
DSP.2025.2.1

DSP
COMPUTER SCIENCE TRIPOS Part II

Monday 3 November 2025 12:00 to Monday 10 November 2025 12:00

Module DSP – Digital Signal Processing – Assignment 2

This assignment involves programming. The recommended programming language
is Julia and library functions referred to in the problems may be found in the
Julia packages DSP.jl, WAV.jl, FFTW.jl, Plots.jl, Colors.jl, ImageIO.jl,
FileIO.jl, and ImageShow.jl. [Implementations in other suitable languages, using
equivalent library functions, such as MATLAB’s Signal Processing Toolbox, or the
Python packages matplotlib and scipy.signal, are also acceptable.]

Prepare the solutions and answers to all parts as a single PDF file and include all
source code written, along with any required outputs produced by the programs. A
Pluto.jl notebook provides a convenient way to combine answer text, Julia source
code and outputs into a single PDF.

Submit your work via

https: // www. vle. cam. ac. uk/ course/ view. php? id= 256758

no later than 12:00 on Monday 10 November 2025.

Students may be required to sign an undertaking that work submitted
will be entirely their own; no collaboration is permitted.



DSP.2025.2.2

(a) Analog “touch tone” push-button telephones use a system called “dual-tone
multi-frequency signaling (DTMF)” to communicate to the telephone switch
which button is being pressed. Each button produces a combination of two sine
tones:

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D

You receive a digital telephone signal with a sampling frequency of 8 kHz. You
cut a 256-sample window out of this sequence, multiply it with a windowing
function and apply a 256-point DFT. What are the indices where the resulting
vector (X0, X1, . . . , X255) will show the highest amplitude if button 9 was
pushed at the time of the recording? [Note: No program expected here.]

(b) The audio file touchtone.wav on the course-materials web page contains the
recording of a DTMF-encoded sequence of buttons pressed on a telephone. Use
the short-term Fourier transform, to produce a spectrogram image (similar to
slide 91, but without using any existing spectrogram library function).

� Determine the sampling frequency used in touchtone.wav (Julia: wavread,
MATLAB: audioread).

� Chose (via experimentation) a DFT window size that provides a good visual
tradeoff for the resulting time and frequency resolution.

� Load the audio file and split it into a series of blocks where each block
overlaps 50% with the previous block (i.e., each sample appears in two
blocks)

� Chose and apply a window function

� Calculate the DFT of each block (Julia/MATLAB function fft)

� Convert the results into a raster image in which the amplitude (magnitude)
spectrum of each DFT appears as a vertical column, discarding redundant
frequencies, such that the vertical axis shows frequency and the horizontal
axis the time index at which the respective DFT block starts in the
recording.

� Display the spectrogram as a raster image (e.g., using Julia function
heatmap), appropriately cropped, and label the horizontal axis in seconds
and the vertical axis in Hz, with ticks at the eight DTMF frequencies.

� Experiment with different colourmaps and experiment with showing linear
versus logarithmic displays of the magnitude.

� Read from this spectrogram the touch-tone number dialed.

2



DSP.2025.2.3

(c) Construct seven band-pass filters, with centre frequencies chosen according to
the above table (skipping 1633 Hz, which is not used here). To choose the
bandwidths of these filters, consult ITU-T Recommendations Q.23 and Q.24.
Then pass the same touchtone.wav signal through each of these seven filters.
Plot the result for each of the seven filters such that you can again read off
the sequence of digits pressed. Experiment with different filter types and orders
until the seven tones are clearly detected and separated across the seven receiver
channels. Summarise the reasons for your choices.

(d) The audio files fsk1.wav and fsk2.wav on the course-materials web page
each contain a frequency-modulated ASCII text string, encoded as follows:
transmission rate 100 bits/s, each character is transmitted as one start bit (0),
followed by eight data bits (least-significant bit first), followed by two stop bits
(1). A 0 bit is modulated as a 1180 Hz tone, a 1 bit as a 980 Hz tone. Any idle
period after a character is filled with the same tone as is used for the stop bits.

To read these messages, you could adapt the techniques from parts (b) or
(c), but let’s try something else. Instead of e.g. modulating a low-pass FIR
filter to convert it into a band-pass filter, we can also first shift the frequency
spectrum of the input signal such that the frequency of interest is at 0 Hz, and
then apply a low-pass filter. This is a technique commonly used in AM radio
receivers. Implement two such amplitude demodulators, one for each of the
audio frequencies used.

� Load the waveform from the WAV file and make two copies.

� Multiply both waveform copies with a complex phasor rotating at f0 =
1180 Hz and f1 = 980 Hz, respectively. This multiplication will shift the
Fourier spectrum of the waveform by −fi, such that the respective target
frequency of fi ends up at 0 Hz, and its negative pair −fi ends up at −2fi.

� Apply a low-pass filter to each product from the previous step, to eliminate
any other frequencies not of interest, including the shifted negative target
frequency.

� Calculate the absolute values of the (still complex valued) output waveform
of each low-pass filter and plot the resulting real-valued waveforms on top
of each other, each labeled with the corresponding bit value. [Note: you
should see a clear increase in signal level when there is a tone present in
the respective frequency channel.]

� Experiment with different low-pass filter types, cut-off frequencies and
orders until the two bit tones are clearly detected and separated.

� From the amplitude difference between these two frequency channels, locate
the leading edge of each start bit, then read which eight data bits follow
and look up the corresponding ASCII letter.

The message in “fsk1.wav” is “DSP”. What is it in fsk2.wav?

3 (TURN OVER)



DSP.2025.2.4

(e) Write a program to deconvolve the blurred stars from slide 31.

The files stars-blurred.png with the blurred-stars image and stars-psf.png

with the impulse response (point-spread function) are available on the course-
material web page.

In Julia you may find the functions load, Float64, Gray, fft, ifft, circshift,
nextpow, conv, maximum, findall, axes, of use. (To display a grayscale image
in a Pluto notebook, load packages ImageShow and Colors and return a matrix
of elements of type Gray.)

In MATLAB, you may find the functions imread, double, imagesc, daspect,
circshift, fft2, ifft2 of use.

A typical implementation will involve the following steps:

� Load both the blurred grayscale image and the point-spread image and
convert both matrices into ones that use a floating-point number type.

� Gradually reduce the pixel values in the blurred image near its edges,
to reduce high-frequency components caused by the steps created in the
blurred image as the result of cropping. (Try with and without this step.)

� Zero pad both images to the same size, which should in each direction be
at least the sum of the respective sizes of the blurred and the psf image.
Round these sizes to the next higher power of two.

� Apply the two-dimensional FFT forward transform to both padded images.

� Take care of near-zero values in the FFT of the psf image (e.g., by replacing
them with a larger value), before combining both with complex division and
applying a two-dimensional inverse FFT to the result.

� Depending on how the psf image was aligned, the resulting deblurred image
may have been shifted and may need realignment before cropping to the
image’s original size.

� Display both the original and the deblurred image.

Experiment with different ways or parameters to control the noise (see slide 90)
caused by division of near-zero values and distortions emanating from cropped
stars near the edges (edge tapering).

[Note: Do not use any ready-made functions for image deconvolution, such
as deconvwnr, deconvreg, deconvlucy, edgetaper from the MATLAB Image
Processing Toolbox.]

END OF PAPER

4


