V=0

-G

Images: Pennebaker/
Mitchell (1992)

The human eye processes colour and luminosity at different resolutions.
To exploit this phenomenon, many image transmission systems use a
colour space with a “luminance” coordinate

Y =03R+0.6G +0.1B

If based on gamma-compressed R’, G, B’ then Y’ = 0.3R’ 4+ 0.6G’ + 0.1B’ is called “luma”.

The remaining “chrominance” colour information can be encoded as
“chroma” coordinates U and V':

vV =
U =

R-Y' =

0.7R' — 0.6G’' — 0.1B’

B'—Y'=-03R —0.6G' +0.9B

YUV transform example

original

Y channel

U and V channels

The centre image shows only the luminance channel as a black/white
image. In the right image, the luminance channel (Y) was replaced with
a constant, such that only the chrominance information remains.

This example and the next make only sense when viewed in colour. On a black/white printout of
this slide, only the Y channel information will be present.
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Y versus UV sensitivity example

original blurred U and V blurred Y channel

In the centre image, the chrominance channels have been severely

low-pass filtered (Gaussian impulse response #¥ ). But the human eye
perceives this distortion as far less severe than if the exact same filtering
is applied to the luminance channel (right image). Photo courtesy of

Karel de Gendre
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Y’'CrCb video colour coordinates

Since —0.7 <V <0.7 and —0.9 < U < 0.9, a more convenient
normalized encoding of chrominance is:

Y=0.1
1

0.8
0.6

0.4

Cb=—+0.5
2.0 * I
V : Y=0.7 ; Y¥-0.99
Cr=—-+05 | |
r 1.6 + 60.6 6o.a 5°

0.4 0.4

0.2

0.2

0 0

0 0.5 1 0 0.5 1 0 0.5 1
Cb Cb Cb

Many image-compression methods operate on Y’, Cr, Cb channels
separately, using half the resolution of Y’ for storing Cr, Cb.

Some digital-television engineering terminology:

If each pixel is represented by its own Y’, Cr and Cb byte, this is called a “4:4:4” format. In the
compacter “4:2:2" format, a Cr and C'b value is transmitted only for every second pixel, reducing
the horizontal chrominance resolution by a factor two. The “4:2:0” format transmits in alternating
lines either C'r or Cb for every second pixel, thus halving the chrominance resolution both
horizontally and vertically. The “4:1:1" format reduces the chrominance resolution horizontally by
a quarter and "4:1:0” does so in both directions. [ITU-R BT.601]
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Quantization

Uniform/linear quantization: Non-uniform quantization:

Shhrhbrvio=pmwroo
| Do

Shhbrpvio=Mwroo
| Do

6 5 4 8 2 1 0 1 2 3 4 5 6 6 5 4 3 2 1 0 1 2 3 4 5 6
Quantization is the mapping from a continuous or large set of values
(e.g., analog voltage, floating-point number) to a smaller set of (typically
28 210 212 914 916 or 224) values.

This introduces two types of error:

» the amplitude of quantization noise reaches up to half the maximum
difference between neighbouring quantization levels

» clipping occurs where the input amplitude exceeds the value of the
highest (or lowest) quantization level
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Example of a linear quantizer (resolution R, peak value V):

y=mox{ v {3 )}

Adding a noise signal that is uniformly distributed on [0, 1] instead of adding % helps to spread the
frequency spectrum of the quantization noise more evenly. This is known as dithering.

Variant with even number of output values (no zero):

y=max{~vimin{vir (|5 +3)}}

Improving the resolution by a factor of two (i.e., adding 1 bit) reduces
the quantization noise by 6 dB.

Linearly quantized signals are easiest to process, but analog input levels
need to be adjusted carefully to achieve a good tradeoff between the
signal-to-quantization-noise ratio and the risk of clipping. Non-uniform
quantization can reduce quantization noise where input values are not
uniformly distributed and can approximate human perception limits.
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Logarithmic quantization

Rounding the logarithm of the signal amplitude makes the quantization
error scale-invariant and is used where the signal level is not very
predictable. Two alternative schemes are widely used to make the
logarithm function odd and linearize it across zero before quantization:

pu-law:
— Vlog(1 + plz|/V) sgn(z) for =V <z <V
log(1 + )
A-law:
_ 1f|f§'£ sgn(z)  for0<|z| <Y
. V(llﬂroggf) sgn(z) for § <l|z| <V

European digital telephone networks use A-law quantization (A = 87.6), North American ones use
p-law (u=255), both with 8-bit resolution and 8 kHz sampling frequency (64 kbit/s). [ITU-T
G.711]
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w-law (US) .
A-law (Europe)

signal voltage
(@)

-128 -96 -64 -32 0 32 64 96 128
byte value
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Joint Photographic Experts Group — JPEG

Working group “ISO/TC97/SC2/WG8 (Coded representation of picture and audio information)”
was set up in 1982 by the International Organization for Standardization.

Goals:

>

vvyvyVvVvyy

>

continuous tone gray-scale and colour images
recognizable images at 0.083 bit/pixel

useful images at 0.25 bit/pixel

excellent image quality at 0.75 bit/pixel
indistinguishable images at 2.25 bit/pixel

feasibility of 64 kbit/s (ISDN fax) compression with late 1980s
hardware (16 MHz Intel 80386).

workload equal for compression and decompression

The JPEG standard (ISO 10918) was finally published in 1994.

William B. Pennebaker, Joan L. Mitchell: JPEG still image compression standard. Van Nostrad
Reinhold, New York, ISBN 0442012721, 1993.

Gregory K. Wallace: The JPEG Still Picture Compression Standard. Communications of the ACM
34(4)30-44, April 1991, https://dl.acm.org/doi/10.1145/103085.103089
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Summary of the baseline JPEG algorithm

The most widely used lossy method from the JPEG standard:

>
>
>

Colour component transform: 8-bit RGB — 8-bit Y/CrCb
Reduce resolution of C'r and Cb by a factor 2

For the rest of the algorithm, process Y/, Cr and Cb components
independently (like separate gray-scale images)

The above steps are obviously skipped where the input is a gray-scale image.

Split each image component into 8 x 8 pixel blocks

Partial blocks at the right/bottom margin may have to be padded by repeating the last
column/row until a multiple of eight is reached. The decoder will remove these padding
pixels.

Apply the 8 x 8 forward DCT on each block

On unsigned 8-bit input, the resulting DCT coefficients will be signed 11-bit integers.
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>

vvyyvyy

>

Quantization: divide each DCT coefficient with the corresponding
value from an 8 x 8 table, then round to the nearest integer:

The two standard quantization-matrix examples for luminance and chrominance are:

16 11 10 16 24 40 51 61 17 18 24 47 99 99 99 99
12 12 14 19 26 58 60 55 18 21 26 66 99 99 99 99
14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
14 17 22 29 b1 87 80 62 47 66 99 99 99 99 99 99
18 22 37 56 68 109 103 77 99 99 99 99 99 99 99 99
24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
49 64 78 87 103 121 120 101 99 99 99 99 99 99 99 99
72 92 95 98 112 100 103 99 99 99 99 99 99 99 99 99

apply DPCM coding to quantized DC coefficients from DCT
read remaining quantized values from DCT in zigzag pattern
locate sequences of zero coefficients (run-length coding)

apply Huffman coding on zero run-lengths and magnitude of AC
values

add standard header with compression parameters

https://jpeg.org/
Example implementation: https://www.ijg.org/
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Outlook

Further topics that we have not covered in this brief introductory tour
through DSP, but for the understanding of which you should now have a
good theoretical foundation:

>

>
>
>
>

multirate systems

effects of rounding errors
adaptive filters

DSP hardware architectures

sound effects

If you find any typo or mistake in these lecture notes, please email Markus.Kuhn@cl.cam.ac.uk.
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