
Cryptography

Markus Kuhn

Department of Computer Science and Technology
University of Cambridge

https://www.cl.cam.ac.uk/teaching/2526/Crypto/

These notes are merely provided as an aid for following the lectures.
They are no substitute for attending the course.

Lent 2026 – CST Part II

crypto-slides-tablet.pdf 2025-12-16 17:16 78bb381 1

https://www.cl.cam.ac.uk/teaching/2526/Crypto/

What is this course about?

Aims

This course provides an overview of basic modern cryptographic
techniques and covers essential concepts that users of cryptographic
standards need to understand to achieve their intended security goals.

Objectives

By the end of the course you should

▶ be familiar with commonly used standardized cryptographic building
blocks;

▶ be able to match application requirements with concrete security
definitions and identify their absence in naive schemes;

▶ understand various adversarial capabilities and basic attack
algorithms and how they affect key sizes;

▶ understand and compare the finite groups most commonly used with
discrete-logarithm schemes;

▶ understand the basic number theory underlying the most common
public-key schemes, and some efficient implementation techniques.

2

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

3

Related textbooks

Main reference:

▶ Jonathan Katz, Yehuda Lindell:
Introduction to Modern Cryptography, Chapman & Hall/CRC

Further reading:

▶ Christof Paar, Jan Pelzl: Understanding Cryptography, Springer

https://link.springer.com/book/10.1007/978-3-642-04101-3
https://www.cryptography-textbook.com/

▶ Douglas Stinson: Cryptography – Theory and Practice,
3rd ed., CRC Press, 2005

▶ Menezes, van Oorschot, Vanstone: Handbook of Applied
Cryptography, CRC Press, 1996

https://cacr.uwaterloo.ca/hac/

▶ Hankerson, Menezes, Vanstone: Guide to Elliptic Curve
Cryptography, Springer, 2004

The course notes and some of the exercises also contain URLs with more
detailed information.

4

https://www.cs.umd.edu/~jkatz/imc.html
https://link.springer.com/book/10.1007/978-3-642-04101-3
https://www.cryptography-textbook.com/
https://cs.uwaterloo.ca/~dstinson/CTAP3/CTAP3.html
https://cacr.uwaterloo.ca/hac/

Common information security targets

Most information-security concerns fall into three broad categories:

Confidentiality ensuring that information is accessible only to those
authorised to have access

Integrity safeguarding the accuracy and completeness of
information and processing methods

Availability ensuring that authorised users have access to
information and associated assets when required

Basic threat scenarios:

Eavesdropper:
(passive)

Alice Bob

Eve

Middle-person attack:
(active)

Alice BobMallory

Storage security: Alice disk
Eve

Mallory

5

Encryption schemes

Encryption schemes are algorithm triples (Gen,Enc,Dec) aimed at
facilitating message confidentiality:

Private-key (symmetric) encryption scheme
▶ K ← Gen private-key generation

▶ C ← EncK(M) encryption of plain-text message M

▶ DecK(C) = M decryption of cipher-text message C

Public-key (asymmetric) encryption scheme

▶ (PK ,SK)← Gen public/secret key-pair generation

▶ C ← EncPK (M) encryption using public key

▶ DecSK (C) = M decryption using secret key

Probabilistic algorithms: Gen and (often also) Enc access a random-bit

generator that can toss coins (uniformly distributed, independent).

Notation: ← assigns the output of a probabilistic algorithm, := that of a deterministic algorithm.

6

Message integrity schemes

Other cryptographic algorithm triples instead aim at authenticating the
integrity and origin of a message:

Message authentication code (MAC)
▶ K ← Gen private-key generation

▶ T := MacK(M) message tag generation

▶ M ′ ̸= M
?⇒ MAC verification:

MacK(M ′) ̸= T recalculate and compare tag

Digital signature
▶ PK ,SK ← Gen public/secret key-pair generation

▶ S ← SignSK (M) signature generation using secret key

▶ VrfyPK (M,S) = 1, signature verification using public key

M ′ ̸= M
?⇒

VrfyPK (M ′, S) = 0

7

Key exchange

Key-agreement protocol
▶ (PKA,SKA)← Gen public/secret key-pair generation by Alice

▶ (PKB ,SKB)← Gen public/secret key-pair generation by Bob

▶ K := DH(SKA,PKB) key derivation from exchanged public keys
= DH(PKA,SKB)

Diffie–Hellman protocol:

Alice and Bob standardize suitably chosen very large public numbers g, p and q.
Alice picks a random number 0 < x < q and Bob a secret number 0 < y < q as
their respective secret keys. They then exchange the corresponding public keys:

A→ B : PKA = gx mod p

B → A : PKB = gy mod p

Alice and Bob each now can calculate

K = (gy mod p)x mod p = (gx mod p)y mod p

and use that as a shared private key. With suitably chosen parameters, outside
observers will not be able to infer x, y, or K.
Why might one also want to sign or otherwise authenticate PKA and/or PKB?

8

Key types

▶ Private keys = symmetric keys

▶ Public/secret key pairs = asymmetric keys

Warning: this “private” vs “secret” key terminology is not universal in the literature

▶ Ephemeral keys / session keys are only used briefly and often
generated fresh for each communication session.

They can be used to gain privacy (observers cannot identify users from public keys
exchanged in clear) and forward secrecy (if a communication system gets compromised in
future, this will not compromise past communication).

▶ Static keys remain unchanged over a longer period of time (typically
months or years) and are usually intended to identify users.

Static public keys are usually sent as part of a signed “certificate” SignSKC
(A,PKA),

where a “trusted third party” or “certification authority” C certifies that PKA is the public
key associated with user A.

▶ Master keys are used to generate other derived keys.

▶ By purpose: encryption, message-integrity, authentication, signing,
key-exchange, certification, revocation, attestation, etc. keys

9

When is a cryptographic scheme “secure”?

For an encryption scheme, if no adversary can . . .

▶ . . . find out the secret/private key?

▶ . . . find the plaintext message M?

▶ . . . determine any character/bit of M?

▶ . . . determine any information about M from C?

▶ . . . compute any function of the plaintext M from ciphertext C?
⇒ “semantic security”

For an integrity scheme, should we demand that no adversary can . . .

▶ . . . find out the secret/private key?

▶ . . . create a new message M ′ and matching tag/signature?

▶ . . . create a new M ′ that verifies with a given tag/signature?

▶ . . . modify or recombine a message+tag so they still verify?

▶ . . . create two messages with the same signature?

10

What capabilities may the adversary have?

▶ access to some ciphertext C

▶ access to some plaintext/ciphertext pairs (M,C) with
C ← EncK(M)?

▶ ability to trick the user of EncK into encrypting some plaintext of
the adversary’s choice and return the result?
(“oracle access” to Enc)

▶ ability to trick the user of DecK into decrypting some ciphertext of
the adversary’s choice and return the result?
(“oracle access” to Dec)?

▶ ability to modify or replace C en route?
(not limited to eavesdropping)

▶ how many applications of EncK or DecK can be observed?

▶ unlimited / polynomial / realistic (≪ 280 steps) computation time?

▶ knowledge of all algorithms used

Wanted: Clear definitions of what security of an encryption scheme
means, to guide both designers and users of schemes, and allow proofs.

11

Kerckhoffs’ principles (1883)

Requirements for a good traditional military encryption system:

1 The system must be substantially, if not mathematically,
undecipherable;

2 The system must not require secrecy and can be stolen by the
enemy without causing trouble;

3 It must be easy to communicate and remember the keys without
requiring written notes, it must also be easy to change or modify the
keys with different participants;

4 The system ought to be compatible with telegraph communication;

5 The system must be portable, and its use must not require more
than one person;

6 Finally, regarding the circumstances in which such system is applied,
it must be easy to use and must neither require stress of mind nor
the knowledge of a long series of rules.

Auguste Kerckhoffs: La cryptographie militaire, Journal des sciences militaires, 1883.
https://petitcolas.net/fabien/kerckhoffs/

12

https://petitcolas.net/fabien/kerckhoffs/

Kerckhoffs’ principle today

Requirement for a modern encryption system:

1 It was evaluated assuming that the enemy knows the system.

2 Its security relies entirely on the key being secret.

Note:

▶ The design and implementation of a secure communication system is
a major investment and is not easily and quickly repeated.

▶ Relying on the enemy not knowing the encryption system is
generally frowned upon as “security by obscurity”.

▶ The most trusted cryptographic algorithms have been published,
standardized, and withstood years of cryptanalysis.

▶ A cryptographic key should be just a random choice that can be
easily replaced, by rerunning a key-generation algorithm.

▶ Keys can and will be lost: cryptographic systems should provide
support for easy rekeying, redistribution of keys, and quick
revocation of compromised keys.

13

A note about message length

We explicitly do not worry in the following about the adversary being
able to infer something about the length m of the plaintext message M
by looking at the length n of the ciphertext C.

Therefore, we will consider here in security definitions for encryption
schemes only messages of fixed length m.

Variable-length messages could be extended to a fixed length, by
padding, but this can be expensive. It will depend on the specific
application whether the benefits of fixed-length padding outweigh the
added transmission cost.

Nevertheless, in practice, ciphertext length must always be considered as
a potential information leak. Examples:

▶ Encrypted-file lengths often permit unambiguous reconstruction of
what pages a HTTPS user accessed on a public web site.
G. Danezis: Traffic analysis of the HTTP protocol over TLS.
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf

▶ Data compression can be abused to extract information from an
encrypted message if an adversary can control part of that message.
J. Kelsey: Compression and information leakage of plaintext.
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf
Also: CVE-2012-4929/CRIME

14

http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf

Demo: leaking plaintext through compressed data length

$ cat compression-leak

#!/bin/bash

PLAINTEXT=cafe ←
KEY="N-32m5qEj/emdVr.69w1fX"

ENC="openssl enc -aes-128-ctr -pass pass:$KEY"

for t in {a,b,c,d,e,f}{a,b,c,d,e,f}{a,b,c,d,e,f}{a,b,c,d,e,f} ; do

echo -n "$t "

echo $t $PLAINTEXT | gzip -c | $ENC | wc -c

done | sort -nk2

$./compression-leak

aafe 44

acaf 44

bafe 44

bcaf 44

cafe 44 ←
ccaf 44

dafe 44

dcaf 44

eafe 44

ecaf 44

fafe 44

fcaf 44

aaaa 46

aaab 46

[. . . remaining 1282 lines not shown . . .]

15

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

16

Historic examples of simple ciphers

Shift Cipher: Treat letters {A, . . . ,Z} like integers {0, . . . , 25} = Z26.
Choose key K ∈ Z26, encrypt each letter individually by addition modulo
26, decrypt by subtraction modulo 26.

Example with K = 25 ≡ −1 (mod 26): IBM→HAL.

K = −3 known as Caesar Cipher, K = 13 as rot13.

The tiny key-space size 26 makes brute-force key search trivial.

Transposition Cipher: K is permutation of letter positions.

Key space is n!, where n is the permutation block length.

A
T

D
A

W
N

B
U

T
N

O
TT

T

A

A
C

K

B

E
F

O
R

E

Skytale

A T T A C K A T D A W N

T A N W T C A K D A T A

Substitution Cipher (monoalphabetic): Key is permutation
K : Z26 ↔ Z26. Encrypt plaintext M = m1m2 . . .mn with ci = K(mi)
to get ciphertext C = c1c2 . . . cn, decrypt with mi = K−1(ci).

Key space size 26! > 4× 1026 makes brute-force search infeasible.
17

Statistical properties of plain text

English letter frequency

0
1
2
3
4
5
6
7
8
9

10
11
12
13 E

T
A

O
I N S H R

D L
U W M F C G Y P B K V

J X Q Z

%

The most common letters in English:
E, T, A, O, I, N, S, H, R, D, L, U, . . .
The most common digrams in English:
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, . . .
The most common trigrams in English:
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, . . .

English text is highly redundant: very roughly 1 bit/letter entropy.

Monoalphabetic substitution ciphers allow simple ciphertext-only attacks based on
digram or trigram statistics (for messages of at least few hundred characters).

18

Vigenère cipher
ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY

Inputs:

▶ Key word K = k1k2 . . . kl

▶ Plain text M = m1m2 . . .mn

Encrypt into ciphertext:

ci = (mi + k[(i−1) mod l]+1) mod 26

Example: K = SECRET

S E C R E T S E C ...

A T T A C K A T D ...

S X V R G D S X F ...

The modular addition can be replaced with XOR:

ci = mi ⊕ k[(i−1) mod l]+1 mi, ki, ci ∈ {0, 1}

Vigenère is an example of a polyalphabetic cipher.
19

Attacking the Vigenère cipher

First determine the key length l. For each candidate keylength l:

▶ Treat each l-th ciphertext character as part of a separate message
M1,M2, . . . ,Ml encrypted with just a (monoalphabetic) shift cipher, resulting in
separate ciphertexts C1, C2, . . . , Cl.

▶ Consider the l letter-frequency histograms for these Ci (1 ≤ i ≤ l).

▶ If choice of l is incorrect, the letter-frequency histograms of each of
C1, C2, . . . , Cl will be more even/flatter (as they are the average of several
rotated histograms) than if l was correct.

▶ If pa,i is the relative frequency of letter a in Ci (for all a in alphabet A), then
the index of coincidence

IC (Ci) =
∑
a∈A

p2a,i

is the probability that two randomly chosen letters from Ci are identical. IC is a
measure of the unevenness of a histogram (minimal if ∀a ∈ A : pa,i = |A|−1).

▶ Pick the key length l that leads to the highest l−1
∑l

i=1 IC (Ci). In other words,
maximise the probability of two letters being identical when looking only at
letters that are a multiple of l characters apart in C.

Once the correct key length l is known, compare the histograms of C1, C2, . . . , Cl.
They will just be shifted versions of each other (pa,2 = p(a−k2+k1) mod 26,1, etc.), and
the shift offsets reveal the differences between the corresponding key characters.
Finally, try decryption with all possible first key characters k1.

20

0
1
2
3
4
5
6
7
8
9

10
11
12
13

shifted letter freq. (IC=0.065)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

shifted letter freq. (IC=0.065)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

shifted letter freq. (IC=0.065)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

averaged letter freq. (IC=0.046)

21

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

22

Perfect secrecy

Computational security

The most efficient known algorithm for breaking a cipher would require
far more computational steps than all hardware available to any adversary
can perform.

Unconditional security

Adversaries have not enough information to decide (from the ciphertext)
whether one plaintext is more likely to be correct than another, even with
unlimited computational power at their disposal.

23

Perfect secrecy II

Consider a private-key encryption scheme

Enc : K ×M→ C, Dec : K × C →M

with DecK(EncK(M)) = M for all K ∈ K,M ∈M, whereM, C,K are
the sets of possible plaintexts, ciphertexts and keys, respectively.

Let also M ∈M, C ∈ C and K ∈ K be values of plaintext, ciphertext
and key. Let P(M) and P(K) denote an adversary’s respective a-priori
knowledge of the probability that plaintext M or key K are used.

The adversary can then calculate the probability of any ciphertext C as

P(C) =
∑
K∈K

P(K) · P(DecK(C)).

and can also determine the conditional probability

P(C|M) =
∑

{K∈K|M=DecK(C)}
P(K)

24

Perfect secrecy III

Having eavesdropped some ciphertext C, an adversary can then use
Bayes’ theorem to calculate for any plaintext M ∈M

P(M |C) =
P(M) · P(C|M)

P(C)
=

P(M) ·∑{K|M=DecK(C)} P(K)∑
K P(K) · P(DecK(C))

.

Perfect secrecy

An encryption scheme over a message spaceM is perfectly secret if for
every probability distribution overM, every message M ∈M, and every
ciphertext C ∈ C with P(C) > 0 we have

P(M |C) = P(M).

In other words: looking at the ciphertext C leads to no new information
beyond what was already known about M in advance ⇒ eavesdropping
C has no benefit, even with unlimited computational power.

C.E. Shannon: Communication theory of secrecy systems. Bell System Technical Journal, Vol 28,
Oct 1949, pp 656–715. https://archive.org/details/bstj28-4-656/page/n55/mode/2up

25

https://archive.org/details/bstj28-4-656/page/n55/mode/2up

Vernam cipher / one-time pad I

Shannon’s theorem:

Let (Gen,Enc,Dec) be an encryption scheme over a message spaceM
with |M| = |K| = |C|. It is perfectly secret if and only if

1 Gen chooses every K with equal probability 1/|K|;
2 for every M ∈M and every C ∈ C, there exists a unique key K ∈ K

such that C = EncKM .

The standard example of a perfectly-secure symmetric encryption scheme:

One-time pad

K = C =M = {0, 1}m
▶ Gen : K ∈R {0, 1}m (m uniform, independent coin tosses)

▶ EncK(M) = K ⊕M (⊕ = bit-wise XOR)

▶ DecK(C) = K ⊕ C

Example:
0xbd4b083f6aae⊕ “Vernam” = 0xbd4b083f6aae⊕ 0x5665726e616d = 0xeb2e7a510bc3

26

Vernam cipher / one-time pad II

The one-time pad is a variant of the Vigenère Cipher with l = n: the
key is as long as the plaintext. No key bit is ever used to encrypt more
than one plaintext bit.

Note: If x is a random bit with any probability distribution and y is one with uniform probability
distribution (P(y = 0) = P(y = 1) = 1

2), then the exclusive-or result x⊕ y will have uniform
probability distribution. This also works for addition modulo m (or for any finite group).

For each possible plaintext M , there exists a key K = M ⊕ C that turns
a given ciphertext C into M = DecK(C). If all K are equally likely, then
also all M will be equally likely for a given C, which fulfills Shannon’s
definition of perfect secrecy.

What happens if you use a one-time pad twice?

One-time pads have been used intensively during significant parts of the 20th century for
diplomatic communications security, e.g. on the telex line between Moscow and Washington. Keys
were generated by hardware random bit stream generators and distributed via trusted couriers.

In the 1940s, the Soviet Union encrypted part of its diplomatic communication using duplicate
one-time pads, leading to the success of the US decryption project VENONA.
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/
crypto-almanac-50th/VENONA_An_Overview.pdf

27

https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/crypto-almanac-50th/VENONA_An_Overview.pdf
https://www.nsa.gov/portals/75/documents/news-features/declassified-documents/crypto-almanac-50th/VENONA_An_Overview.pdf

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

28

Making the one-time pad more efficient

The one-time pad is very simple, but also very inconvenient:
one key bit for each message bit!

Many standard libraries contain pseudo-random number generators
(PRNGs). They are used in simulations, games, probabilistic algorithms,
testing, etc.

They expand a “seed value” R0 into a sequence of numbers R1, R2, . . .
that look very random:

Ri = f(Ri−1, i)

The results pass numerous statistical tests for randomness (e.g. Marsaglia’s “Diehard” tests).

Can we not use R0 as a short key, split our message M into chunks
M1,M2, . . . and XOR with (some function g of) Ri to encrypt Mi?

Ci = Mi ⊕ g(Ri, i)

But what are secure choices for f and g?

What security propery do we expect from such a generator, and what
security can we expect from the resulting encryption scheme?

29

A non-secure pseudo-random number generator

Example (insecure)

Linear congruential generator with secret parameters (a, b, R0):

Ri+1 = (aRi + b) mod m

Attack: guess some plain text (e.g., known file header), obtain for
example (R1, R2, R3), then solve system of linear equations over Zm:

R2 ≡ aR1 + b (mod m)

R3 ≡ aR2 + b (mod m)

Solution:

a ≡ (R2 −R3)/(R1 −R2) (mod m)

b ≡ R2 −R1(R2 −R3)/(R1 −R2) (mod m)

Multiple solutions if gcd(R1 −R2,m) ̸= 1: resolved using R4 or just by
trying all possible values.

30

Private-key (symmetric) encryption

A private-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen,Enc,Dec) and sets K,M, C such that

▶ the key generation algorithm Gen receives a security parameter ℓ
and outputs a key K ← Gen(1ℓ), with K ∈ K, key length |K| ≥ ℓ;

▶ the encryption algorithm Enc maps a key K and a plaintext
message M ∈M = {0, 1}m to a ciphertext message
C ← EncK(M);

▶ the decryption algorithm Dec maps a key K and a ciphertext
C ∈ C = {0, 1}n (n ≥ m) to a plaintext message M := DecK(C);

▶ for all ℓ, K ← Gen(1ℓ), and M ∈ {0, 1}m: DecK(EncK(M)) = M .

Notes:

A “polynomial-time algorithm” has constants a, b, c such that the runtime is
always less than a · ℓb + c if the input is ℓ bits long. (think Turing machine)

Technicality: we supply the security parameter ℓ to Gen here in unary encoding (as a sequence of ℓ

“1” bits: 1ℓ), merely to remain compatible with the notion of “input size” from computational

complexity theory. In practice, Gen usually simply picks ℓ random bits K ∈R {0, 1}ℓ.
31

Negligible functions

We call a function f : N→ R≥0 “negligible” if, as its input n increases,
its output converges to zero faster than the inverse of any polynomial.

Negligible functions appear in formal security definitions for encryption schemes to limit the allowed
success probability of an adversary as a function of some security parameter, e.g. a key length.

Definition: negligible function

A function f from the natural numbers to the non-negative real numbers
is “negligible” if for every polynomial p there is an integer N such that
for all n > N it holds that f(n) < 1

p(n) .

Equivalently: for all positive integers c there exists an Nc such that for all
n > Nc it holds that f(n) < n−c.

Examples of negligible functions: n 7→ 2−n, n 7→ 2−
√
n, n 7→ n− logn.

For example: if f(n) = 2−
√

n and p(n) = n5 then solving f(n) < 1/p(n) we get n > 25 log22 n,
which holds for all n > 3453, i.e. N5 = 3453.

We normally will write a negligible function as “negl”.

Closure properties: If negl and negl2 are negligible, then so are
n 7→ negl(n) + negl2(n) and n 7→ negl(n) · p(n) for any polynomial p(n).

32

Security definitions for encryption schemes

We define security via the rules of a game played between two players:

▶ a challenger, who uses an encryption scheme Π = (Gen,Enc,Dec)

▶ an adversary A, who tries to demonstrate a weakness in Π.

Most of these games follow a simple pattern:

1 the challenger uniformly picks at random a secret bit b ∈R {0, 1}
2 A interacts with the challenger according to the rules of the game

3 At the end, A has to output a bit b′.

The outcome of such a game XA,Π(ℓ) is either

▶ b = b′ ⇒ A won the game, we write XA,Π(ℓ) = 1

▶ b ̸= b′ ⇒ A lost the game, we write XA,Π(ℓ) = 0

33

Probabilistic security game X: XA,Π(ℓ) =

{
1, b = b′

0, b ̸= b′

Security definition

An encryption scheme Π is considered “X secure” if for all probabilistic
polynomial-time (PPT) adversaries A there exists a “negligible” function
negl such that

P(XA,Π(ℓ) = 1) <
1

2
+ negl(ℓ).

In practice: We want negl(ℓ) to drop below a small number (e.g., 2−80 or 2−100) for modest key
lengths ℓ (e.g., log10 ℓ ≈ 2 . . . 3). Then no realistic opponent will have the computational power
to repeat the game often enough to win at least once more than what is expected from random
guessing.

Negligible advantage: Some authors prefer an alternative definition
where A’s ability to guess b is quantified instead as

AdvXA,Π(ℓ) =
∣∣P(b = 1 and b′ = 1)− P(b = 0 and b′ = 1)

∣∣ < negl(ℓ).

34

“Computationally infeasible”

With good cryptographic primitives, the only form of possible
cryptanalysis should be an exhaustive search of all possible keys (brute
force attack).

The following numbers give a rough idea of the limits involved:

Let’s assume we can later this century produce VLSI chips with 10 GHz
clock frequency and each of these chips costs 10 $ and can test in a
single clock cycle 100 keys. For 10 million $, we could then buy the chips
needed to build a machine that can test 1018 ≈ 260 keys per second.
Such a hypothetical machine could break an 80-bit key in 7 days on
average. For a 128-bit key it would need over 1012 years, that is over
100× the age of the universe.

Rough limit of computational feasiblity: 280 iterations
(i.e., < 260 feasible with effort, but > 2100 certainly not)

For comparison:
▶ The fastest key search effort using thousands of Internet PCs (RC5-64, 2002) achieved in

the order of 237 keys per second.
https://www.cl.cam.ac.uk/~rnc1/brute.html
https://www.distributed.net/

▶ Since 2025, the Bitcoin network has been searching through about 1021 ≈ 270 cryptographic
hash values per second, mostly using ASICs.
https://bitcoin.sipa.be/

35

https://www.cl.cam.ac.uk/~rnc1/brute.html
https://www.distributed.net/
https://bitcoin.sipa.be/

Indistinguishability in the presence of an eavesdropper
Private-key encryption scheme Π = (Gen, Enc,Dec),M = {0, 1}m, security parameter ℓ.

Experiment/game PrivKeav
A,Π(ℓ):

C ← EncK(Mb)

K ← Gen(1ℓ)

b ∈R {0, 1}

challenger

A

adversaryC

M0,M1
1ℓ

b′b

1ℓ

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1ℓ).

2 The adversary A is given input 1ℓ

Rules for the interaction:

1 The adversary A outputs a pair of messages:
M0,M1 ∈ {0, 1}m.

2 The challenger computes C ← EncK(Mb) and returns
C to A

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKeav
A,Π(ℓ) = 1

36

Indistinguishability in the presence of an eavesdropper

Definition: A private-key encryption scheme Π has indistinguishable
encryption in the presence of an eavesdropper if for all probabilistic,
polynomial-time adversaries A there exists a negligible function negl,
such that

P(PrivKeav
A,Π(ℓ) = 1) ≤ 1

2
+ negl(ℓ)

In other words: as we increase the security parameter ℓ, we quickly
reach the point where no eavesdropper can do significantly better than
just randomly guessing b.

37

Pseudo-random generator I

G : {0, 1}n → {0, 1}e(n) where e(·) is a polynomial (expansion factor)

Definition
G is a pseudo-random generator if both

1 e(n) > n for all n (expansion)

2 for all probabilistic, polynomial-time distinguishers D there exists a
negligible function negl such that

|P(D(r) = 1)− P(D(G(s)) = 1)| ≤ negl(n)

where both r ∈R {0, 1}e(n) and the seed s ∈R {0, 1}n are chosen at
random, and the probabilities are taken over all coin tosses used by
D and for picking r and s.

38

Pseudo-random generator II

A brute-force distinguisher D would enumerate all 2n possible outputs of
G, and return 1 if the input is one of them.

It would achieve

P(D(G(s)) = 1) = 1

P(D(r) = 1) =
2n

2e(n)

the difference of which converges to 1, which is not negligible.

But a brute-force distinguisher has a exponential run-time O(2n), and is
therefore excluded!

We do not know how to prove that a given algorithm is a pseudo-random
generator, but there are many algorithms that are widely believed to be.

Some constructions are pseudo-random generators if another well-studied
problem is not solvable in polynomial time.

39

Encrypting using a pseudo-random generator

We define the following fixed-length private-key encryption scheme:

ΠPRG = (Gen,Enc,Dec):

Let G be a pseudo-random generator with expansion factor e(·),
K = {0, 1}ℓ,M = C = {0, 1}e(ℓ)
▶ Gen: on input 1ℓ chose K ∈R {0, 1}ℓ randomly

▶ Enc: C := G(K)⊕M

▶ Dec: M := G(K)⊕ C

Such constructions are known as “stream ciphers”.

We can prove that ΠPRG has “indistinguishable encryption in the
presence of an eavesdropper” assuming that G is a pseudo-random
generator: if we had a polynomial-time adversary A that can succeed
with non-negligible advantage against ΠPRG, we can turn that using a
polynomial-time algorithm into a polynomial-time distinguisher for G,
which would violate the assumption.

40

Security proof for a stream cipher

Claim: ΠPRG has indistinguishability in the presence of an eavesdropper
if G is a pseudo-random generator.

Proof: (outline) If ΠPRG did not have indistinguishability in the presence
of an eavesdropper, there would be an adversary A for which

ϵ(ℓ) := P(PrivKeav
A,ΠPRG

(ℓ) = 1)− 1

2

is not negligible.

Use that A to construct a distinguisher D for G:

▶ receive input W ∈ {0, 1}e(ℓ)
▶ pick b ∈R {0, 1}
▶ run A(1ℓ) and receive from it M0,M1 ∈ {0, 1}e(ℓ)
▶ return C := W ⊕Mb to A
▶ receive b′ from A
▶ return 1 if b′ = b, otherwise return 0

Now, what is |P(D(r) = 1)− P(D(G(K)) = 1)|?
41

Security proof for a stream cipher (cont’d)

What is |P(D(r) = 1)− P(D(G(K)) = 1)|?
▶ What is P(D(r) = 1)?

Let Π̃ be an instance of the one-time pad, with key and message
length e(ℓ), i.e. compatible to ΠPRG. In the D(r) case, where we
feed it a random string r ∈R {0, 1}e(n), then from the point of view
of A being called as a subroutine of D(r), it is confronted with a
one-time pad Π̃. The perfect secrecy of Π̃ implies P(D(r) = 1) = 1

2 .

▶ What is P(D(G(K)) = 1)?
In this case, A participates in the game PrivKeav

A,ΠPRG
(ℓ). Thus we

have P(D(G(K)) = 1) = P(PrivKeav
A,ΠPRG

(ℓ) = 1) = 1
2 + ϵ(ℓ).

Therefore
|P(D(r) = 1)− P(D(G(K)) = 1)| = ϵ(ℓ)

which we have assumed not to be negligible, which implies that G is not
a pseudo-random generator, contradicting the assumption.

Katz/Lindell (1st ed.), pp 73-75

42

Security proofs through reduction

Some key points about this style of “security proof”:

▶ We have not shown that the encryption scheme ΠPRG is “secure”.
(We don’t know how to do this!)

▶ We have shown that ΠPRG has one particular type of security
property, if one of its building blocks (G) has another one.

▶ We have “reduced” the security of construct ΠPRG to another
problem X:

problem X

instance of

to X

solution
attack

instance of

scheme Π AReduction

A′

Here: X = distinguishing output of G from random string

▶ We have shown how to turn any successful attack on ΠPRG into an
equally successful attack on its underlying building block G.

▶ “Successful attack” means finding a polynomial-time probabilistic
adversary algorithm that succeeds with non-negligible success
probability in winning the game specified by the security definition.

43

Security proofs through reduction

In the end, the provable security of some cryptographic construct (e.g.,
ΠPRG, some mode of operation, some security protocol) boils down to
these questions:

▶ What do we expect from the construct?

▶ What do we expect from the underlying building blocks?

▶ Does the construct introduce new weaknesses?

▶ Does the construct mitigate potential existing weaknesses in its
underlying building blocks?

44

Security for multiple encryptions
Private-key encryption scheme Π = (Gen, Enc,Dec),M = {0, 1}m, security parameter ℓ.

Experiment/game PrivKmult
A,Π(ℓ):

C ← EncK(Mb)

K ← Gen(1ℓ)

b ∈R {0, 1}

challenger

A

adversaryC1, C2, . . . , Ct

M1
1 ,M

2
1 , . . . ,M

t
1

M1
0 ,M

2
0 , . . . ,M

t
0

1ℓ

b′

1ℓ

b

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1ℓ).

2 The adversary A is given input 1ℓ

Rules for the interaction:

1 The adversary A outputs two sequences of t messages:
M1

0 ,M
2
0 , . . . ,M

t
0 and M1

1 ,M
2
1 , . . . ,M

t
1 , where all M i

j ∈ {0, 1}m.

2 The challenger computes Ci ← EncK(M i
b) and returns

C1, C2, . . . , Ct to A
Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKmult

A,Π(ℓ) = 1
45

Security for multiple encryptions (cont’d)

Definition: A private-key encryption scheme Π has indistinguishable
multiple encryptions in the presence of an eavesdropper if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PrivKmult
A,Π(ℓ) = 1) ≤ 1

2
+ negl(ℓ)

Same definition as for indistinguishable encryptions in the presence of an eavesdropper, except for
referring to the multi-message eavesdropping experiment PrivKmult

A,Π(ℓ).

Example: Does our stream cipher ΠPRG offer indistinguishable multiple
encryptions in the presence of an eavesdropper?

Adversary A4 outputs four messages , and

returns b′ = 1 iff . P(PrivKmult
A4,ΠPRG

(ℓ) = 1) =

Actually: Any encryption scheme is going to fail here!

46

Securing a stream cipher for multiple encryptions I

How can we still use a stream cipher if we want to encrypt multiple
messages M1,M2, . . . ,Mt using a pseudo-random generator G?

Synchronized mode

Let the PRG run for longer to produce enough output bits for all
messages:

G(K) = R1∥R2∥ . . . ∥Rt, Ci = Ri ⊕Mi

∥ is concatenation of bit strings

▶ convenient if M1,M2, . . . ,Mt all belong to the same
communications session and G is of a type that can produce long
enough output

▶ requires preservation of internal state of G across sessions

47

Securing a stream cipher for multiple encryptions II

Unsynchronized mode

Some PRGs have two separate inputs, a key K and an “initial vector”
IV . The private key K remains constant, while IV is freshly chosen at
random for each message, and sent along with the message.

for each i: IVi ∈R {0, 1}n, Ci := (IVi, G(K, IVi)⊕Mi)

But: what exact security properties do we expect of a G with IV input?

This question leads us to a new security primitive and associated security
definition: pseudo-random functions and CPA security.

48

Security against chosen-plaintext attacks (CPA)
Private-key encryption scheme Π = (Gen, Enc,Dec),M = {0, 1}m, security parameter ℓ.

Experiment/game PrivKcpa
A,Π(ℓ):

A

adversary

Ct, . . . , C2, C1

M1,M2, . . . ,Mt

M0,M1

C

Ct+t′ , . . . , Ct+1

Mt+1, . . . ,Mt+t′

b ∈R {0, 1}
K ← Gen(1ℓ)

Ci ← EncK(M i)

C ← EncK(Mb)
challenger

1ℓ

b′b

1ℓ

Setup: (as before)

1 The challenger generates a bit b ∈R {0, 1} and a key K ← Gen(1ℓ).

2 The adversary A is given input 1ℓ

Rules for the interaction:

1 The adversary A is given oracle access to EncK :
A outputs M1, gets EncK(M1), outputs M2, gets EncK(M2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncK(Mb) and returns C to A
4 The adversary A continues to have oracle access to EncK .

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKcpa
A,Π(ℓ) = 1

49

Security against chosen-plaintext attacks (cont’d)

Definition: A private-key encryption scheme Π has indistinguishable
multiple encryptions under a chosen-plaintext attack (“is CPA-secure”) if
for all probabilistic, polynomial-time adversaries A there exists a
negligible function negl, such that

P(PrivKcpa
A,Π(ℓ) = 1) ≤ 1

2
+ negl(ℓ)

Advantages:

▶ Eavesdroppers can often observe their own text being encrypted,
even where the encrypter never intended to provide an oracle.
(WW2 story: Midway Island/AF, server communication).

▶ CPA security provably implies security for multiple encryptions.

▶ CPA security allows us to build a variable-length encryption scheme
simply by using a fixed-length one many times.

50

Random functions and permutations

Random function
Consider all possible functions of the form

f : {0, 1}m → {0, 1}n

How often do you have to toss a coin to fill the value table of such a
function f with random bits?

How many different such f are there?

An m-bit to n-bit random function f is one that we have picked
uniformly at random from all these possible functions.

Random permutation
Consider all possible permutations of the form

g : {0, 1}n ↔ {0, 1}n

How many different such g are there?

An n-bit to n-bit random permutation g is one that we have picked
uniformly at random from all these possible permutations.

51

Pseudo-random functions and permutations

Basic idea:

A pseudo-random function (PRF) is a fixed, efficiently computable
function

F : {0, 1}k × {0, 1}m → {0, 1}n

that (compared to a random function) depends on an additional input
parameter K ∈ {0, 1}k, the key. Each choice of K leads to a function

FK : {0, 1}m → {0, 1}n

For typical key lengths (e.g., k,m ≥ 128), the set of all possible functions
FK will be a tiny subset of the set of all possible random functions f .

For a secure pseudo-random function F there must be no practical way
to distinguish between FK and a corresponding random function f for
anyone who does not know key K.

We can similarly define a keyed pseudo-random permutation.

In some proofs, in the interest of simplicity, we will only consider PRFs with k = m = n.

52

Pseudo-random function (formal definition)

F : {0, 1}n
key

× {0, 1}n
input

→ {0, 1}n
output

efficient, keyed, length preserving
|input|=|output|

Definition
F is a pseudo-random function if for all probabilistic, polynomial-time
distinguishers D there exists a negligible function negl such that∣∣∣P(DFK (·)(1n) = 1)− P(Df(·)(1n) = 1)

∣∣∣ ≤ negl(n)

where K ∈R {0, 1}n is chosen uniformly at random and f is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bitstrings.

Notation: Df(·) means that algorithm D has “oracle access” to function f .

How does this differ from a pseudo-random generator?

The distinguisher of a pseudo-random generator examines a string. Here, the
distinguisher examines entire functions FK and f .

Any description of f would be at least n · 2n bits long and thus cannot be read
in polynomial time. Therefore we can only provide oracle access to the
distinguisher (i.e., allow D to query f a polynomial number of times).

53

CPA-secure encryption using a pseudo-random function

We define the following fixed-length private-key encryption scheme:

ΠPRF = (Gen,Enc,Dec):

Let F be a pseudo-random function.

▶ Gen: on input 1ℓ choose K ∈R {0, 1}ℓ randomly

▶ Enc: read K ∈ {0, 1}ℓ and M ∈ {0, 1}ℓ, choose R ∈R {0, 1}ℓ randomly,
then output

C := (R,FK(R)⊕M)

▶ Dec: read K ∈ {0, 1}ℓ, C = (R,S) ∈ {0, 1}2ℓ, then output

M := FK(R)⊕ S

Strategy for proving ΠPRF to be CPA secure:
1 Show that a variant scheme Π̃ in which we replace FK with a random

function f is CPA secure (just not efficient).

2 Show that replacing f with a pseudo-random function FK cannot make it
insecure, by showing how an attacker on the scheme using FK can be
converted into a distinguisher between f and FK , violating the
assumption that FK is a pseudo-random function.

54

Security proof for encryption scheme ΠPRF

First consider Π̃, a variant of ΠPRF in which the pseudo-random function
FK was replaced with a random function f . Claim:

P(PrivKcpa

A,Π̃
(ℓ) = 1) ≤ 1

2
+

q(ℓ)

2ℓ
with q(ℓ) oracle queries

Recall: when the challenge ciphertext C in PrivKcpa

A,Π̃
(ℓ) is computed, the

challenger picks RC ∈R {0, 1}ℓ and returns C := (RC , f(RC)⊕Mb).

Case 1: RC is also used in one of the oracle queries. In which case
A can easily find out f(RC) and decrypt Mb. A makes at most q(ℓ)
oracle queries and there are 2ℓ possible values of RC , this case happens
with a probability of at most q(ℓ)/2ℓ.

Case 2: RC is not used in any of the oracle queries. For A the value
RC remains completely random, f(RC) remains completely random, mb

is returned one-time pad encrypted, and A can only make a random
guess, so in this case P(b′ = b) = 1

2 .

P(PrivKcpa

A,Π̃
(ℓ) = 1)

= P(PrivKcpa

A,Π̃
(ℓ) = 1 ∧ Case 1) + P(PrivKcpa

A,Π̃
(ℓ) = 1 ∧ Case 2)

≤ P(Case 1) + P(PrivKcpa

A,Π̃
(ℓ) = 1|Case 2) ≤ q(ℓ)

2ℓ
+

1

2
.

55

Security proof for encryption scheme ΠPRF (cont’d)

Assume we have an attacker A against ΠPRF with non-negligible

ϵ(ℓ) = P(PrivKcpa
A,ΠPRF

(ℓ) = 1)− 1

2

Its performance against Π̃ is also limited by

P(PrivKcpa

A,Π̃
(ℓ) = 1) ≤ 1

2
+

q(ℓ)

2ℓ

Combining those two equations we get

P(PrivKcpa
A,ΠPRF

(ℓ) = 1)− P(PrivKcpa

A,Π̃
(ℓ) = 1) ≥ ϵ(ℓ)− q(ℓ)

2ℓ

which is not negligible either, allowing us to distinguish f from FK :

Build distinguisher DO using oracle O to play PrivKcpa
A,Π(ℓ) with A:

1 Run A(1ℓ) and for each of its oracle queries M i pick Ri ∈R {0, 1}ℓ,
then return Ci := (Ri,O(Ri)⊕M i) to A.

2 When A outputs M0,M1, pick b ∈R {0, 1} and RC ∈R {0, 1}ℓ, then
return C := (RC ,O(RC)⊕Mb) to A.

3 Continue answering A’s encryption oracle queries. When A outputs
b′, output 1 if b′ = b, otherwise 0.

56

Security proof for encryption scheme ΠPRF (cont’d)

How effective is this D?

1 If D’s oracle is FK : A effectively plays PrivKcpa
A,ΠPRF

(ℓ) because if

K was chosen randomly, DFK behaves towards A just like ΠPRF,
and therefore

P(DFK(·)(1ℓ) = 1) = P(PrivKcpa
A,ΠPRF

(ℓ) = 1)

2 If D’s oracle is f : likewise, A effectively plays PrivKcpa

A,Π̃
(ℓ) and

therefore
P(Df(·)(1ℓ) = 1) = P(PrivKcpa

A,Π̃
(ℓ) = 1)

if f ∈R ({0, 1}ℓ){0,1}ℓ is chosen uniformly at random.

All combined the difference

P(DFK(·)(1ℓ) = 1)− P(Df(·)(1ℓ) = 1) ≥ ϵ(ℓ)− q(ℓ)

2ℓ

not being negligible implies that FK is not a pseudo-random function,
which contradicts the assumption, so ΠPRF is CPA secure.
Katz/Lindell (1st ed.), pp 90–93

57

Pseudo-random permutation

F : {0, 1}n
key

× {0, 1}n
input

→ {0, 1}n
output

efficient, keyed, length preserving
|input|=|output|

FK is a pseudo-random permutation if

▶ for every key K, there is a 1-to-1 relationship for input and output

▶ FK and F−1K can be calculated with polynomial-time algorithms

▶ there is no polynomial-time distinguisher that can distinguish FK

(with randomly picked K) from a random permutation.
Note: Any pseudo-random permutation is also a pseudo-random function. A random function f
looks to any distinguisher just like a random permutation until it finds a collision x ̸= y with
f(x) = f(y). The probability for finding one in polynomial time is negligible (“birthday problem”).

A strong pseudo-random permutation remains indistinguishable even if
the distinguisher has oracle access to the inverse.

Definition: F is a strong pseudo-random permutation if for all
polynomial-time distinguishers D there exists a negligible function negl
such that∣∣∣P(DFK(·),F−1

K (·)(1n) = 1)− P(Df(·),f−1(·)(1n) = 1)
∣∣∣ ≤ negl(n)

where K ∈R {0, 1}n is chosen uniformly at random, and f is chosen
uniformly at random from the set of permutations on n-bit strings.

58

Probability of collision / Birthday problem
With 23 random people in a room, there is a 0.507 chance that two share a birthday. Surprised?

We throw b balls into n bins, selecting each bin uniformly at random.
With what probability do at least two balls end up in the same bin?

10 0 10 10 10 20 10 30 10 40

number of balls thrown into 10 40 bins

0

0.2

0.4

0.6

0.8

1

co
lli

si
on

 p
ro

ba
bi

lit
y

upper bound
lower bound

10 0 10 10 10 20 10 30 10 40

number of balls thrown into 10 40 bins

10 -40

10 -30

10 -20

10 -10

10 0

co
lli

si
on

 p
ro

ba
bi

lit
y

upper bound
lower bound

Remember: for large n the collision probability

▶ is near 1 for b≫ √n
▶ is near 0 for b≪ √n, growing roughly proportional to b2

n

Expected number of balls thrown before first collision:
√

π
2
n (for n→∞)

Approximation formulas: https://cseweb.ucsd.edu/~mihir/cse207/slides/w-birthday.pdf

59

https://cseweb.ucsd.edu/~mihir/cse207/slides/w-birthday.pdf

Iterating a random function

f : {1, . . . , n} → {1, . . . , n} nn such functions, pick one at random

Functional graph: vertices {1, . . . , n}, directed edges (i, f(i))

Several components, each a directed cycle and trees attached to it.

Some expected values for n→∞, random u ∈R {1, . . . , n}:
▶ tail length E(t(u)) =

√
πn/8 f t(u)(u) = f t(u)+c(u)·i(u), ∀i ∈ N,

▶ cycle length E(c(u)) =
√
πn/8 where t(u), c(u) minimal

▶ rho-length E(t(u) + c(u)) =
√
πn/2

▶ predecessors E(|{v|f i(v) = u ∧ i > 0}|) =
√

πn/8

▶ edges of component containing u: 2n/3

If f is a random permutation: no trees, expected cycle length (n+ 1)/2
Menezes/van Oorschot/Vanstone, §2.1.6. Knuth: TAOCP, §1.3.3, exercise 17.
Flajolet/Odlyzko: Random mapping statistics, EUROCRYPT’89, LNCS 434.

60

https://cacr.uwaterloo.ca/hac/
https://cacr.uwaterloo.ca/hac/about/chap2.pdf#page=7
https://link.springer.com/chapter/10.1007/3-540-46885-4_34

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

61

Block ciphers

Practical, efficient algorithms that try to implement a pseudo-random
permutation E (and its inverse D) are called “block ciphers”:

E : {0, 1}k × {0, 1}n → {0, 1}n

D : {0, 1}k × {0, 1}n → {0, 1}n

with DK(EK(M)) = M for all K ∈ {0, 1}k, M ∈ {0, 1}n.
Alphabet size: 2n, size of key space: 2k

Examples: AES, Camellia: k, n = 128 bit; DES, PRESENT: n = 64 bit

Implementation strategies:

▶ Confusion – complex relationship between key and ciphertext

▶ Diffusion – remove statistical links between plaintext and ciphertext

▶ Prevent adaptive chosen-plaintext attacks, including differential and
linear cryptanalysis

▶ Product cipher: iterate many rounds of a weaker permutation

▶ Feistel structure, substitution/permutation network, key-dependent
s-boxes, mix incompatible groups, transpositions, linear
transformations, arithmetic operations, non-linear substitutions, . . .

62

Feistel structure I

Problem: Build a pseudo-random permutation EK : {0, 1}n ↔ {0, 1}n
(invertible) using pseudo-random functions fK,i : {0, 1}

n
2 → {0, 1}n

2

(non-invertible) as building blocks.

Solution: Split the plaintext block M (n bits) into two halves L and R
(n/2 bits each):

M = L0∥R0

Then apply the non-invertible function fK in each round i alternatingly to
one of these halves, and XOR the result onto the other half, respectively:

Li = Li−1 ⊕ fK,i(Ri−1) and Ri= Ri−1 for odd i

Ri = Ri−1 ⊕ fK,i(Li−1) and Li= Li−1 for even i

After applying rounds i = 1, . . . , r, concatenate the two halves to form
the ciphertext block C:

EK(M) = C = Lr∥Rr

63

Feistel structure II

r = 3 rounds:

L0 R0

L1 R1

⊕ fK,1

L2 R2

⊕fK,2

L3 R3

⊕ fK,3

64

Feistel structure III

Decryption:

L0 R0

L1 R1

⊕ fK,1

L2 R2

⊕fK,2

L3 R3

⊕ fK,3

65

Feistel structure IV

Decryption works backwards (i = r, . . . , 1), undoing round after round,
starting from the ciphertext:

Li−1 = Li ⊕ fK,i(Ri) and Ri−1= Ri for odd i

Ri−1 = Ri ⊕ fK,i(Li) and Li−1= Li for even i

This works because the Feistel structure is arranged such that during
decryption of round i, the input value for fK,i is known, as it formed half
of the output bits of round i during encryption.

Luby–Rackoff result

If f is a pseudo-random function, then r = 3 Feistel rounds build a
pseudo-random permutation and r = 4 rounds build a strong
pseudo-random permutation.

M. Luby, C. Rackoff: How to construct pseudorandom permutations from pseudorandom functions.
CRYPTO’85, LNCS 218, https://link.springer.com/chapter/10.1007/3-540-39799-X_34

66

https://link.springer.com/chapter/10.1007/3-540-39799-X_34

Data Encryption Standard (DES)

In 1977, the US government standardized a block cipher for unclassified
data, based on a proposal by an IBM team led by Horst Feistel.

DES has a block size of 64 bits and a key size of 56 bits. The relatively
short key size and its limited protection against brute-force key searches
immediately triggered criticism, but this did not prevent DES from
becoming the most commonly used cipher for banking networks and
numerous other applications for more than 25 years.

DES uses a 16-round Feistel structure. Its round function f is much
simpler than a good pseudo-random function, but the number of
iterations increases the complexity of the resulting permutation
sufficiently.

DES was designed for hardware implementation such that the same
circuit can be used with only minor modification for encryption and
decryption. It is not particularly efficient in software.

https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf

67

https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf

The round function f expands the 32-bit
input to 48 bits, XORs this with a 48-bit
subkey, and applies eight carefully designed
6-bit to 4-bit substitution tables
(“s-boxes”). The expansion function E
makes sure that each sbox shares one input
bit with its left and one with its right
neighbour.

68

The key schedule of DES
breaks the key into two 28-bit
halves, which are left shifted
by two bits in most rounds
(only one bit in round
1,2,9,16) before 48 bits are
selected as the subkey for
each round.

69

Strengthening DES

Two techniques have been widely used to extend the short DES key size:

DESX 2× 64 + 56 = 184-bit keys:

DESXK1,K2,K3(M) = K1 ⊕ DESK2(M ⊕K3)

Triple DES (TDES) 3× 56 = 168-bit keys:

TDESK(M) = DESK3(DES
−1
K2

(DESK1(M)))

TDES−1K (C) = DES−1K1
(DESK2(DES

−1
K3

(C)))

Where key size is a concern, K1 = K3 is used ⇒ 112-bit key. With
K1 = K2 = K3, the TDES construction is backwards compatible to DES.

Double DES would be vulnerable to a meet-in-the-middle attack that
requires only 257 iterations and 257 blocks of storage space: the known
M is encrypted with 256 different keys, the known C is decrypted with
256 keys and a collision among the stored results leads to K1 and K2.

Neither extension fixes the small alphabet size of 264.

70

Advanced Encryption Standard (AES)

In November 2001, the US government published the new Advanced
Encryption Standard (AES), the official DES successor with 128-bit block
size and either 128, 192 or 256 bit key length. It adopted the “Rijndael”
cipher designed by Joan Daemen and Vincent Rijmen, which offers
additional block/key size combinations.

Each of the 9–13 rounds of this substitution-permutation cipher involves:

▶ an 8-bit s-box applied to each of the 16 input bytes

▶ permutation of the byte positions

▶ column mix, where each of the four 4-byte vectors is multiplied with
a 4× 4 matrix in F28

▶ XOR with round subkey

The first round is preceded by another XOR with a subkey, the last round
lacks the column-mix step.

Software implementations usually combine the first three steps per byte
into 16 8-bit → 32-bit table lookups.

https://csrc.nist.gov/pubs/fips/197/final

Recent CPUs with AES hardware support: Intel/AMD x86 AES-NI instructions, VIA PadLock.

71

https://csrc.nist.gov/pubs/fips/197/final

AES round

Illustration by John Savard, http://www.quadibloc.com/crypto/co040401.htm

72

http://www.quadibloc.com/crypto/co040401.htm

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

73

Electronic Code Book (ECB) I

ECB is the simplest mode of operation for block ciphers (DES, AES).

The message M is cut into m n-bit blocks:

M1∥M2∥ . . . ∥Mm = M∥padding

Then the block cipher EK is applied to each n-bit block individually:

Ci = EK(Mi) i = 1, . . . ,m

C = C1∥C2∥ . . . ∥Cm

EK

M1

C1

EK

M2

C2

· · · EK

Mm

Cm

74

Electronic Code Book (ECB) II

Warning:

Like any deterministic encryption scheme,
Electronic Code Book (ECB) mode is not CPA secure.

Therefore, repeated plaintext messages (or blocks) can be recognised by
the eavesdropper as repeated ciphertext. If there are only few possible
messages, an eavesdropper might quickly learn the corresponding
ciphertext.

Another problem:

Plaintext block values are often not uniformly distributed, for example in
ASCII encoded English text, some bits have almost fixed values.

As a result, not the entire input alphabet of the block cipher is utilised,
which simplifies for an eavesdropper building and using a value table of
EK .

https://csrc.nist.gov/pubs/sp/800/38/a/final

75

https://csrc.nist.gov/pubs/sp/800/38/a/final

Electronic Code Book (ECB) III

Plain-text bitmap:

DES-ECB encrypted:

76

Randomized encryption

Any CPA secure encryption scheme must be randomized, meaning that
the encryption algorithm has access to an r-bit random value that is not
predictable to the adversary:

Enc : {0, 1}k×{0, 1}r ×{0, 1}l → {0, 1}m

Dec : {0, 1}k×{0, 1}m → {0, 1}l

receives in addition to the k-bit key and l-bit plaintext also an r-bit
random value, which it uses to ensure that repeated encryption of the
same plaintext is unlikely to result in the same m-bit ciphertext.
With randomized encryption, the ciphertext will be longer than the plaintext: m > l, for example
m = r + l.

Given a fixed-length pseudo-random function F , we could encrypt a variable-length message
M∥pad(M) = M1∥M2∥ . . . ∥Mn by applying ΠPRF to its individual blocks Mi, and the result
will still be CPA secure:

EncK(M) = (R1, EK(R1)⊕M1, R2, EK(R2)⊕M2, . . . Rn, EK(Rn)⊕Mn)

But this doubles the message length!

Several efficient “modes of operation” have been standardized for use
with blockciphers to provide CPA-secure encryption schemes for
arbitrary-length messages.

77

Cipher Block Chaining (CBC) I

The Cipher Block Chaining mode is one way of constructing a
CPA-secure randomized encryption scheme from a block cipher EK .

1 Pad the message M and split it into m n-bit blocks, to match the
alphabet of the block cipher used:

M1∥M2∥ . . . ∥Mm = M∥padding

2 Generate a random, unpredictable n-bit initial vector (IV) C0.

3 Starting with C0, XOR the previous ciphertext block into the
plaintext block before applying the block cipher:

Ci = EK(Mi ⊕ Ci−1) for 0 < i ≤ m

4 Output the (m+ 1)× n-bit cipher text

C = C0∥C1∥ . . . ∥Cm

(which starts with the random initial vector)

EKMi Ci⊕
78

Cipher Block Chaining (CBC) II

RND

C0

initial vector

EK

M1

C1

⊕

EK

M2

C2

⊕

· · · EK

Mm

Cm

⊕

The input of the block cipher EK is now uniformly distributed.

Expect a repetition of block cipher input after around
√
2n = 2

n
2 blocks

have been encrypted with the same key K, where n is the block size in
bits (→ birthday paradox). Change K well before that.

79

Plain-text bitmap:

DES-CBC encrypted:

80

Cipher Feedback Mode (CFB)

Ci = Mi ⊕ EK(Ci−1)

EK

Mi Ci⊕

As in CBC, C0 is a randomly selected, unpredictable initial vector, the
entropy of which will propagate through the entire ciphertext.

This variant has three advantages over CBC that can help to reduce
latency:

▶ The blockcipher step needed to derive Ci can be performed before
Mi is known.

▶ Incoming plaintext bits can be encrypted and output immediately;
no need to wait until another n-bit block is full.

▶ No padding of last block needed.
81

Output Feedback Mode (OFB)

Output Feedback Mode is a stream cipher seeded by the initial vector:

1 Split the message into m blocks (blocks M1, . . . ,Mm−1 each n-bit
long, Mm may be shorter, no padding required):

M1∥M2∥ . . . ∥Mm = M

2 Generate a unique n-bit initial vector (IV) C0.

3 Start with R0 = C0, then iterate

Ri = EK(Ri−1)

Ci = Mi ⊕Ri

for 0 < i ≤ m. From Rm use only the leftmost bits needed for Mm.

EK Ri

4 Output the cipher text C = C0∥C1∥ . . . ∥Cm

Again, the key K should be replaced before in the order of 2
n
2 n-bit blocks have been generated.

Unlike with CBC or CFB, the IV does not have to be unpredictable or random (it can be a
counter), but it must be very unlikely that the same IV is ever used again or appears as another
value Ri while the same key K is still used.

82

Counter Mode (CTR)

This mode is also a stream cipher. It obtains the pseudo-random bit
stream by encrypting an easy to generate sequence of mutually different
blocks T1, T2, . . . , Tm, such as the block counter i plus some offset O,
encoded as an n-bit binary value:

Ci = Mi ⊕ EK(Ti), Ti = ⟨O + i⟩n, for 0 < i ≤ m

Choose O such that probability of reusing any Ti under the same K is
negligible. Send offset O as initial vector C0 = ⟨O⟩n.
Here ⟨i⟩n shall mean “n-bit binary representation of integer i”, where n is block length of EK .

Advantages:

▶ allows fast random access

▶ both encryption and decryption can be parallelized

▶ low latency

▶ no padding required

▶ no risk of short cycles

Today, Counter Mode is generally preferred over CBC, CFB, and OFB.
Alternatively, the Ti can also be generated by a maximum-length linear-feedback shift register
(replacing the operation O + i in Z2n with O(x) · xi in F2n to avoid slow carry bits).

83

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

84

Security against chosen-ciphertext attacks (CCA)
Private-key encryption scheme Π = (Gen, Enc,Dec),M = {0, 1}m, security parameter ℓ.

Experiment/game PrivKcca
A,Π(ℓ):

A

adversary

. . . ,M2, C1

M1, C2, . . .

M0,M1

C

. . . , Mt+2, Ct+1

Mt+1, Ct+2 ̸= C, . . .

b ∈R {0, 1}
K ← Gen(1ℓ)

Ci ← EncK(M i)

M i ← DecK(Ci)

C ← EncK(Mb)

1ℓ

b′

1ℓ

b

Setup:

▶ handling of ℓ, b, K as before

Rules for the interaction:

1 The adversary A is given oracle access to EncK and DecK :
A outputs M1, gets EncK(M1), outputs C2, gets DecK(C2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncK(Mb) and returns C to A
4 The adversary A continues to have oracle access to EncK and DecK

but is not allowed to ask for DecK(C).

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PrivKcca
A,Π(ℓ) = 1

85

Malleability

We call an encryption scheme (Gen,Enc,Dec) malleable if an adversary
can modify the ciphertext C in a way that causes a predictable/useful
modification to the plaintext M .

Example: stream ciphers allow adversary to XOR the plaintext M with
arbitrary value X:

Sender : C = EncK(M) = (R,FK(R)⊕M)

Adversary : C ′ = (R, (FK(R)⊕M)⊕X)

Recipient : M ′ = DecK(C ′) = FK(R)⊕ ((FK(R)⊕M)⊕X)

= M ⊕X

Malleable encryption schemes are usually not CCA secure.

CBC, OFB, and CTR are all malleable and not CCA secure.

Malleability is not necessarily a bad thing. If carefully used, it can be an essential building block to
privacy-preserving technologies such as digital cash or anonymous electonic voting schemes.

Homomorphic encryption schemes are malleable by design, providing anyone not knowing the key a
means to transform the ciphertext of M into a valid encryption of f(M) for some restricted class
of transforms f .

86

Message authentication code (MAC)

A message authentication code is a tuple of probabilistic
polynomial-time algorithms (Gen,Mac,Vrfy) and sets K,M such that

▶ the key generation algorithm Gen receives a security parameter ℓ
and outputs a key K ← Gen(1ℓ), with K ∈ K, key length |K| ≥ ℓ;

▶ the tag-generation algorithm Mac maps a key K and a message
M ∈M = {0, 1}∗ to a tag T ← MacK(M);

▶ the verification algorithm Vrfy maps a key K, a message M and a
tag T to an output bit b := VrfyK(M,T) ∈ {0, 1}, with b = 1
meaning the tag is “valid” and b = 0 meaning it is “invalid”.

▶ for all ℓ, K ← Gen(1ℓ), and M ∈ {0, 1}m:
VrfyK(M,MacK(M)) = 1.

87

MAC security definition: existential unforgeability
Message authentication code Π = (Gen,Mac,Vrfy),M = {0, 1}∗, security parameter ℓ.

Experiment/game Mac-forgeA,Π(ℓ):

A

adversary

1ℓ

b

1ℓ K ← Gen(1ℓ)

T i ← MacK(M i)
T t, . . . , T 2, T 1

M1,M2, . . . ,Mt

b := VrfyK(M,T)
M,T

M ̸∈{M1,M2,...,Mt}

1 challenger generates random key K ← Gen(1ℓ)

2 adversary A is given oracle access to MacK(·); let
Q = {M1, . . . ,M t} denote the set of queries that A asks the oracle

3 adversary outputs (M,T)

4 the experiment outputs 1 if VrfyK(M,T) = 1 and M ̸∈ Q
Definition: A message authentication code Π = (Gen,Mac,Vrfy) is
existentially unforgeable under an adaptive chosen-message attack
(“secure”) if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

P(Mac-forgeA,Π(ℓ) = 1) ≤ negl(ℓ)

88

MACs versus security protocols

MACs prevent adversaries forging new messages. But adversaries can still

1 replay messages seen previously (“pay £1000”, old CCTV image)

2 drop or delay messages (“smartcard revoked”)

3 reorder a sequence of messages

4 redirect messages to different recipients

A security protocol is a higher-level mechanism that can be built using
MACs, to prevent such manipulations. This usually involves including
into each message additional data before calculating the MAC, such as

▶ nonces
• message sequence counters

• message timestamps and expiry times

• random challenge from the recipient

• MAC of the previous message

▶ identification of source, destination, purpose, protocol version

▶ “heartbeat” (regular message to confirm sequence number)

Security protocols also need to define unambiguous syntax for such
message fields, delimiting them securely from untrusted payload data.

89

Stream authentication

Alice and Bob want to exchange a sequence of messages M1,M2, . . .

They want to verify not just each message individually, but also the
integrity of the entire sequence received so far.

One possibility: Alice and Bob exchange a private key K and then send

A→ B : (M1, T1) with T1 = MacK(M1, 0)

B → A : (M2, T2) with T2 = MacK(M2, T1)

A→ B : (M3, T3) with T3 = MacK(M3, T2)
...

B → A : (M2i, T2i) with T2i = MacK(M2i, T2i−1)

A→ B : (M2i+1, T2i+1) with T2i+1 = MacK(M2i+1, T2i)
...

Mallory can still delay messages or replay old ones. Including in addition unique transmission
timestamps in the messages (in at least M1 and M2) allows the recipient to verify their
“freshness” (using a secure, accurate local clock).

90

MAC using a pseudo-random function

Let F be a pseudo-random function.

▶ Gen: on input 1ℓ choose K ∈R {0, 1}ℓ randomly

▶ Mac: read K ∈ {0, 1}ℓ and M ∈ {0, 1}m,
then output T := FK(M) ∈ {0, 1}n

▶ Vrfy: read K ∈ {0, 1}ℓ, M ∈ {0, 1}m, T ∈ {0, 1}n,
then output 1 iff T = FK(M).

If F is a pseudo-random function, then (Gen,Mac,Vrfy) is existentially
unforgeable under an adaptive chosen message attack.

91

MAC using a block cipher: CBC-MAC

Blockcipher E : {0, 1}ℓ × {0, 1}m → {0, 1}m

EK

M1

EK

M2

⊕

· · · EK

Mn

CBC-MACEK
(M)

⊕

Similar to CBC: IV = 0m, last ciphertext block serves as tag.

Provides existential unforgeability, but only for fixed message length n:

Adversary asks oracle for T 1 := CBC-MACEK
(M1) = EK(M1) and then

presents M = M1∥(T 1 ⊕M1) and T := CBC-MACEK
(M) =

EK((M1 ⊕ T 1)⊕ EK(M1)) = EK((M1 ⊕ T 1)⊕ T 1) = EK(M1) = T 1.
92

Variable-length MAC using a block cipher: ECBC-MAC

Blockcipher E : {0, 1}ℓ × {0, 1}m → {0, 1}m

EK1

M1

EK1

M2

⊕

· · · EK1

EK2

Mn

ECBC-MACEK1,K2
(M)

⊕

Padding: M∥10p
p = m− (|M | mod m)− 1

Disadvantages:

▶ up to two additional
applications of block cipher

▶ need to rekey block cipher

▶ added block if m divides |M |
93

Variable-length MAC using a block cipher: CMAC

Blockcipher E : {0, 1}ℓ × {0, 1}m → {0, 1}m (typically AES: m = 128)

Derive subkeys K1,K2 ∈ {0, 1}m from key K ∈ {0, 1}ℓ:
▶ K0 := EK(0)

▶ if msb(K0) = 0 then K1 := (K0 ≪ 1) else K1 := (K0 ≪ 1)⊕ J

▶ if msb(K1) = 0 then K2 := (K1 ≪ 1) else K2 := (K1 ≪ 1)⊕ J

This merely clocks a linear-feedback shift register twice, or equivalently multiplies a value in F2m

twice with x. J is a fixed constant (generator polynomial), ≪ is a left shift.

CMAC algorithm:

M1∥M2∥ . . . ∥Mn := M
r := |Mn|
if r = m then Mn := K1 ⊕Mn

else Mn := K2 ⊕ (Mn∥10m−r−1)
return CBC-MACK(M1∥M2∥ . . . ∥Mn)

Provides existential unforgeability, without the disadvantages of ECBC.

NIST SP 800-38B, RFC 4493

94

https://csrc.nist.gov/pubs/sp/800/38/b/upd1/final
https://www.ietf.org/rfc/rfc4493.txt

Birthday attack against CBC-MAC, ECBC-MAC, CMAC

Let E be an m-bit block cipher, used to build MACK with m-bit tags.

Birthday/collision attack:

▶ Make t ≈
√
2m oracle queries for T i := MACK(⟨i⟩∥Ri∥⟨0⟩) with

Ri ∈R {0, 1}m, 1 ≤ i ≤ t.
Here ⟨i⟩ ∈ {0, 1}m is the m-bit binary integer notation for i.

▶ Look for collision T i = T j with i ̸= j

▶ Ask oracle for T ′ := MACK(⟨i⟩∥Ri∥⟨1⟩)
▶ Present M := ⟨j⟩∥Rj∥⟨1⟩ and T := T ′ = MACK(M)

EK

⟨i⟩

C1

EK

Ri

C2

⊕

EK

⟨0⟩

MACK

⊕

The same intermediate value
C2 occurs while calculating the
MAC of
⟨i⟩∥Ri∥⟨0⟩, ⟨j⟩∥Rj∥⟨0⟩,
⟨i⟩∥Ri∥⟨1⟩, ⟨j⟩∥Rj∥⟨1⟩.

Possible workaround:
Truncate MAC result to less than m bits,
such that adversary cannot easily spot col-
lisions in C2 from C3.

Solution: big enough m.
95

A one-time MAC (Carter–Wegman)

The following MAC scheme is very fast and unconditionally secure, but
only if the key is used to secure only a single message.

Let F be a large finite field (e.g. Z2128+51 or GF(2128)).

▶ Pick a random key pair K = (K1,K2) ∈ F2

▶ Split padded message M into blocks M1, . . . ,Mn ∈ F
▶ Evaluate the following polynomial over F to obtain the MAC:

OT-MACK1,K2(M) = Kn+1
1 +MnK

n
1 + · · ·+M2K

2
1 +M1K1 +K2

Converted into a computationally secure many-time MAC:

▶ Pseudo-random function/permutation EK : F→ F
▶ Pick per-message random value R ∈ F
▶ CW-MACK1,K2(M) =

(R,Kn+1
1 +MnK

n
1 + · · ·+M2K

2
1 +M1K1 + EK2(R))

M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265279, 1981.

96

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

97

Ciphertext integrity

Private-key encryption scheme Π = (Gen,Enc,Dec), Dec can output error: ⊥
Experiment/game CIA,Π(ℓ):

A

adversary

1ℓ

b

1ℓ K ← Gen(1ℓ)

Ci ← EncK(M i)
Ct, . . . , C2, C1

M1,M2, . . . ,Mt

b :=

{
0, DecK (C) = ⊥
1, DecK (C) ̸= ⊥ C

C ̸∈{C1,C2,...,Ct}

1 challenger generates random key K ← Gen(1ℓ)

2 adversary A is given oracle access to EncK(·); let Q = {C1, . . . , Ct}
denote the set of query answers that A got from the oracle

3 adversary outputs C

4 the experiment outputs 1 if DecK(C) ̸= ⊥ and C ̸∈ Q
Definition: An encryption scheme Π = (Gen,Enc,Dec) provides
ciphertext integrity if for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that

P(CIA,Π(ℓ) = 1) ≤ negl(ℓ)

98

Authenticated encryption

Definition: An encryption scheme Π = (Gen,Enc,Dec) provides
authenticated encryption if it provides both CPA security and ciphertext
integrity.

Such an encryption scheme will then also be CCA secure.

Example:

Private-key encryption scheme ΠE = (GenE,Enc,Dec)
Message authentication code ΠM = (GenM,Mac,Vrfy)

Encryption scheme Π′ = (Gen′,Enc′,Dec′):

1 Gen′(1ℓ) := (KE,KM) with KE ← GenE(1
ℓ) and KM ← GenM(1

ℓ)

2 Enc′(KE,KM)(M) := (C, T) with C ← EncKE
(M) and

T ← MacKM
(C)

3 Dec′ on input of (KE,KM) and (C, T) first check if
VrfyKM

(C, T) = 1. If yes, output DecKE
(C), if no output ⊥.

If ΠE is a CPA-secure private-key encryption scheme and ΠM is a secure
message authentication code with unique tags, then Π′ is a CCA-secure
private-key encryption scheme.

A message authentication code has unique tags, if for every K and every M there exists a unique
value T , such that VrfyK(M,T) = 1. 99

Combining encryption and message authentication

Warning: Not every way of combining a CPA-secure encryption scheme
(to achieve privacy) and a secure message authentication code (to
prevent forgery) will necessarily provide CPA security:

Encrypt-and-authenticate: (EncKE
(M),MacKM

(M))
Unlikely to be CPA secure: MAC may leak information about M .

Authenticate-then-encrypt: EncKE
(M∥MacKM

(M))
May not be CPA secure: the recipient first decrypts the received
message with DecKE

, then parses the result into M and MacKM
(M) and

finally tries to verify the latter. A malleable encryption scheme, combined
with a parser that reports syntax errors, may reveal information about M .

Encrypt-then-authenticate: (EncKE
(M),MacKM

(EncKE
(M)))

Secure: provides both CCA security and existential unforgeability.

If the recipient does not even attempt to decrypt M unless the MAC has been verified successfully,
this method can also prevent some side-channel attacks.

Note: CCA security alone does not imply existential unforgeability.
100

Padding oracle

TLS record protocol:

Recipient steps: CBC decryption, then checks and removes padding,
finally checks MAC.

Padding: append n times byte n (1 ≤ n ≤ 16)

Padding syntax error and MAC failure (used to be) distinguished in error
messages.

DK

M1

C1

⊕

C0 = IV

DK

M2

C2

⊕

DK

M3∥pad

C3

⊕

101

Padding oracle (cont’d)

Attacker has C0, . . . , C3 and tries to get M2:

▶ truncate ciphertext after C2

▶ a = actual last byte of M2,
g = attacker’s guess of a
(try all g ∈ {0, . . . , 255})

▶ XOR the last byte of C1 with

g ⊕ 0x01

▶ last byte of M2 is now

a⊕ g ⊕ 0x01

▶ g = a: padding correct ⇒ MAC failed error
g ̸= a: padding syntax error (high prob.)

DK

M1

C1

⊕

C0 = IV

DK

M2

C2

⊕

Then try 0x02 0x02 and so on.

Serge Vaudenay: Security flaws induced by CBC padding, EUROCRYPT 2002

102

https://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Galois Counter Mode (GCM)

CBC and CBC-MAC used together require different keys, resulting in two
encryptions per block of data.

Galois Counter Mode is a more efficient authenticated encryption
technique that requires only a single encryption, plus one XOR ⊕ and
one multiplication ⊗, per block of data:

Ci = Mi ⊕ EK(O + i)

Gi = (Gi−1 ⊕ Ci)⊗H, G0 = A⊗H, H = EK(0)

GMACEK
(A,C) =

(
(Gn ⊕ (len(A)∥ len(C)))⊗H

)
⊕ EK(O)

A is associated data: authenticated, but not encrypted (e.g., header).

The multiplication ⊗ is over the Galois field F2128 : block bits are
interpreted as coefficients of binary polynomials of degree 127, and the
result is reduced modulo x128 + x7 + x2 + x+ 1.

This is like 128-bit modular integer multiplication, but without carry bits,
and therefore faster in hardware.

https://csrc.nist.gov/pubs/sp/800/38/d/final

103

https://csrc.nist.gov/pubs/sp/800/38/d/final

O + 1 · · · O + n

EK EK

C1 Cn

⊕M1 ⊕Mn

⊕ ⊕⊗A

EK(0)

⊗

EK(0)

· · ·

⊗ EK(0)

⊕ len(A)∥ len(C)

⊗ EK(0)

O

EK

⊕

GMACEK
(A,C)

104

Duplex mode

Another way of implementing authenticated encryption with associated
data (AEAD) uses a fixed (r + c)-bit permutation p in duplex mode.

Plain-text blocks are XOR-ed into the top r bits (“rate”) of the
(r + c)-bit internal state of the construct, the result of which forms the
next ciphertext block. The remaining c bits (“capacity”) of the state
remain inaccessible to the adversary. After each block is processed, a
fixed permutation p is applied to mix the entire internal state.

ASCON is an AEAD cipher, selected in 2023 by the NIST Lightweight
Cryptography competition, based on a 5× 64 = 320-bit permutation p
used in duplex mode. Encryption:

IV‖K‖N

pa

Initialization

0∗‖K

A1

r

pb
c

As

r

pb
c

Associated Data

0∗‖1

M1C1

r

c

pb

Mt−1Ct−1

r

c

pb

Plaintext

MtCt

r

c

K‖0∗

pa

Finalization

K

T

128

https://ascon.isec.tugraz.at/

105

https://ascon.isec.tugraz.at/

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

106

Hash functions

A hash function h : {0, 1}∗ → {0, 1}ℓ efficiently maps arbitrary-length
input strings onto fixed-length “hash values” such that the output is
uniformly distributed in practice.

Typical applications of hash functions:

▶ hash table: data structure for fast t = O(1) table lookup; storage
address of a record containing value x is determined by h(x).

▶ Bloom filter: data structure for fast probabilistic set membership test

▶ fast probabilistic string comparison (record deduplication, diff, rsync)

▶ Rabin–Karp algorithm: substring search with rolling hash

Closely related: checksums (CRC, Fletcher, Adler-32, etc.)

A good hash function h is one that minimizes the chances of a collision
of the form h(x) = h(y) with x ̸= y.

But constructing collisions is not difficult for normal hash functions and
checksums, e.g. to modify a file without affecting its checksum.

Algorithmic complexity attack: craft program input to deliberately trigger worst-case runtime
(denial of service). Example: deliberately fill a server’s hash table with colliding entries.

107

Secure hash functions

A secure, collision-resistant ℓ-bit hash function h : {0, 1}∗ → {0, 1}ℓ is
designed to make it infeasible for an adversary who knows the
implementation of h to find any collision

h(x) = h(y) with x ̸= y

Examples for applications of secure hash functions:

▶ message digest for efficient calculation of digital signatures

▶ fast message-authentication codes (HMAC)

▶ tamper-resistant checksum of files
$ sha1sum security?-slides.tex
2c1331909a8b457df5c65216d6ee1efb2893903f security1-slides.tex
50878bcf67115e5b6dcc866aa0282c570786ba5b security2-slides.tex

▶ git commit identifiers

▶ P2P file sharing identifiers

▶ key derivation functions

▶ password verification

▶ hash chains (e.g., Bitcoin, timestamping services)

▶ commitment protocols
108

Secure hash functions: standards

▶ MD5: ℓ = 128 (Rivest, 1991)
insecure, collisions were found in 1996/2004, collisions used in
real-world attacks (Flame, 2012) → avoid (still ok for HMAC)

https://www.ietf.org/rfc/rfc1321.txt

▶ SHA-1: ℓ = 160 (NSA, 1995)
widely used today (e.g., git), but 269-step algorithm to find collisions
found in 2005 → being phased out (still ok for HMAC)

▶ SHA-2: ℓ = 224, 256, 384, or 512
close relative of SHA-1, therefore long-term collision-resistance
questionable, very widely used standard

FIPS 180-4 US government secure hash standard,
https://csrc.nist.gov/publications/fips/

▶ SHA-3: Keccak won 5-year NIST contest in 2012
no length-extension attack, arbitrary-length output,
can also operate as PRNG, very different from SHA-1/2.
(other finalists: BLAKE, Grøstl, JH, Skein)

https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://keccak.team/keccak.html

109

https://www.ietf.org/rfc/rfc1321.txt
https://csrc.nist.gov/publications/fips/
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://keccak.team/keccak.html

Collision resistance – a formal definition

Hash function

A hash function is a pair of probabilistic polynomial-time (PPT)
algorithms (Gen, H) where

▶ Gen reads a security parameter 1n and outputs a key s.

▶ H reads key s and input string x ∈ {0, 1}∗ and outputs
Hs(x) ∈ {0, 1}ℓ(n) (where n is a security parameter implied by s)

Formally define collision resistance using the following game:

1 Challenger generates a key s = Gen(1n)

2 Challenger passes s to adversary A
3 A replies with x, x′

4 A has found a collision iff Hs(x) = Hs(x
′) and x ̸= x′

A hash function (Gen, H) is collision resistant if for all PPT adversaries
A there is a negligible function negl such that

P(A found a collision) ≤ negl(n)

A fixed-length compression function is only defined on x ∈ {0, 1}ℓ′(n) with ℓ′(n) > ℓ(n).

110

Unkeyed hash functions

Commonly used collision-resistant hash functions (SHA-256, etc.) do not
use a key s. They are fixed functions of the form h : {0, 1}∗ → {0, 1}ℓ.
Why do we need s in the security definition?

Any fixed function h where the size of the domain (set of possible input
values) is greater than the range (set of possible output values) will have
collisions x, x′. There always exists a constant-time adversary A that just
outputs these hard-wired values x, x′.

Therefore, a complexity-theoretic security definition must depend on a
key s (and associated security parameter 1n). Then H becomes a recipe
for defining ever new collision-resistant fixed functions Hs.

So in practice, s is a publicly known fixed constant, embedded in the
secure hash function h.

Also, without any security parameter n, we could not use the notion of a negligible function.

111

Weaker properties implied by collision resistance

Second-preimage resistance

For a given s and input value x, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x

′) = Hs(x) (except with negligible
probability).

If there existed a PPT adversary A that can break the second-preimage
resistance of Hs, then A can also break its collision resistance.
Therefore, collision resistance implies second-preimage resistance.

Preimage resistance

For a given s and output value y, it is infeasible for any polynomial-time
adversary to find x′ with Hs(x

′) = y (except with negligible probability).

If there existed a PPT adversary A that can break the pre-image
resistance of Hs, then A can also break its second-preimage resistance
(with high probability). Therefore, either collision resistance or
second-preimage resistance imply preimage resistance.

How?

Note: collision resistance does not prevent Hs from leaking information about x (→ CPA).
112

Merkle–Damg̊ard construction

Wanted: variable-length hash function (Gen, H).

Given: (Gen, C), a fixed-length hash function with
C : {0, 1}2n → {0, 1}n (“compression function”)

Input of H: key s, string x ∈ {0, 1}L with length L < 2n

1 Pad x to length divisible by n by appending “0” bits, then split the
result into B =

⌈
L
n

⌉
blocks of length n each:

x∥0n⌈L
n ⌉−L = x1∥x2∥x3∥ . . . ∥xB−1∥xB

2 Append a final block xB+1 = ⟨L⟩n, which contains the n-bit binary
representation of input length L = |x|.

3 Set z0 := 0n (initial vector, IV)

4 compute zi := Cs(zi−1∥xi) for i = 1, . . . , B + 1

5 Output Hs(x) := zB+1

113

x∥0n⌈L
n ⌉−L = x1∥x2∥x3∥ . . . ∥xB−1∥xB

Cs Cs · · · Cs Cs Hs(x)0n

x1 x2 xB ⟨L⟩n

z1 zB−1 zB zB+1z0

x ̸= x′

x′∥0n
⌈

L′
n

⌉
−L′

= x′1∥x′2∥x′3∥ . . . ∥x′B′−1∥x′B′

Cs Cs · · · Cs Cs Hs(x)0n

x′1 x′2 x′B′ ⟨L′⟩n

z′1 z′B′−1 z′B′
zB′+1z′0

114

Merkle–Damg̊ard construction – security proof

If the fixed-length compression function C is collision resistant, so will be
the variable-length hash function H resulting from the Merkle–Damg̊ard
construction.

Proof outline:

Assume Cs is collision resistant, but H is not, because some PPT
adversary A outputs x ̸= x′ with Hs(x) = Hs(x

′).

Let x1, . . . , xB be the n-bit blocks of padded L-bit input x, and
x′1, . . . , x

′
B′ those of L′-bit input x′, and xB+1 = ⟨L⟩n, x′B′+1 = ⟨L′⟩n.

Case L ̸= L′: Then xB+1 ̸= x′B′+1 but Hs(x) = zB+1 =
Cs(zB∥xB+1) = Cs(z

′
B′∥x′B′+1) = z′B′+1 = Hs(x

′), which
is a collision in Cs.

Case L = L′: Now B = B′. Let i ∈ {1, . . . , B + 1} be the largest index
where zi−1∥xi ̸= z′i−1∥x′i. (Such i exists as due to
|x| = |x′| and x ̸= x′ there will be at least one 1 ≤ j ≤ B
with xj ̸= x′j .) Then zk = z′k for all k ∈ {i, . . . , B + 1}
and zi = Cs(zi−1∥xi) = Cs(z

′
i−1∥x′i) = z′i is a collision in

Cs.

So Cs was not collision resistant, invalidating the assumption.
115

Compression function from block ciphers

Davies–Meyer construction

One possible technique for obtaining a collision-resistant compression
function C is to use a block cipher E : {0, 1}ℓ × {0, 1}n → {0, 1}n in the
following way:

C(K,M) = EK(M)⊕M

EKM C(K,M)⊕

or in the notation of slide 113 (with K = xi and M = zi−1):

C(zi−1∥xi) = Exi(zi−1)⊕ zi−1

However, the security proof for this construction requires E to be an
ideal cipher, a keyed random permutation. It is not sufficient for E to
merely be a strong pseudo-random permutation.
Warning: use only block ciphers that have specifically been designed to be used this way. Other
block ciphers (e.g., DES) may have properties that can make them unsuitable here (e.g., related
key attacks, block size too small).

116

SHA-1 structure

Merkle–Damg̊ard construction, block length n = 512 bits.

Compression function:
▶ Input = 160 bits =

five 32-bit registers A–E

▶ each block = 16 32-bit words
W0, . . . ,W15

▶ LFSR extends that sequence to
80 words: W16, . . . ,W79

▶ 80 rounds, each fed one Wi

▶ Round constant Ki and non-linear
function Fi change every 20 rounds.

▶ four 32-bit additions ⊞ and two
32-bit rotations per round, 2–5
32-bit Boolean operations for F .

▶ finally: 32-bit add round 0 input to
round 79 output (Davies–Meyer)

One round:

A B C D E

A B C D E

<<<
5

<<<
30

F

Wt

Kt

commons.wikimedia.org, CC SA-BY

117

Random oracle model

Many applications of secure hash functions have no security proof that
relies only on the collision resistance of the function used.

The known security proofs require instead a much stronger assumption,
the strongest possible assumption one can make about a hash function:

Random oracle
▶ A random oracle H is a device that accepts arbitrary length strings

X ∈ {0, 1}∗ and consistently outputs for each a value
H(X) ∈ {0, 1}ℓ which it chooses uniformly at random.

▶ Once it has chosen an H(X) for X, it will always output that same
answer for X consistently.

▶ Parties can privately query the random oracle (nobody else learns
what anyone queries), but everyone gets the same answer if they
query the same value.

▶ No party can infer anything about H(X) other than by querying X.

118

Ideal cipher model

A random-oracle equivalent can be defined for block ciphers:

Ideal cipher

Each key K ∈ {0, 1}ℓ defines a random permutation EK , chosen
uniformly at random out of all (2n)! permutations. All parties have oracle
access to both EK(X) and E−1K (X) for any (K,X). No party can infer
any information about EK(X) (or E−1K (X)) without querying its value
for (K,X).

We have encountered random functions and random permutations
before, as a tool for defining pseudo-random functions/permutations.

Random oracles and ideal ciphers are different:

If a security proof is made “in the random oracle model”, then a hash
function is replaced by a random oracle or a block cipher is replaced by
an ideal cipher.

In other words, the security proof makes much stronger assumptions
about these components: they are not just indistinguishable from random
functions/permutations by any polynomial-time distinguisher, they are
actually assumed to be random functions/permutations.

119

Davies–Meyer construction – security proof

C(K,X) = EK(X)⊕X

If E is modeled as an ideal cipher, then C is a collision-resistant
compression function. Any attacker A making q < 2ℓ/2 oracle queries to
E finds a collision with probability not higher than q2/2ℓ. (negligible)

Proof: Attacker A tries to find (K,X), (K ′, X ′) with
EK(X)⊕X = EK′(X ′)⊕X ′. We assume that, before outputting
(K,X), (K ′, X ′), A has previously made queries to learn EK(X) and
EK′(X ′). We also assume (wlog) A never makes redundant queries, so
having learnt Y = EK(X), A will not query E−1K (Y) and vice versa.

The i-th query (Ki, Xi) to E only reveals

ci = Ci(Ki, Xi) = EKi
(Xi)⊕Xi.

A query to E−1 instead would only reveal E−1Ki
(Yi) = Xi and therefore

ci = Ci(Ki, Xi) = Yi ⊕ E−1Ki
(Yi).

A needs to find ci = cj with i > j.
120

For some fixed pair i, j with i > j, what is the probability of ci = cj?

A collision at query i can only occur as one of these two query results:

▶ EKi
(Xi) = cj ⊕Xi

▶ E−1Ki
(Yi) = cj ⊕ Yi

Each query will reveal a new uniformly distributed ℓ-bit value, except that
it may be constrained by (at most) i− 1 previous query results (since
EKi

must remain a permutation).

Therefore, the ideal cipher E will answer query i by uniformly choosing a
value out of at least 2ℓ − (i− 1) possible values.

Therefore, each of the above two possibilities for reaching ci = cj can
happen with probability no higher than 1/(2ℓ − (i− 1)).

With i ≤ q < 2ℓ/2 and ℓ > 1, we have

P(ci = cj) ≤
1

2ℓ − (i− 1)
≤ 1

2ℓ − 2ℓ/2
≤ 2

2ℓ

There are
(
q
2

)
< q2/2 pairs j < i ≤ q, so the collision probability after q

queries cannot be more than 2
2ℓ
· q22 = q2

2ℓ
.

121

Random oracle model – controversy

Security proofs that replace the use of a hash function with a query to a
random oracle (or a block cipher with an ideal cipher) remain controversial.

Cons

▶ Real hash algorithms are publicly known. Anyone can query them
privately as often as they want, and look for shortcuts.

▶ No good justification to believe that proofs in the random oracle model
say anything about the security of a scheme when implemented with
practical hash functions (or pseudo-random functions/permutations).

▶ No good criteria known to decide whether a practical hash function is
“good enough” to instantiate a random oracle.

Pros

▶ A random-oracle model proof is better than no proof at all.

▶ Many efficient schemes (especially for public-key crypto) only have
random-oracle proofs.

▶ No history of successful real-world attacks against schemes with
random-oracle security proofs.

▶ If such a scheme were attacked successfully, it should still be fixable by
using a better hash function.

122

Sponge functions

Another way to construct a secure hash function H(M) = Z:

https://keccak.team/sponge_duplex.html

(r + c)-bit internal state, XOR r-bit input blocks at a time, stir with
fixed permutation f , output r-bit output blocks at a time.

Versatile: secure hash function (variable input length) and stream cipher
(variable output length)

Advantage over Merkle–Damg̊ard: internal state > output, flexibility.
123

https://keccak.team/sponge_duplex.html

SHA-3

Latest NIST secure hash algorithm

▶ Sponge function with b = r + c = 1600 = 5× 5× 64 bits of state

▶ Standardized (SHA-2 compatible) output sizes:
ℓ ∈ {224, 256, 384, 512} bits

▶ Internal capacity: c = 2ℓ

▶ Input block size: r = b− 2ℓ ∈ {1152, 1088, 832, 576} bits
▶ Padding: append 10∗1 to extend input to next multiple of r

NIST also defined two related extendable-output functions (XOFs),
SHAKE128 and SHAKE256, which accept arbitrary-length input and can
produce arbitrary-length output. PRBG with 128 or 256-bit security.

SHA-3 standard: permutation-based hash and extendable-output functions. August 2015.
https://doi.org/10.6028/NIST.FIPS.202

124

https://doi.org/10.6028/NIST.FIPS.202

“Birthday attacks”

If a hash function outputs ℓ-bit words, an attacker needs to try only

different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible =⇒ use hash function
that outputs ℓ = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ℓ = 128-bit may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each =⇒ 26 pairs of phrases.

With a 64-bit hash over an entire letter, we need only such

sentences for a good chance to find a collision in steps.
125

Low-memory collision search

A normal search for an ℓ-bit collision uses O(2ℓ/2) memory and time.

x0

Algorithm for finding a
collision with O(1) memory
and O(2ℓ/2) time:

Input: H : {0, 1}∗ → {0, 1}ℓ
Output: x ̸= x′ with H(x) = H ′(x)

x0 ← {0, 1}ℓ+1

x′ := x := x0

i := 0
loop

i := i+ 1
x := H(x) // x = Hi(x0)
x′ := H(H(x′)) // x′ = H2i(x0)

until x = x′

x := x0

for j = 1, 2, . . . , i
if H(x) = H(x′) return (x, x′)
x := H(x) // x = Hj(x0)
x′ := H(x′) // x′ = Hi+j(x0)

Basic idea:

▶ Tortoise x goes at most once
round the cycle, hare x′ at
least once

▶ loop 1: ends when x′

overtakes x for the first time
⇒ x′ now i steps ahead of x
⇒ i is now an integer
multiple of the cycle length

▶ loop 2: x back at start, x′ is i
steps ahead, same speed
⇒ meet at cycle entry point

Wikipedia: Cycle detection

126

https://en.wikipedia.org/wiki/Cycle_detection

Constructing meaningful collisions

Tortoise-hare algorithm gives no direct control over content of x, x′.

Solution:

Define a text generator function g : {0, 1}ℓ → {0, 1}∗, e.g.
g(0000) = Mallory is a good and honest employee

g(0001) = Mallory is a lazy and lying employee

g(0010) = Mallory is a good and honest worker

g(0011) = Mallory is a lazy and lying worker

g(0100) = Mallory is a good and loyal employee

g(0101) = Mallory is a lazy and malicious employee

· · ·
g(1111) = Mallory is a difficult and malicious worker

Then apply the tortoise-hare algorithm to H(x) = h(g(x)), if h is the
hash function for which a meaningful collision is required.

With probability 1
2 the resulting x, x′ (h(g(x)) = h(g(x′))) will differ in

the last bit ⇒ collision between two texts with different meanings.
127

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

128

Hash and MAC

A secure hash function can be combined with a fixed-length MAC to
provide a variable-length MAC Mack(H(m)). More formally:

Let Π = (Mac,Vrfy) be a MAC for messages of length ℓ(n) and let
ΠH = (GenH , H) be a hash function with output length ℓ(n). Then
define variable-length MAC Π′ = (Gen′,Mac′,Vrfy′) as:

▶ Gen′: Read security parameter 1n, choose uniform k ∈ {0, 1}n, run
s := GenH(1n) and return (k, s).

▶ Mac′: read key (k, s) and message m ∈ {0, 1}∗, return tag
Mack(Hs(m)).

▶ Vrfy′ : read key (k, s), message m ∈ {0, 1}∗, tag t, return
Vrfyk(Hs(m), t).

If Π offers existential unforgeability and ΠH is collision resistant, then Π′

will offer existential unforgeability.

Proof outline: If an adversary used Mac′ to get tags on a set Q of messages,
and then can produce a valid tag for m∗ ̸∈ Q, then there are two cases:

▶ ∃m ∈ Q with Hs(m) = Hs(m
∗) ⇒ Hs not collision resistant

▶ ∀m ∈ Q : Hs(m) ̸= Hs(m
∗) ⇒ Mac failed existential unforgeability

129

Hash-based message authentication code

Initial idea: hash a message M prefixed with a key K to get

MACK(M) = h(K∥M)

This construct is secure in the random oracle model (where h is a
random function). Is is also generally considered secure with fixed-length
m-bit messages M ∈ {0, 1}m or with sponge-function based hash
algorithm h, such as SHA-3.

Danger: If h uses the Merkle–Damg̊ard construction, an adversary can
call the compression function again on the MAC to add more blocks to
M , and obtain the MAC of a longer M ′ without knowing the key!

To prevent such a message-extension attack, variants like

MACK(M) = h(h(K∥M))

or
MACK(M) = h(K∥h(M))

could be used to terminate the iteration of the compression function in a
way that the adversary cannot continue. ⇒ HMAC

130

HMAC

HMAC is a standard technique widely used to form a
message-authentication code using a Merkle–Damg̊ard-style secure hash
function h, such as MD5, SHA-1 or SHA-256:

HMACK(x) = h(K ⊕ opad∥h(K ⊕ ipad∥x))

Fixed padding values ipad, opad extend the key to the input size of the
compression function, to permit precomputation of its first iteration.

x∥padding = x1∥x2∥x3∥ . . . ∥xB−1∥xB

Cs Cs · · · Cs0n

Cs Cs0n HMACK(x)

K ⊕ ipad

K ⊕ opad

x1 xB

∥padding

https://www.ietf.org/rfc/rfc2104.txt

131

https://www.ietf.org/rfc/rfc2104.txt

Secure commitment

Proof of prior knowledge

You have today an idea that you write down in message M . You do not
want to publish M yet, but you want to be able to prove later that you
knew M already today. Initial idea: you publish h(M) today.

Danger: if the entropy of M is small (e.g., M is a simple choice, a PIN,
etc.), there is a high risk that your adversary can invert the
collision-resistant function h successfully via brute-force search.

Solution:

▶ Pick (initially) secret N ∈ {0, 1}128 uniformly at random.

▶ Publish h(N,M) (as well as h and |N |).
▶ When the time comes to reveal M , also reveal N .

You can also commit yourself to message M , without yet revealing it’s
content, by publishing h(N,M).

Applications: online auctions with sealed bids, online games where
several parties need to move simultaneously, etc.
Tuple (N,M) means any form of unambiguous concatenation, e.g. N∥M if length |N | is agreed.

132

Merkle tree

Problem: Untrusted file store, small trusted memory. Solution: hash tree.

Leaves contain hash values of files F0, . . . , Fk−1. Each inner node
contains the hash of its children. Only root h0 (and number k of files)
needs to be stored securely.

Advantages of tree (over naive alternative h0 = h(F0, . . . , Fk−1)):

▶ Update of a file Fi requires only O(log k) recalculations of hash
values along path from h(Fi) to root (not rereading every file).

▶ Verification of a file requires only reading O(log k) values in all
direct children of nodes in path to root (not rereading every node).

h0 = h(h1, h2)

h1 = h(h3, h4)

h3 = h(h7, h8)

h7 =
h(F0)

h8 =
h(F1)

h4 = h(h9, h10)

h9 =
h(F2)

h10 =
h(F3)

h2 = h(h5, h6)

h5 = h(h11, h12)

h11 =
h(F4)

h12 =
h(F5)

h6 = h(h13, h14)

h13 =
h(F6)

h14 =
h(F7)

133

One-time passwords from a hash chain

Generate hash chain: (h is preimage resistant, with ASCII output)

R0 ← random

R1 := h(R0)

...

Rn−1 := h(Rn−2)

Rn := h(Rn−1)

Equivalently: Ri := h(h(h(. . . h(︸ ︷︷ ︸
i times

R0) . . .))) = hi(R0) (0 < i ≤ n)

Store last chain value H := Rn on the host server. Give the remaining
list Rn−1, Rn−2, . . . , R0 as one-time passwords to the user.

When user enters password Ri, compare h(Ri)
?
= H. If they match:

▶ Update H := Ri on host

▶ grant access to user

Leslie Lamport: Password authentication with insecure communication. CACM 24(11)770–772,
1981. https://doi.acm.org/10.1145/358790.358797

134

https://doi.acm.org/10.1145/358790.358797

Broadcast stream authentication

Alice sends to a group of recipients a long stream of messages
M1,M2, . . . ,Mn. They want to verify Alice’s signature on each packet
immediately upon arrival, but it is too expensive to sign each message.

Alice calculates

C1 = h(C2,M1)

C2 = h(C3,M2)

C3 = h(C4,M3)

· · ·
Cn−2 = h(Cn−1,Mn−2)

Cn−1 = h(Cn,Mn−1)

Cn = h(0,Mn)

and then broadcasts the stream

C1,Sign(C1), (C2,M1), (C3,M2), . . . , (0,Mn).

Only the first check value is signed, all other packets are bound together
in a hash chain that is linked to that single signature.
Problem: Alice needs to know Mn before she can start to broadcast C1. Solution: TESLA

135

Timed Efficient Stream Loss-tolerant Authentication

TESLA uses a hash chain to authenticate broadcast data, without any
need for a digital signature for each message.

Timed broadcast of data sequence M1,M2, . . . ,Mn:

▶ t0 : Sign(R0), R0 where R0 = h(R1)

▶ t1 : (MacR2(M1),M1, R1) where R1 = h(R2)

▶ t2 : (MacR3(M2),M2, R2) where R2 = h(R3)

▶ t3 : (MacR4(M3),M3, R3) where R3 = h(R4)

▶ t4 : (MacR5(M4),M4, R4) where R4 = h(R5)

▶ . . .

Each Ri is revealed at a pre-agreed time ti. The MAC for Mi can only
be verified after ti+1 when key Ri+1 is revealed.

By the time the MAC key is revealed, everyone has already received the
MAC, therefore the key can no longer be used to spoof the message.

136

Hash chains, block chains, time-stamping services

Clients continuously produce transactions Mi (e.g., money transfers).

Block-chain time-stamping service: receives client transactions Mi,
may order them by dependency, validates them (payment covered by
funds?), batches them into groups

G1 = (M1,M2,M3)

G2 = (M4,M5,M6,M7)

G3 = (M8,M9)

. . .

and then publishes the hash chain (with timestamps ti)

B0 = (“origin block”, t0, 0)

B1 = (G1, t1, h(B0))

B2 = (G2, t2, h(B1))

B3 = (G3, t3, h(B2))

. . .

Bi = (Gi, ti, h(Bi−1))
137

New blocks are broadcast to and archived by clients. Clients can

▶ verify that ti−1 ≤ ti ≤ now

▶ verify h(Bi−1)
▶ frequently compare latest h(Bi) with other clients

to ensure consensus that

▶ each client sees the same serialization order of the same set of
validated transactions

▶ every client receives the exact same block-chain data

▶ nobody can later rewrite the transaction history

The Bitcoin crypto currency is based on a decentralized block-chain:

▶ accounts identified by single-use public keys

▶ each transaction signed with the payer’s private key

▶ new blocks broadcast by “miners”, who are allowed to mint
themselves new currency as incentive for operating the service

▶ issuing rate of new currency is limited by requirement for miners to
solve cryptographic puzzle: adjust a field in each block such that
h(Bi) has a required number of leading zeros, in 2025-12 ≈ 79 bits

h(B0) = 0x000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

h(B928139) = 0x000000000000000000016d4de4ce63ddd6ff4c8c859c91c298c12d401f6779d2

https://bitcoin.sipa.be/ https://mempool.space/ https://en.bitcoin.it/
138

https://mempool.space/block/000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
https://mempool.space/block/000000000000000000016d4de4ce63ddd6ff4c8c859c91c298c12d401f6779d2
https://bitcoin.sipa.be/
https://mempool.space/
https://en.bitcoin.it/

Key derivation functions

A secret key K should only ever be used for one single purpose, to prevent one
application of K being abused as an oracle for compromising another one.

Any cryptographic system may involve numerous applications for keys (for encryption
systems, message integrity schemes, etc.)

A key derivation function (KDF) extends a single multi-purpose key K (which may
have been manually configured by a user, or may have been the result of a
key-agreement protocol) into k single-purpose keys K1,K2, . . . ,Kk.

Requirements:

▶ Use a one-way function, such that compromise of one derived key Ki does not
also compromise the master key K or any other derived keys Kj (j ̸= i).

▶ Use an entropy-preserving function, i.e. H(Ki) ≈ min{H(K), |Ki|}
▶ Include a unique application identifier A (e.g., descriptive text string, product

name, domain name, serial number), to minimize the risk that someone else
accidentally uses the same derived keys for another purpose.

Secure hash functions work well for this purpose, especially those with arbitrary-length
output (e.g., SHA-3). Split their output bit sequence into the keys needed:

K1∥K2∥ . . . ∥Kk = h(A,K)

Hash functions with fixed output-length (e.g., SHA-256) may have to be called
multiple times, with an integer counter:

K1∥K2 = h(A,K, ⟨1⟩), K3∥K4 = h(A,K, ⟨2⟩), . . .

ISO/IEC 11770-6

139

Password-based key derivation

Human-selected secrets (PINs, passwords, pass-phrases) usually have much
lower entropy than the > 80 bits desired for cryptographic keys.
Typical password search list: “dictionary of 64k words, 4k suffixes, 64 prefixes and 4 alteration
rules for a total of 238 passwords” https://ophcrack.sourceforge.io/tables.php

Machine-generated random strings encoded for keyboard entry (hexadecimal,
base64, etc.) still lack the full 8 bits per byte entropy of a random binary string
(e.g. only < 96 graphical characters per byte from keyboard).

Workarounds:

▶ Preferably generate keys with a true random bit generator.

▶ Ask user to enter a text string longer than the key size.

▶ Avoid or normalize visually similar characters: 0OQ/1lI/A4/Z2/S5/VU/nu

▶ Use a secure hash function to condense the passphrase to key length.

▶ Use a deliberately slow hash function, e.g. iterate C times.

▶ Use a per-user random salt value S to personalize the hash function
against pre-computed dictionary attacks.
Stored random string where practical, otherwise e.g. user name.

PBKDF2 iterates HMAC C times for each output bit.

Typical values: S ∈ {0, 1}128, 103 < C < 107

Recommendation for password-based key derivation. NIST SP 800-132, December 2010.

140

https://ophcrack.sourceforge.io/tables.php

Password storage

Servers that authenticate users by password need to store some
information to verify that password.

Avoid saving a user’s password P as plaintext. Save the output of a
secure hash function h(P) instead, to help protect the passwords after
theft of the database. Verify a password by comparing it’s hash against
that in the database record.

Better: hinder dictionary attacks by adding a random salt value S and by
iterating the hash function C times to make it computationally more
expensive. The database record then stores

(S, hC(P, S))

or similar.

Standard password-based key derivation functions, such as PBKDF2 or
Argon2, can also be used to verify passwords.

Argon2 is deliberately designed to be memory intensive to discourage fast ASIC implementations.

141

Inverting unsalted password hashes: time–memory trade-off

Target: invert h(p), where p ∈ P is a password from an assumed finite set
P of passwords (e.g., h = MD5, |P | = 958 ≈ 253 8-char ASCII strings)

Idea: define “reduction” function r : {0, 1}128 → P , then iterate h(r(·))
For example: convert input from base-2 to base-96 number, output first 8 “digits” as printable
ASCII characters, interpret DEL as string terminator.

m

y x0
r→ p1

h→ x1
r→ p2

h→ · · · h→ xn−1
r→ pn

h→ xn ⇒ L[xn] := x0
...

Precompute(h, r,m, n) :
for j := 1 to m

x0 ∈R {0, 1}128
for i := 1 to n

pi := r(xi−1)
xi := h(pi)

store L[xn] := x0

return L

invert(h, r, L, x) :
y := x
while L[y] = not found

y := h(r(y))
p = r(L[y])
while h(p) ̸= x

p := r(h(p))
return p

Trade-off
time:
n ≈ |P |1/2

memory:

m ≈ |P |1/2

Problem: Once mn≫
√
|P | there are many collisions, the x0 → xn

chains merge, loop and overlap, covering P very inefficiently.
M.E. Hellman: A cryptanalytic time–memory trade-off. IEEE Trans. Information Theory,
July 1980. https://doi.org/10.1109/TIT.1980.1056220

142

https://doi.org/10.1109/TIT.1980.1056220

Quick demonstration of the problem:
#!/usr/bin/env julia

function reach(P, n, m)

h = [rand(1:P) for i = 1:P] # define hash function as mapping table

b = zeros(Bool, P) # bitmap of reached passwords

for j = 1:m

p = j # start a new hash chain

for i = 1:n

b[p] = 1 # been there

p = h[p] # continue a hash chain

end

end

return sum(b)/P

end

P = 1_000_000 # number of possible passwords

n = 10_000 # length of each chain

m = 10_000 # number of chains

println("Overrun factor: ", n*m/P);

println("Reach: $(100*reach(P,n,m))%")

Output:
Overrun factor: 100.0

Reach: 13.5356%

Even if we hash 100× more often than the number of possible passwords:
the hash chains still reach merely < 14% of all 106 possible passwords.

143

Inverting unsalted password hashes: “rainbow tables”

Target: invert h(p), where p ∈ P is a password from an assumed finite set
P of passwords (e.g., h = MD5, |P | = 958 ≈ 253 8-char ASCII strings)

Idea: define a “rainbow” of n reduction functions ri : {0, 1}128 → P ,
then iterate h(ri(·)) to avoid loops. (For example: ri(x) := r(h(x∥⟨i⟩)).)

m

y x0

r1
→ p1

h→ x1

r2
→ p2

h→ · · · h→ xn−1
rn
→ pn

h→ xn ⇒ L[xn] := x0
...

Precompute(h, r,m, n) :
for j := 1 to m

x0 ∈R {0, 1}128
for i := 1 to n

pi := ri(xi−1)
xi := h(pi)

store L[xn] := x0

return L

invert(h, r, n, L, x) :
for k := n downto 1

xk−1 := x
for i := k to n

pi := ri(xi−1)
xi := h(pi)

if L[xn] exists
p1 := r1(L[xn])
for j := 1 to n

if h(pj) = x
return pj

pj+1 := rj+1(h(pj))

Trade-off
time:
n ≈ |P |1/3

memory:

m ≈ |P |2/3

Philippe Oechslin: Making a faster
cryptanalytic time–memory
trade-off. CRYPTO 2003.
https://doi.org/10.1007/
978-3-540-45146-4_36

144

https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-540-45146-4_36

Other applications of secure hash functions

▶ deduplication – quickly identify in a large collection of files
duplicates, without having to compare all pairs of files, just compare
the hash of each files content.

▶ file identification – in a peer-to-peer filesharing network or cluster
file system, identify each file by the hash of its content.

▶ distributed version control systems (git, mercurial, etc.) – name each
revision via a hash tree of all files in that revision, along with the
hash of the parent revision(s). This way, each revision name securely
identifies not only the full content, but its full revision history.

145

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

146

Key distribution problem

In a group of n participants, there are n(n− 1)/2 pairs who might want
to communicate at some point, requiring O(n2) private keys to be
exchanged securely in advance.

This gets quickly unpractical if n≫ 2 and if participants regularly join
and leave the group.

P1 P2

P3

P4P5P6

P7

P8

TTP

P1 P2

P3

P4P5P6

P7

P8

Alternative 1: introduce an intermediary “trusted third party”

147

Trusted third party – key distribution centre

Needham–Schroeder protocol

Communal trusted server S shares key KPS with each participant P .

1 A informs S that it wants to communicate with B.

2 S generates KAB and replies to A with
EncKAS

(B,KAB ,EncKBS
(A,KAB))

Enc is a symmetric authenticated-encryption scheme

3 A checks name of B, stores KAB , and forwards the “ticket”
EncKBS

(A,KAB) to B

4 B also checks name of A and stores KAB .

5 A and B now share KAB and communicate via EncKAB
/DecKAB

.

S

AB

1

2

3

148

Kerberos

An extension of the Needham–Schroeder protocol is now widely used in
corporate computer networks between desktop computers and servers, in
the form of Kerberos and Microsoft’s Active Directory. KAS is generated
from A’s password (hash function).

Extensions include:

▶ timestamps and nonces to prevent replay attacks

▶ a “ticket-granting ticket” is issued and cached at the start of a
session, replacing the password for a limited time, allowing the
password to be instantly wiped from memory again.

▶ a pre-authentication step ensures that S does not reply with
anything encrypted under KAS unless the sender has demonstrated
knowledge of KAS , to hinder offline password guessing.

▶ mechanisms for forwarding and renewing tickets

▶ support for a federation of administrative domains (“realms”)

Problem: ticket message enables eavesdropper off-line dictionary attack.

149

Key distribution problem: other options

Alternative 2: hardware security modules + conditional access

1 A trusted third party generates a global key K and embeds it
securely in tamper-resistant hardware tokens (e.g., smartcard)

2 Every participant receives such a token, which also knows the
identity of its owner and that of any groups they might belong to.

3 Each token offers its holder authenticated encryption operations
EncK(·) and DecK(A, ·).

4 Each encrypted message EncK(A,M) contains the name of the
intended recipient A (or the name of a group to which A belongs).

5 A’s smartcard will only decrypt messages addressed this way to A.
Commonly used for “broadcast encryption”, e.g. pay-TV, navigation satellites.

Alternative 3: Public-key cryptography

▶ Find an encryption scheme where separate keys can be used for
encryption and decryption.

▶ Publish the encryption key: the “public key”

▶ Keep the decryption key: the “secret key”
Some form of trusted third party is usually still required to certify the correctness of the published
public keys, but it is no longer directly involved in establishing a secure connection.

150

Public-key encryption

A public-key encryption scheme is a tuple of PPT algorithms
(Gen,Enc,Dec) such that

▶ the key generation algorithm Gen receives a security parameter ℓ
and outputs a pair of keys (PK ,SK)← Gen(1ℓ), with key lengths
|PK | ≥ ℓ, |SK | ≥ ℓ;

▶ the encryption algorithm Enc maps a public key PK and a
plaintext message M ∈M to a ciphertext message
C ← EncPK (M);

▶ the decryption algorithm Dec maps a secret key SK and a
ciphertext C to a plaintext message M := DecSK (C), or outputs ⊥;

▶ for all ℓ, (PK ,SK)← Gen(1ℓ): DecSK (EncPK (M)) = M .

In practice, the message spaceM may depend on PK .

In some practical schemes, the condition DecSK (EncPK (M)) = M may fail with negligible
probability.

151

Security against chosen-plaintext attacks (CPA)
Public-key encryption scheme Π = (Gen, Enc,Dec)

Experiment/game PubKcpa
A,Π(ℓ):

A

adversary

1ℓ

b′b

1ℓ

C

M0,M1

challenger

C ← EncPK (Mb)

(PK , SK)← Gen(1ℓ) PK

b ∈R {0, 1}

Setup:

1 The challenger generates a bit b ∈R {0, 1} and a key pair
(PK ,SK)← Gen(1ℓ).

2 The adversary A is given input 1ℓ

Rules for the interaction:

1 The adversary A is given the public key PK

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncPK (Mb) and returns C to A
Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PubKcpa

A,Π(ℓ) = 1

Note that unlike in PrivKcpa we do not need to provide A with any oracle access:
here A has access to the encryption key PK and can evaluate EncPK (·) itself.

152

Security against chosen-ciphertext attacks (CCA)
Public-key encryption scheme Π = (Gen, Enc,Dec)

Experiment/game PubKcca
A,Π(ℓ):

A

1ℓ1ℓ

M i ← DecSK (Ci)

C ← EncPK (Mb) adversary

. . . , Mt+2,Mt+1

Ct+1 ̸= C, . . .
C

M0,M1

Mt, . . . ,M2,M1

C1, C2, . . . , Ct

PK
(PK , SK)← Gen(1ℓ)

b ∈R {0, 1}

b b′

Setup:

▶ handling of ℓ, b, PK , SK as before

Rules for the interaction:

1 The adversary A is given PK and oracle access to DecSK :
A outputs C1, gets DecSK (C1), outputs C2, gets DecSK (C2), . . .

2 The adversary A outputs a pair of messages: M0,M1 ∈ {0, 1}m.

3 The challenger computes C ← EncPK (Mb) and returns C to A
4 The adversary A continues to have oracle access to DecSK

but is not allowed to ask for DecSK (C).

Finally, A outputs b′. If b′ = b then A has succeeded ⇒ PubKcca
A,Π(ℓ) = 1

153

Security against chosen-plaintext attacks (cont’d)

Definition: A public-key encryption scheme Π has indistinguishable
encryptions under a chosen-plaintext attack (“is CPA-secure”) if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PubKcpa
A,Π(ℓ) = 1) ≤ 1

2
+ negl(ℓ)

Definition: A public-key encryption scheme Π has indistinguishable
encryptions under a chosen-ciphertext attack (“is CCA-secure”) if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PubKcca
A,Π(ℓ) = 1) ≤ 1

2
+ negl(ℓ)

What about ciphertext integrity / authenticated encryption?

Since the adversary has access to the public encryption key PK , there is
no useful equivalent notion of authenticated encryption for a public-key
encryption scheme.

154

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

155

Number theory: integers, divisibility, primes, gcd

Set of integers: Z := {. . . ,−2,−1, 0, 1, 2, . . .} a, b ∈ Z
If there exists c ∈ Z such that ac = b, we say “a divides b” or “a | b”.
▶ if 0 < a then a is a “divisor” of b

▶ if 1 < a < b then a is a “factor” of b

▶ if a does not divide b, we write “a ∤ b”
If integer p > 1 has no factors (only 1 and p as divisors), it is “prime”,
otherwise it is “composite”. Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

▶ every integer n > 1 has a unique prime factorization n =
∏

i p
ei
i ,

with primes pi and positive integers ei

The greatest common divisor gcd(a, b) is the largest c with c | a and c | b.
▶ examples: gcd(18, 12) = 6, gcd(15, 9) = 3, gcd(15, 8) = 1

▶ if gcd(a, b) = 1 we say a and b are “relatively prime”

▶ gcd(a, b) = gcd(b, a), gcd(a, 0) = a

▶ gcd(a, b) = gcd(a, b− a)

▶ if c|ab and gcd(a, c) = 1 then c|b
▶ if a|n and b|n and gcd(a, b) = 1 then ab|n

156

Integer division with remainder

For every integer a and positive integer b there exist unique integers q
and r with a = qb+ r and 0 ≤ r < b.

The modulo operator performs integer division and outputs the
remainder:

a mod b = r ⇒ 0 ≤ r < b ∧ ∃q ∈ Z : a− qb = r

Examples: 7 mod 5 = 2, −1 mod 10 = 9

If
a mod n = b mod n

we say that “a and b are congruent modulo n”, and also write

a ≡ b (mod n)

This implies n|(a− b). Being congruent modulo n is an equivalence
relationship:

▶ reflexive: a ≡ a (mod n)
▶ symmetric: a ≡ b (mod n)⇒ b ≡ a (mod n)
▶ transitive: a ≡ b (mod n) ∧ b ≡ c (mod n)⇒ a ≡ c (mod n)

157

Modular arithmetic

Addition, subtraction, and multiplication work the same under
congruence modulo n:

If a ≡ a′ (mod n) and b ≡ b′ (mod n) then

a+ b ≡ a′ + b′ (mod n)

a− b ≡ a′ − b′ (mod n)

ab ≡ a′b′ (mod n)

Associative, commutative and distributive laws also work the same:

a(b+ c) ≡ ab+ ac ≡ ca+ ba (mod n)

When evaluating an expression that is reduced modulo n in the end, we
can also reduce any intermediate results. Example:

(a− bc) mod n =
(
(a mod n)−

(
(b mod n)(c mod n)

)
mod n

)
mod n

Reduction modulo n limits intermediate values to

Zn := {0, 1, 2, . . . , n− 1},
the “set of integers modulo n”.
Staying within Zn helps to limit register sizes and can speed up computation.

158

Euclid’s algorithm

gcd(21, 15) = gcd(15, 21 mod 15) = gcd(15, 6) = gcd(6, 15 mod 6) =
gcd(6, 3) = 3 = −2× 21 + 3× 15

159

Euclid’s algorithm

Euclidean algorithm: (WLOG a ≥ b > 0, since gcd(a, b) = gcd(b, a))

gcd(a, b) =

{
b, if b | a
gcd(b, a mod b), otherwise

For all positive integers a, b, there exist integers x and y such that
gcd(a, b) = ax+ by.

Euclid’s extended algorithm also provides x and y: (WLOG a ≥ b > 0)

(gcd(a, b), x, y) :=

egcd(a, b) =


(b, 0, 1), if b | a
(d, y, x− yq), otherwise,

with (d, x, y) := egcd(b, r),

where a = qb+ r, 0 ≤ r < b

160

Groups

A group (G, •) is a set G and an operator • : G×G→ G that have

closure: a • b ∈ G for all a, b ∈ G
associativity: a • (b • c) = (a • b) • c for all a, b, c ∈ G

neutral element: there exists an e ∈ G such that for all a ∈ G:
a • e = e • a = a

inverse element: for each a ∈ G there exists some b ∈ G such that
a • b = b • a = e

If a • b = b • a for all a, b ∈ G, the group is called commutative (or abelian).

Examples of abelian groups:

▶ (Z,+), (R,+), (R \ {0}, ·)
▶ (Zn,+) – set of integers modulo n with addition a+ b := (a+ b) mod n

▶ ({0, 1}n,⊕) where a1a2 . . . an ⊕ b1b2 . . . bn = c1c2 . . . cn with
(ai + bi) mod 2 = ci (for all 1 ≤ i ≤ n, ai, bi, ci ∈ {0, 1}) “bit-wise XOR”

If there is no inverse element for each element, (G, •) is a monoid instead.

Examples of monoids:

▶ (Z, ·) – set of integers under multiplication

▶ ({0, 1}∗, ||) – set of variable-length bit strings under concatenation

161

Permutations and groups

Permutation groups

A set P of permutations over a finite set S forms a group under
concatenation if

▶ closure: for any pair of permutations g, h : S ↔ S in P their
concatenation g ◦ h : x 7→ g(h(x)) is also in P .

▶ neutral element: the identity function x 7→ x is in P

▶ inverse element: for each permutation g ∈ P , the inverse
permutation g−1 is also in P .

Note that function composition is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h
The set of all permutations of a set S forms a permutation group called the “symmetric group” on
S. Non-trivial symmetric groups (|S| > 1) are not abelian.

Each group is isomorphic to a permutation group

Given a group (G, •), map each g ∈ G to a function fg : x 7→ g • x.
Since g−1 ∈ G, fg is a permutation, and the set of all fg for g ∈ G forms
a permutation group isomorphic to G. (“Cayley’s theorem”)

Encryption schemes are permutations.
Which groups can be used to form encryption schemes?

162

Subgroups

(H, •) is a subgroup of (G, •) if
▶ H is a subset of G (H ⊆ G)

▶ the operator • on H is the same as on G
▶ (H, •) is a group, that is

• for all a, b ∈ H we have a • b ∈ H
• each element of H has an inverse element in H
• the neutral element of (G, •) is also in H.

Examples of subgroups

▶ (nZ,+) with nZ := {ni|i ∈ Z} = {. . . ,−2n,−n, 0, n, 2n, . . .}
– the set of integer multiples of n is a subgroup of (Z,+)

▶ (R+, ·) – the set of positive real numbers is a subgroup of (R \ {0}, ·)
▶ (Q,+) is a subgroup of (R,+), which is a subgroup of (C,+)

▶ (Q \ {0}, ·) is a subgroup of (R \ {0}, ·), etc.
▶ ({0, 2, 4, 6},+) is a subgroup of (Z8,+)

163

Notations used with groups

When the definition of the group operator is clear from the context, it is
often customary to use the symbols of the normal arithmetic addition or
multiplication operators (“+”, “×”, “·”, “gh”) for the group operation.

There are two commonly used alternative notations:

“Additive” group: think of group operator as a kind of “+”

▶ write 0 for the neutral element and −g for the inverse of g ∈ G.

▶ write g · i := g • g • · · · • g︸ ︷︷ ︸
i times

(g ∈ G, i ∈ Z)

“Multiplicative” group: think of group operator as a kind of “×”
▶ write 1 for the neutral element and g−1 for the inverse of g ∈ G.

▶ write the group operation as a dot “g · h” or juxtaposition “gh”

▶ write gi := g • g • · · · • g︸ ︷︷ ︸
i times

(g ∈ G, i ∈ Z)

Some of these notations may similarly also be used for monoids or other algebraic structures where
the behaviour of the operator in some way resembles that of addition or multiplication.

164

Rings

A ring (R,⊞,⊠) is a set R and two operators ⊞ : R× R→ R and
⊠ : R× R→ R such that

▶ (R,⊞) is an abelian group

▶ (R,⊠) is a monoid

▶ a⊠ (b⊞ c) = (a⊠ b)⊞ (a⊠ c) and (a⊞ b)⊠ c = (a⊠ c)⊞ (b⊠ c)
(distributive law)

If also a⊠ b = b⊠ a, then we have a commutative ring.

Examples for rings:

▶ (Z[x],+, ·), where

Z[x] :=

{
n∑

i=0

aix
i

∣∣∣∣∣ ai ∈ Z, n ≥ 0

}
is the set of polynomials with variable x and coefficients from Z
– commutative

▶ Zn[x] – the set of polynomials with coefficients from Zn

▶ (Rn×n,+, ·) – n× n matrices over R – not commutative
165

Fields

A field (F,⊞,⊠) is a set F and two associative and commutative
operators ⊞ : F× F→ F and ⊠ : F× F→ F such that

▶ (F,⊞) is an abelian group with neutral element 0F

▶ (F,⊠) is a commutative monoid with neutral element 1F ̸= 0F

▶ (F \ {0F},⊠) is also an abelian group (with neutral element 1F)

▶ a⊠ (b⊞ c) = (a⊠ b)⊞ (a⊠ c) and (a⊞ b)⊠ c = (a⊠ c)⊞ (b⊠ c)
(distributive law)

In other words: a field is a commutative ring where each element except
for the neutral element of the addition has a multiplicative inverse.

Field means: division works, linear algebra works, solving equations, etc.

Examples for (infinitely large) fields: (Q,+, ·), (R,+, ·), (C,+, ·)
For cryptographic applications, we are interested in finite fields, where we
can pick elements uniformly at random. The order of a field is the
number of elements it contains.

If we have 1 + 1 + · · · + 1︸ ︷︷ ︸
i times

= 0 in a ring or field, then we call the smallest such i its characteristic.

166

Ring Zn

Set of integers modulo n is Zn := {0, 1, . . . , n− 1}
When we refer to (Zn,+) or (Zn, ·), we apply after each addition or
multiplication a reduction modulo n. (No need to write out “mod n”
each time.)

We add/subtract the integer multiple of n needed to get the result back into Zn.

(Zn,+) is an abelian group:

▶ neutral element of addition is 0

▶ the inverse element of a ∈ Zn is n− a ≡ −a (mod n)

(Zn, ·) is a monoid:

▶ neutral element of multiplication is 1

(Zn,+, ·), with its “mod n” operators, is a ring, which means
commutative, associative and distributive law works just like over Z.

From now on, when we refer to Zn, we usually imply that we work with
the commutative ring (Zn,+, ·).
Examples in Z5: 4 + 3 = 2, 4 · 2 = 3, 42 = 1

167

Division in Zn

In ring Zn, element a has a multiplicative inverse a−1 (with aa−1 = 1) if
and only if gcd(n, a) = 1.

In this case, the extended Euclidian algorithm gives us

nx+ ay = 1

and since nx = 0 in Zn for all x, we have ay = 1.

Therefore y = a−1 is the inverse needed for dividing by a.

▶ We call the set of all elements in Zn that have a multiplicative
inverse the “multiplicative group” of Zn:

Z∗n := {a ∈ Zn | gcd(n, a) = 1}
▶ If p is prime, then (Z∗p, ·) with

Z∗p = {1, . . . , p− 1}
is a group, and (Zp,+, ·) is a (finite) field, that is every element
except 0 has a multiplicative inverse.

Example: Multiplicative inverses of Z∗7 :
1 · 1 = 1, 2 · 4 = 1, 3 · 5 = 1, 4 · 2 = 1, 5 · 3 = 1, 6 · 6 = 1

168

Finite fields (Galois fields)

(Zp,+, ·) is a finite field with p elements, where p is a prime number.
Also written as Fp, or as GF(p), the “Galois field of order p”.

We can also construct finite fields Fpn (or GF(pn)) with pn elements:

Let Fq be a finite field with q elements. Then we can create an extension
field Fqn with qn elements as follows:

▶ Elements: polynomials over variable x with degree less than n and
coefficients from the finite field Fq

▶ Modulus: select an irreducible polynomial T (x) ∈ Fq[x] of degree n

T (x) = cnx
n + · · ·+ c2x

2 + c1x+ c0

where ci ∈ Fq for all 0 ≤ i ≤ n. An irreducible polynomial cannot be
factored into two lower-degree polynomials from Fq[x] \ {0, 1}.

▶ Addition: ⊕ is normal polynomial addition (i.e., pairwise addition of
the coefficients in Fq)

▶ Multiplication: ⊗ is normal polynomial multiplication, then divide
by T (x) and take the remainder (i.e., multiplication modulo T (x)).

Theorem: any finite field has pn elements (for some prime p, n > 0)
Theorem: all finite fields of the same size are isomorphic

169

F2n – binary fields (fields of characteristic 2)

F2 is particularly easy to implement in hardware:

▶ addition = subtraction = XOR gate

▶ multiplication = AND gate

▶ division can only be by 1, which merely results in the first operand

Of particular practical interest in modern cryptography are larger finite
extension fields of the form F2n (also written as GF(2n)):

▶ Polynomials are represented as bit words, each coefficient = 1 bit.

▶ Addition/subtraction is implemented via bit-wise XOR instruction.

▶ Multiplication and division of binary polynomials is like binary
integer multiplication and division, but without carry-over bits. This
allows the circuit to be clocked much faster.

Recent Intel/AMD CPUs have added instruction PCLMULQDQ for
64× 64-bit carry-less multiplication. This helps to implement arithmetic
in F264 or F2128 more efficiently.

170

F28 example

The finite field F28 consists of the 256 polynomials of the form

c7x
7 + · · ·+ c2x

2 + c1x+ c0 ci ∈ {0, 1}

each of which can be represented by the byte c7c6c5c4c3c2c1c0.

As modulus we chose the irreducible polynomial

T (x) = x8 + x4 + x3 + x+ 1 or 1 0001 1011

Example operations:

▶ (x7 + x5 + x+ 1)⊕ (x7 + x6 + 1) = x6 + x5 + x
or equivalently 1010 0011⊕ 1100 0001 = 0110 0010

▶ (x6 + x4 + 1)⊗T (x2 + 1) = [(x6 + x4 + 1)(x2 + 1)] mod T (x) =
(x8 + x4 + x2 + 1) mod (x8 + x4 + x3 + x+ 1) =
(x8 + x4 + x2 + 1)⊖ (x8 + x4 + x3 + x+ 1) = x3 + x2 + x
or equivalently
0101 0001⊗T 0000 0101 = 1 0001 0101⊕ 1 0001 1011 = 0000 1110

171

Multiplication and modular reduction in F2n

Let a(x) =
n−1∑
i=0

aix
i and b(x) =

n−1∑
i=0

bix
i with ai, bi ∈ Z2

be polynomials of degree less than n that represent elements of F2n .

Let f(x) = xn + r(n) be the irreducible modulus.

Algorithm for calculating c(x) = [a(x) · b(x)] mod f(x) =
n−1∑
i=0

cix
i:

Right to left multiply(a, b):
if a0 = 1 then c := b else c := 0
for i := 1 to n− 1 do

if bn−1 = 1 then
b := b≪ 1⊕ r ← shift

else
b := b≪ 1

if ai = 1 then
c := c⊕ b ← add

return c

Left to right multiply(a, b):
c := 0
for i := n− 1 downto 0 do

if ai = 1 then
c := c⊕ b ← add

if i = 0 then return c
if cn−1 = 1 then

c := c≪ 1⊕ r ← shift
else

c := c≪ 1

The left-to-right method can be accelerated by precomputing Bu = [b · u] mod f for all 2w

polynomials u of degree less than w, and then adding the Bu selected by w bits of a at a time.

172

Squaring in F2n

In finite fields of characteristic 2, we have

2 = 0

−1 = 1

a2 = a for all a ∈ Z2

and as a result some expressions become much simpler.

For example: squaring of polynomials

(a1x+ a0)
2 = (a1x+ a0)(a1x+ a0) = a21x

2 + 2a1a0x+ a20 = a1x
2 + a0

More generally: if

a(x) =
n−1∑
i=0

aix
i ∈ F2n

then

[a(x)]2 =
n−1∑
i=0

aix
2i.

173

Finite groups

Let (G, •) be a group with a finite number of elements |G|.
Practical examples here: (Zn,+), (Z∗

n, ·), (F2n ,⊕), (F2n \ {0},⊗)

Terminology:

▶ The order of a group G is its size |G|
▶ order of group element g in G is

ordG(g) = min{i > 0 | gi = 1}.

Related notion: the characteristic of
a ring or field is the order of 1 in its
additive group, i.e. the smallest i
with 1 + 1 + · · · + 1︸ ︷︷ ︸

i times

= 0.

Useful facts regarding any element g ∈ G in a group of order m = |G|:
1 gm = 1, gx = gx mod m

2 gx = gx mod ord(g)

3 gx = gy ⇔ x ≡ y (mod ord(g))

4 ord(g) | m “Lagrange’s theorem”

5 if gcd(e,m) = 1 then g 7→ ge is a permutation, and g 7→ gd its
inverse (i.e., ged = g) if ed mod m = 1

174

Proofs
0 In any group (G, ·) with a, b, c ∈ G we have ac = bc⇒ a = b.

Proof: ac = bc⇒ (ac)c−1 = (bc)c−1 ⇒ a(cc−1) = b(cc−1)⇒ a · 1 = b · 1⇒ a = b.

1 Let G be an abelian group of order m with elements g1, . . . , gm. We have

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm)

for arbitrary fixed g ∈ G, because ggi = ggj ⇒ gi = gj (see 0), which implies that each
of the (ggi) is distinct, and since there are only m elements of G, the right-hand side of the
above equation is just a permutation of the left-hand side. Now pull out the g:

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm) = g
m · g1 · g2 · · · gm ⇒ g

m = 1.

(Not shown here: gm = 1 also holds for non-commutative groups.)

Also: gm = 1⇒ gx = gx · (gm)n = gx−nm = gx mod m for any n ∈ Z.

2 Likewise: i = ord(g)⇒ gi = 1⇒ gx = gx · (gi)n = gx+ni = gx mod i for any n ∈ Z.

3 Let i = ord(g).

“⇐”: x ≡ y (mod i)⇔ x mod i = y mod i⇒ gx = gx mod i = gy mod i = gy .

“⇒”: Say gx = gy , then 1 = gx−y = g(x−y) mod i. Since (x− y) mod i < i, but i is the

smallest positive integer with gi = 1, we must have (x− y) mod i = 0. ⇒ x ≡ y (mod i).

4 gm = 1 = g0 therefore m ≡ 0 (mod ord(g)) from 3 , and so ord(g)|m.

5 (ge)d = ged = ged mod m = g1 = g means that g 7→ gd is indeed the inverse of g 7→ ge if
ed mod m = 1. And since G is finite, the existence of an inverse operation implies that
g 7→ ge is a permutation.

Katz/Lindell (2nd ed.), sections 8.1 and 8.3

175

Cyclic groups

Let G be a finite (multiplicative) group of order m = |G|.

For g ∈ G consider the set

⟨g⟩ := {g0, g1, g2, . . .}

Note that |⟨g⟩| = ord(g) and ⟨g⟩ = {g0, g1, g2, . . . , gord(g)−1}.

Definitions:

▶ We call g a generator of G if ⟨g⟩ = G.

▶ We call G cyclic if it has a generator.

Useful facts:

1 Every cyclic group of order m is isomorphic to (Zm,+). (gi ↔ i)

2 ⟨g⟩ is a subgroup of G (subset, a group under the same operator)

3 If |G| is prime, then G is cyclic and all g ∈ G \ {1} are generators.
Recall that ord(g) | |G|. We have ord(g) ∈ {1, |G|} if |G| is prime, which makes g either 1
or a generator.

Katz/Lindell (2nd ed.), section 8.3

176

How to find a generator?

Let G be a cyclic (multiplicative) group of order m = |G|.
▶ If m is prime, any non-neutral element is a generator. Done.

But |Z∗p| = p− 1 is not prime (for p > 3)!

▶ Directly testing for |⟨g⟩| ?
= m is infeasible for crypto-sized m.

▶ Fast test: if m =
∏

i p
ei
i is composite, then g ∈ G is a generator if

and only if gm/pi ̸= 1 for all i.

▶ Sampling a polynomial number of elements of G for the above test
will lead to a generator in polynomial time (of log2 m) with all but
negligible probability.

⇒ Make sure you pick a group of an order with known prime factors.

One possibility for Z∗p (commonly used):

▶ Chose a “strong prime” p = 2q + 1, where q is also prime
⇒ |Z∗p| = p− 1 = 2q has prime factors 2 and q.

177

(Zp,+) is a cyclic group

For every prime p every element g ∈ Zp \ {0} is a generator:

Zp = ⟨g⟩ = {g · i mod p | 0 ≤ i ≤ p− 1}

Note that this follows from fact 3 on slide 176: Zp is of order p, which is prime.

Example in Z7:

(0 · 0, 0 · 1, 0 · 2, 0 · 3, 0 · 4, 0 · 5, 0 · 6, 0 · 7, . . .) = (0, 0, 0, 0, 0, 0, 0, 0, . . .)

(1 · 0, 1 · 1, 1 · 2, 1 · 3, 1 · 4, 1 · 5, 1 · 6, 0 · 7, . . .) = (0, 1, 2, 3, 4, 5, 6, 0, . . .)

(2 · 0, 2 · 1, 2 · 2, 2 · 3, 2 · 4, 2 · 5, 2 · 6, 0 · 7, . . .) = (0, 2, 4, 6, 1, 3, 5, 0, . . .)

(3 · 0, 3 · 1, 3 · 2, 3 · 3, 3 · 4, 3 · 5, 3 · 6, 0 · 7, . . .) = (0, 3, 6, 2, 5, 1, 4, 0, . . .)

(4 · 0, 4 · 1, 4 · 2, 4 · 3, 4 · 4, 4 · 5, 4 · 6, 0 · 7, . . .) = (0, 4, 1, 5, 2, 6, 3, 0, . . .)

(5 · 0, 5 · 1, 5 · 2, 5 · 3, 5 · 4, 5 · 5, 5 · 6, 0 · 7, . . .) = (0, 5, 3, 1, 6, 4, 2, 0, . . .)

(6 · 0, 6 · 1, 6 · 2, 6 · 3, 6 · 4, 6 · 5, 6 · 6, 0 · 7, . . .) = (0, 6, 5, 4, 3, 2, 1, 0, . . .)

▶ All the non-zero elements of group Z7 with addition mod 7 are generators

▶ ord(0) = 1, ord(1) = ord(2) = ord(3) = ord(4) = ord(5) = ord(6) = 7

178

(Z∗p, ·) is a cyclic group

For every prime p there exists a generator g ∈ Z∗p such that

Z∗p = {gi mod p | 0 ≤ i ≤ p− 2}
Note that this does not follow from fact 3 on slide 176: Z∗

p is of order p− 1, which is even (for

p > 3), not prime.

Example in Z∗7 :
(10, 11, 12, 13, 14, 15, 16, . . .) = (1, 1, 1, 1, 1, 1, 1, . . .)

(20, 21, 22, 23, 24, 25, 26, . . .) = (1, 2, 4, 1, 2, 4, 1, . . .)

(30, 31, 32, 33, 34, 35, 36, . . .) = (1, 3, 2, 6, 4, 5, 1, . . .)

(40, 41, 42, 43, 44, 45, 46, . . .) = (1, 4, 2, 1, 4, 2, 1, . . .)

(50, 51, 52, 53, 54, 55, 56, . . .) = (1, 5, 4, 6, 2, 3, 1, . . .)

(60, 61, 62, 63, 64, 65, 66, . . .) = (1, 6, 1, 6, 1, 6, 1, . . .)

▶ 3 and 5 are generators of Z∗7
Fast generator test (p. 177), using |Z∗

7 | = 6 = 2·3:
36/2 = 6, 36/3 = 2, 56/2 = 6, 56/3 = 4, all ̸= 1.

▶ 1, 2, 4, 6 generate subgroups of Z∗7 : {1}, {1, 2, 4}, {1, 2, 4}, {1, 6}
▶ ord(1) = 1, ord(2) = 3,

ord(3) = 6, ord(4) = 3,
ord(5) = 6, ord(6) = 2

The order of g in Z∗
p is the size of the subgroup ⟨g⟩.

Lagrange’s theorem: ordZ∗p (g) | p− 1 for all g ∈ Z∗
p

179

Fermat’s and Euler’s theorem

Fermat’s little theorem: (1640)

p prime and gcd(a, p) = 1 ⇒ ap−1 mod p = 1

Recall from Lagrange’s theorem: for a ∈ Z∗
p, ord(a)|(p− 1) since |Z∗

p| = p− 1.

Euler’s phi function:

φ(n) = |Z∗n| = |{a ∈ Zn | gcd(n, a) = 1}|
▶ Example: φ(12) = |{1, 5, 7, 11}| = 4

▶ primes p, q:
φ(p) = p− 1

φ(pk) = pk−1(p− 1)

φ(pq) = (p− 1)(q − 1)

▶ gcd(a, b) = 1 ⇒ φ(ab) = φ(a)φ(b)

Euler’s theorem: (1763)

gcd(a, n) = 1 ⇔ aφ(n) mod n = 1

▶ this implies that in Zn: a
x = ax mod φ(n) for any a ∈ Z∗n, x ∈ Z

Recall from Lagrange’s theorem: for a ∈ Z∗
n, ord(a)|φ(n) since |Z∗

n| = φ(n).
180

Chinese remainder theorem

Definition: Let (G, •) and (H, ◦) be two groups. A function f : G→ H
is an isomorphism from G to H if

▶ f is a 1-to-1 mapping (bijection)

▶ f(g1 • g2) = f(g1) ◦ f(g2) for all g1, g2 ∈ G

Chinese remainder theorem:
For any p, q with gcd(p, q) = 1 and n = pq, the mapping

f : Zn ↔ Zp × Zq f(x) = (x mod p, x mod q)

is an isomorphism, both from Zn to Zp × Zq and from Z∗n to Z∗p × Z∗q .
Inverse: To get back from xp = x mod p and xq = x mod q to x, we first use Euclid’s extended
algorithm to find a, b such that ap + bq = 1, and then x = (xpbq + xqap) mod n.

Application: arithmetic operations on Zn can instead be done on both
Zp and Zq after this mapping, which may be faster.

Example: n = pq = 3× 5 = 15

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x mod 3 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
x mod 5 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

181

Quadratic residues in (Z∗p, ·)
In Z∗p, the squaring of an element, x 7→ x2 is a 2-to-1 function:

y = x2 = (−x)2
1 2 3 4 5 6

1 2 3 4 5 6

Example in Z∗7:

(12, 22, 32, 42, 52, 62) = (1, 4, 2, 2, 4, 1)

If y is the square of a number in x ∈ Z∗p, that is if y has a square root in
Z∗p, we call y a “quadratic residue”.

Example: Z∗7 has 3 quadratic residues: {1, 2, 4}.
If p is an odd prime: Z∗p has (p− 1)/2 quadratic residues.
Zp would have one more: 0

Euler’s criterion:

c(p−1)/2 mod p = 1 ⇔ c is a quadratic residue in Z∗p

Example in Z7: (7− 1)/2 = 3, (13, 23, 33, 43, 53, 63) = (1, 1, 6, 1, 6, 6)

c(p−1)/2 is also called the Legendre symbol

182

Taking roots in Z∗p
If xe = c in Zp, then x is the “eth root of c”, or x = c1/e.

Method 1: if gcd(e, p− 1) = 1
Find d with de = 1 in Zp−1 (Euclid’s extended), then c1/e = cd in Z∗p.
Proof: (cd)e = cde = cde mod φ(p) = cde mod (p−1) = c1 = c.

Method 2: if e = 2 (taking square roots)
gcd(2, p− 1) ̸= 1 if p odd prime ⇒ Euclid’s extended alg. no help here.

▶ If p mod 4 = 3 and c ∈ Z∗p is a quadratic residue:
√
c = c(p+1)/4

Proof:
[
c(p+1)/4

]2
= c(p+1)/2 = c

(p−1)/2︸ ︷︷ ︸
=1

·c = c.

▶ If p mod 4 = 1 this can also be done efficiently (details omitted).

Application: solve quadratic equations ax2 + bx+ c = 0 in Zp

Solution: x =
−b±

√
b2 − 4ac

2a
Algorithms:

√
b2 − 4ac as above, (2a)−1 using Euclid’s extended

Taking roots in Z∗
n: If n is composite, then we know how to test whether c1/e exists, and how to

compute it efficiently, only if we know the prime factors of n. Basic Idea: apply Chinese
Remainder Theorem, then apply above techniques for Z∗

p.

183

Working in subgroups of Z∗p
How can we construct a cyclic finite group G where all non-neutral
elements are generators?

Recall that Z∗p has q = (p− 1)/2 quadratic residues, exactly half of its
elements.
Quadratic residue: an element that is the square of some other element.

Choose p to be a strong prime, that is where q is also prime.

Let G = {g2 | g ∈ Z∗p} be the set of quadratic residues of Z∗p. G with
operator “multiplication mod p” is a subgroup of Z∗p, with order |G| = q.

G has prime order |G| = q and ord(g)|q for all g ∈ G (Lagrange’s theorem):
⇒ ord(g) ∈ {1, q} ⇒ ord(g) = q for all g > 1 ⇒ for all g ∈ G \ {1} ⟨g⟩ = G.

If p is a strong prime, then each quadratic residue in Z∗p other than 1 is a
generator of the subgroup of quadratic residues of Z∗p.

Generate group(1ℓ):
p ∈R {(ℓ+ 1)-bit strong primes}
q := (p− 1)/2
x ∈R Z∗p \ {−1, 1}
g := x2 mod p
return p, q, g

Example: p = 11, q = 5
g ∈ {22, 32, 42, 52} = {4, 9, 5, 3}
⟨4⟩ = {40, 41, 42, 43, 44} = {1, 4, 5, 9, 3}
⟨9⟩ = {90, 91, 92, 93, 94} = {1, 9, 4, 3, 5}
⟨5⟩ = {50, 51, 52, 53, 54} = {1, 5, 3, 4, 9}
⟨3⟩ = {30, 31, 32, 33, 34} = {1, 3, 9, 5, 4}

184

Modular exponentiation

In cyclic group (G, •) (e.g., G = Z∗p):
How do we calculate ge efficiently? (g ∈ G, e ∈ N)

Naive algorithm: ge = g • g • · · · • g︸ ︷︷ ︸
e times

Far too slow for crypto-size e
(e.g., e ≈ 2256)!

Square-and-multiply algorithm:

Binary representation: e =
n∑

i=0

ei · 2i,

with n = ⌊log2 e⌋ and ei =
⌊

e
2i

⌋
mod 2

Computation:

g2
0

:= g, g2
i

:=
(
g2

i−1
)2

ge :=
n∏

i=0

(
g2

i
)ei

RtoL square and mult(g, e):
a := g
b := 1
for i := 0 to n do

if ⌊e/2i⌋ mod 2 = 1 then
b := b • a ← multiply

a := a • a ← square
return b

LtoR square and mult(g, e):
a := 1
for i := n downto 0 do

a := a2

if ei = 1 then
a := a • g

return a

185

Safer square-and-multiply algorithms

Basic square-and-multiply algorithms are vulnerable to side-channel
attacks (e.g., analysis of unintended power-line or electromagnetic signal
emissions by microcontrollers). If an eavesdropper can recognize the
function-call sequence

square, multiply, square, square, square, multiply, square, multiply, . . .

then that suggests for LtoR square and mult: e = 10011

There are often faster algorithms for squaring than just multiplying a group element with itself.

These variants are slower (more multiplications), but branch free:

Square and mult always(g, e):
a[0] := 1
for i := n downto 0 do

a[0] := a[0]2

a[1] := a[0] • g
a[0] := a[ei]

return a[0]

Montgomery Ladder(g, e):
a[0] := g ; assuming en = 1
a[1] := g2

for i := n− 1 downto 0 do
a[¬ei] := a[0] • a[1]
a[ei] := a[ei]

2

return a[0]

Dummy write operations like a[0] := a[0] may still be recognizeable.

186

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

187

Discrete logarithm problem

Let (G, •) be a given cyclic group of order q = |G| with given generator g
(G = {g0, g1, . . . , gq−1}). The “discrete logarithm problem (DLP)” is
finding for a given y ∈ G the number x ∈ Zq such that

gx = g • g • · · · • g︸ ︷︷ ︸
x times

= y

Squaring allows use of faster algorithms than multiplication.

If (G, •) is clear from context, we can write x = logg y. For any x′ with gx′
= y, we have

x = x′ mod q. Discrete logarithms behave similar to normal logarithms: logg 1 = 0 (if 1 is the

neutral element of G), logg hr = (r · logg h) mod q, and logg h1h2 = (logg h1 + logg h2) mod q.

For cryptographic applications, we require groups with

▶ a probabilistic polynomial-time group-generation algorithm G(1ℓ)
that outputs a description of G with ⌈log2 |G|⌉ = ℓ;

▶ a description that defines how each element of G is represented
uniquely as a bit pattern;

▶ efficient (polynomial time) algorithms for •, for picking an element
of G uniformly at random, and for testing whether a bit pattern
represents an element of G;

188

Hard discrete logarithm problems

The discrete logarithm experiment DLogG,A(ℓ):

1 Run G(1ℓ) to obtain (G, q, g), where G is a cyclic group of order q
(2ℓ−1 < q ≤ 2ℓ) and g is a generator of G

2 Choose uniform h ∈ G.

3 Give (G, q, g, h) to A, which outputs x ∈ Zq

4 Return 1 if gx = h, otherwise return 0

We say “the discrete-logarithm problem is hard relative to G” if for all
probabilistic polynomial-time algorithms A there exists a negligible
function negl, such that P(DLogG,A(ℓ) = 1) ≤ negl(ℓ).

189

Diffie–Hellman problems

Let (G, •) be a cyclic group of order q = |G| with generator g
(G = {g0, g1, . . . , gq−1}). Given elements h1, h2 ∈ G , define

DH(h1, h2) := glogg h1·logg h2

that is if gx1 = h1 and gx2 = h2, then DH(h1, h2) = gx1·x2 = hx2
1 = hx1

2 .

These two problems are related to the discrete logarithm problem:

▶ Computational Diffie–Hellman (CDH) problem: the adversary is
given uniformly chosen h1, h2 ∈ G and has to output DH(h1, h2).
The problem is hard if for all PPT A we have P(A(G, q, g, gx, gy) = gxy) ≤ negl(ℓ).

▶ Decision Diffie–Hellman (DDH) problem: the adversary is given
h1, h2 ∈ G chosen uniformly at random, plus another value h′ ∈ G,
which is either equal to DH(h1, h2), or was chosen uniformly at
random, and has to decide which of the two cases applies.
The problem is hard if for all PPT A and uniform x, y, z ∈ G we have
|P(A(G, q, g, gx, gy, gz) = 1)− P(A(G, q, g, gx, gy, gxy) = 1)| ≤ negl(ℓ).

If the discrete-logarithm problem is not hard for G, then neither will be
the CDH problem, and if the latter is not hard, neither will be the DDH
problem.

190

Diffie–Hellman key exchange

How can two parties achieve message confidentiality who have no prior
shared secret and no secure channel to exchange one?

Select a cyclic group G of order q and a generator g ∈ G, which can be
made public and fixed system wide. A generates x and B generates y,
both chosen uniformly at random out of {1, . . . , q − 1}. Then they
exchange two messages:

A→ B : gx

B → A : gy

Now both can form (gx)y = (gy)x = gxy and use a hash h(gxy) as a
shared private key (e.g. with an authenticated encryption scheme).

The eavesdropper faces the computational Diffie–Hellman problem of
determining gxy from gx, gy and g.

The DH key exchange is secure against a passive eavesdropper, but not against middleperson
attacks, where gx and gy are replaced by the attacker with other values.

W. Diffie, M.E. Hellman: New Directions in Cryptography. IEEE IT-22(6), 1976-11, pp 644–654.

191

Discrete logarithm algorithms

Several generic algorithms are known for solving the discrete logarithm
problem for any cyclic group G of order q:

▶ Trivial brute-force algorithm: try all gi, time |⟨g⟩| = ord(g) ≤ q.

▶ Pohlig–Hellman algorithm: if q is not prime, and has a known (or
easy to determine) factorization, then this algorithm reduces the
discrete-logarithm problem for G to discrete-logarithm problems for
prime-order subgroups of G.
⇒ the difficulty of finding the discrete logarithm in a group of order
q is no greater than that of finding it in a group of order q′, where q′

is the largest prime factor dividing q.

▶ Shank’s baby-step/giant-step algorithm: requires
O(
√
q · polylog(q)) time and O(

√
q) memory.

▶ Pollard’s rho algorithm: requires O(
√
q · polylog(q)) time and

O(1) memory.

⇒ choose G to have a prime order q, and make q large enough such
that no adversary can be expected to execute

√
q steps (e.g. q ≫ 2200).

192

Baby-step/giant-step algorithm

Given generator g ∈ G (|G| = q) and y ∈ G, find x ∈ Zq with gx = y.

▶ Powers of g form a cycle 1 = g0, g1, g2, . . . , gq−2, gq−1, gq = 1, and
y = gx sits on this cycle.

▶ Go around cycle in “giant steps” of n = ⌊√q⌋:

g0, gn, g2n, . . . , g⌈q/n⌉n

Store all values encountered in a lookup table L[gkn] := k.
Memory:

√
q, runtime:

√
q, (times log. lookup table insertion)

▶ Go around cycle in “baby steps”, starting at y

y · g1, y · g2, . . . , y · gn

until we find one of these values in the table L: L[y · gi] = k.
Runtime:

√
q (times log. table lookup)

▶ Now we know y · gi = gkn, therefore y = gkn−i and can return
x := (kn− i) mod q = logg y.

193

Discrete logarithm algorithms for Z∗p
The “Index Calculus Algorithm” computes discrete logarithms in the
cyclic group Z∗p. Unlike the generic algorithms, it has sub-exponential
runtime

2O(
√
log p log log p)

Therefore, prime p bit-length in cyclic group Z∗p has to be much longer
than a symmetric key of equivalent attack cost. In contrast, the
bit-length of the order q of the subgroup used merely has to be doubled.

There are groups believed to be not vulnerable to the Index Calculus Algorithm, obtained by
defining a group operator over points of an elliptic curve (EC) with coordinates in Zp or Fpn .

Equivalent key lengths: (NIST)

RSA Discrete logarithm problem

private key factoring n = pq in Z∗p in EC
length modulus n modulus p order q order q

80 bits 1024 bits 1024 bits 160 bits 160 bits
112 bits 2048 bits 2048 bits 224 bits 224 bits
128 bits 3072 bits 3072 bits 256 bits 256 bits
192 bits 7680 bits 7680 bits 384 bits 384 bits
256 bits 15360 bits 15360 bits 512 bits 512 bits

194

Schnorr groups – working in subgroups of Z∗p
Schnorr group: cyclic subgroup G = ⟨g⟩ ⊂ Z∗p with prime order
q = |G| = (p− 1)/r, where (p, q, g) are generated with:

1 Choose primes p≫ q with p = qr + 1 for r ∈ N
2 Choose 1 < h < p with hr mod p ̸= 1

3 Use g := hr mod p as generator for G = ⟨g⟩ = {hr mod p|h ∈ Z∗p}
Advantages:

▶ Select bit-length of p and q independently, based on respective
security requirements (e.g. 128-bit security: 3072-bit p, 256-bit q)
Difficulty of Discrete Logarithm problem over G ⊆ Z∗

p with order q = |G| depends on both

p (subexponentially) and q (exponentially).

▶ Some operations faster than if log2 q ≈ log2 p.
Square-and-multiply exponentiation gx mod p (with x < q) run-time ∼ log2 x < log2 q.

▶ Prime order q has several advantages:
• simple choice of generator (pick any element ̸= 1)

• G has no (non-trivial) subgroups ⇒ no small subgroup confinement
attacks

• q with small prime factors can make Decision Diffie–Hellman
problem easy to solve (Exercise 28)

Compare with slide 184 where r = 2.
195

Schnorr groups (proofs)

Let p = rq + 1 with p, q prime and G = {hr mod p|h ∈ Z∗p}. Then
1 G is a subgroup of Z∗p.

Proof: G is closed under multiplication, as for all x, y ∈ G we have
xryr mod p = (xy)r mod p = (xy mod p)r mod p ∈ G as (xy mod p) ∈ Z∗

p.

In addition, G includes the neutral element 1r = 1
For each hr , it also includes the inverse element (h−1)r mod p.

2 G has q = (p− 1)/r elements.
Proof: The idea is to show that the function fr : Z∗

p → G with fr(x) = xr mod p is an

r-to-1 function, and then since |Z∗
p| = p− 1 this will show that |G| = q = (p− 1)/r.

Let g be a generator of Z∗
p such that {g0, g1, . . . , gp−2} = Z∗

p. Under what condition for

i, j is (gi)r ≡ (gj)r (mod p)? (gi)r ≡ (gj)r (mod p)⇔ ir ≡ jr (mod p− 1)⇔
(p− 1)|(ir − jr)⇔ rq|(ir − jr)⇔ q|(i− j).
For any fixed j ∈ {0, . . . , p− 2} = Zp−1, what values of i ∈ Zp−1 fulfill the condition
q|(i− j), and how many such values i are there? For each j, there are exactly the r
different values i ∈ {j, j + q, j + 2q, . . . , j + (r − 1)q} in Zp−1, as j + rq ≡ j
(mod p− 1). This makes fr an r-to-1 function.

3 For any h ∈ Z∗p, hr is either 1 or a generator of G.
Proof: hr ∈ G (by definition) and |G| prime ⇒ ordG(h

r) ∈ {1, |G|} (Lagrange).

4 h ∈ G⇔ h ∈ Z∗p ∧ hq mod p = 1. (Useful security check!)

Proof: Let h = gi with ⟨g⟩ = Z∗
p and 0 ≤ i < p− 1. Then

hq mod p = 1⇔ giq mod p = 1⇔ iq mod (p− 1) = 0⇔ rq|iq ⇔ r|i.
Katz/Lindell (2nd ed.), section 8.3.3

196

Elliptic curves – the Weierstrass equation

An elliptic curve E over a field K is defined by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with coefficients a1, a2, a3, a4, a6 ∈ K such that ∆(a1, a2, a3, a4, a6) ̸= 0.

The discriminant ∆ of E is defined as ∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6 with d2 = a2

1 + 4a2,

d4 = 2a4 + a1a3, d6 = a2
3 + 4a6, and d8 = a2

1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4.
If ∆ ̸= 0 then the curve is smooth, i.e. it has no points with more than one tangent.

If L is any extension field of K, then the set of (“L-rational”) points on
curve E is defined as

E(L) = {(x, y) ∈ L×L : y2+a1xy+a3y = x3+a2x
2+a4x+a6}∪{O}

The additional element O is called the “point at infinity”.

It will act as the neutral element when we define a group structure over E(L).

Elliptic curves were originally studied over the fields C, R, and Q, in the
context of elliptic integrals. In cryptography, they are used instead over
finite fields, in particular K = L = Zp as well as K = L = F2n .

197

Elliptic curves – simplified Weierstrass equations

An elliptic curve defined over a field K by the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

can be turned into an equivalent (isomorphic) one by changing variables:

(x, y) 7→
(
x− 3a21 − 12a2

36
,
y − 3a1x

216
− a31 + 4a1a2 − 12a3

24

)
This simplifies the curve equation significantly:

y2 = x3 + ax+ b

where a, b ∈ K and ∆ = −16(4a3 + 27b3) ̸= 0.

However, due to the divisions by 36 = 2233, 216 = 2333 and 24 = 233 in
the above change of variables, this trick does not work (would lead to
division by zero) if the characteristic of K is 2 or 3 (i.e., if 1 + 1 = 0 or
1 + 1 + 1 = 0).

198

Simplified Weierstrass equations if 1 + 1 = 0

If K has characteristic 2, two other changes of variable can be used to
simplify the Weierstrass equation:

▶ If a1 ̸= 0 then

(x, y) 7→
(
a21x+

a3
a1

, a31y +
a21a4 + a23

a31

)
leads to the “non-supersingular” curve

y2 + xy = x3 + ax2 + b

with discriminant ∆ = b ̸= 0.

▶ If a1 = 0 then
(x, y) 7→ (x+ a2, y)

leads to the “supersingular” curve

y2 + cy = x3 + ax+ b

with a, b, c ∈ K and ∆ = c4 ̸= 0.
Similar tricks exist for K with characteristic 3, but such K are not commonly used in cryptography.

199

Elliptic-curve group operation

-2 -1 0 1 2
-2

-1

0

1

2

P1

P2

P3

P1+P 2 3

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

P1

P2

P3

P1+P 2 3

elliptic curve over R (a = −1, b = 1) elliptic curve over Z11 (a = −1, b = 1)

Elliptic curves over R or Zp (p > 3) are sets of 2-D coordinates (x, y) with

y2 = x3 + ax+ b where 4a3 + 27b2 ̸= 0

plus one additional “point at infinity” O.
Group operation P1 + P2: draw line through curve points P1, P2, intersect with
curve to get third point P3, then negate the y coordinate of P3 to get P1 + P2.
Neutral element: O – intersects any vertical line. Inverse: −(x, y) = (x,−y)
Curve compression: for any given x, encoding y requires only one bit 200

Elliptic-curve group operation over E(Zp)

E(Zp) = {(x, y) | x, y ∈ Zp and y2 ≡ x3 + ax+ b (mod p)} ∪ {O}
where p > 3 prime, parameters a, b ∈ Zp with 4a3 + 27b2 ̸≡ 0 (mod p).

▶ Neutral element: P +O = O + P = P for all P ∈ E(Zp)

▶ Negation: if P = (x, y) then −P = (x,−y) since P − P = O; −O = O
▶ Addition: for P1 = (x1, y1), P2 = (x2, y2), P1, P2 ̸= O, x1 ̸= x2:

m =
y2 − y1
x2 − x1

line slope

y = m · (x− x1) + y1 line equation(
m · (x− x1) + y1

)2
= x3 + ax+ b intersections

x3 = m2 − x1 − x2 third-point solution

y3 = m · (x3 − x1) + y1

(x1, y1) + (x2, y2) = (m2 − x1 − x2,m · (x1 − x3)− y1) (all of this mod p)

If x1 = x2 but y1 ̸= y2 then P1 = −P2 and P1 + P2 = O.
▶ Doubling:

If P1 = P2 and y1 = 0 then P1 + P2 = 2P1 = O.
If P1 = P2 and y1 ̸= 0 then add using tangent m = (3x2

1 + a)/2y1.

201

Non-supersingular curve group operation over E(F2n)

E(F2n) = {(x, y) | x, y ∈ F2n and y2 + xy = x3 + ax2 + b} ∪ {O}
where parameters a, b ∈ F2n with b ̸= 0.

▶ Neutral element: P +O = O + P = P for all P ∈ E(F2n)

▶ Negation: if P = (x, y) then −P = (x, x+ y); −O = O
▶ Addition: for P1 = (x1, y1), P2 = (x2, y2), P1, P2 ̸= O, x1 ̸= x2:

m =
y1 + y2
x1 + x2

x3 = m2 +m+ x1 + x2 + a

y3 = m · (x1 + x3) + x3 + y1

(x1, y1) + (x2, y2) = (x3, y3)

If x1 = x2 but y1 ̸= y2 then P1 = −P2 and P1 + P2 = O.
▶ Doubling (i.e. P1 = P2 = P):

If y1 = 0 then P = −P , i.e. P1 + P2 = 2P = O.
If y1 ̸= 0 then P ̸= −P and add using tangent m = x1 + y1/x1:

x3 = m2 +m+ a = x2
1 +

b

x2
1

and y3 = x2
1 +mx3 + x3

202

Projective coordinates for points on E(F2n)

When points P1 and P2 are represented as “affine” coordinates (x, y) in
curve equation y2 + xy = x3 + ax2 + b, the point addition and doubling
operations involve expensive field divisions.

Several other “projective” 3D coordinate systems (X,Y, Z) have been
proposed that make the group operation cheaper, by avoiding division:

▶ Standard projective coordinates: (x, y) = (X/Z, Y/Z)

Curve: Y 2Z + XY Z = X3 + aX2Z + bZ3,
O = (0, 1, 0) and −(X,Y, Z) = (X,X + Y, Z).

▶ Jacobian projective coordinates: (x, y) = (X/Z2, Y/Z3)

Curve: Y 2 + XY Z = X3 + aX2Z2 + bZ6,
O = (1, 1, 0) and −(X,Y, Z) = (X,X + Y, Z).

▶ López-Dahab (LD) projective coordinates: (x, y) = (X/Z, Y/Z2)

Curve: Y 2 + XY Z = X3Z + aX2Z2 + bZ4,
O = (1, 0, 0) and −(X,Y, Z) = (X,X + Y, Z).

For Z = 1 projective and affine coordinates are identical, i.e. (x, y) = (X,Y, 1).

Equivalent projective coordinate systems also exist for E(Zp): standard (x, y) = (X/Z, Y/Z),

Jacobian (x, y) = (X/Z2, Y/Z3) and Chudnovsky (like Jacobian, but also store Z2 and Z3).

These all have slightly different performance trade-offs regarding the number of field additions,
multiplications and division required for point add and double operations.

203

Elliptic-curve groups with prime order

How large are elliptic curves over Zp?

Equation y2 = f(x) has two solutions if f(x) is a quadratic residue, and
one solution if f(x) = 0. Half of the elements in Z∗p are quadratic
residues, so expect around 2 · (p− 1)/2 + 1 = p points on the curve.

Hasse bound: p+ 1− 2
√
p ≤ |E(Zp, a, b)| ≤ p+ 1 + 2

√
p

Actual group order: approximately uniformly spread over Hasse bound.

Elliptic curves became usable for cryptography with the invention of
efficient algorithms for counting the exact number of points on them.
E.g. Schoof’s algorithm for E(Zp) and Satoh’s algorithm for E(F2n).

Generate a cyclic elliptic-curve group (p, q, a, b,G) with:

1 Choose n-bit prime p

2 Choose a, b ∈ Zp with 4a3 + 27b2 ̸= 0 (mod p), determine
q = |E(Zp, a, b)|, repeat until q is an n-bit prime

3 Choose G ∈ E(Zp, a, b) \ {O} as generator
Easy to find a point G = (x, y) on the curve: pick uniform x ∈ Zp until

f(x) is a quadratic residue or 0, then set y =
√
f(x).

204

Elliptic-curve discrete-logarithm problem

The elliptic-curve operation is traditionally written as an additive group,
so the “exponentiation” of the elliptic-curve discrete-logarithm problem
(ECDLP) becomes multiplication:

x ·G = G+G+ · · ·+G︸ ︷︷ ︸
x times

x ∈ Zq

So the square-and-multiply algorithm becomes double-and-add, and Diffie–Hellman becomes
DH(x ·G, y ·G) = xy ·G for x, y ∈ Z∗

q .

Many curve parameters and cyclic subgroups for which ECDLP is
believed to be hard have been proposed or standardised.

Example: NIST P-256

p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff

q = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551

a = 3

b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

G = (0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,

0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)

Note: p = 2256− 2224 +2192 +296− 1 and q ≈ 2256− 2224 +2192 here are generalized resp. pseudo
Mersenne primes, for fast mod calculation on 32-bit CPUs and good use of the 256-bit space.

205

Commonly used standard curves

NIST FIPS 186-4 has standardized five such elliptic curves over integer field
(Zp) coordinates: P-192, P-224, P-256, P-384, P-521.

Also: five random curves of the form y2 + xy = x3 + x2 + b over binary field
(F2n) coordinates: B-163, B-233, B-283, B-409, B-571. The number of
points on these curves is twice the order of the base point G (“cofactor 2”).

And there are five Koblitz curves of the form y2 + xy = x3 + ax2 + 1
(a ∈ {0, 1}, with cofactors 4 or 2, resp.), also over F2n :
K-163, K-233, K-283, K-409, K-571. (Koblitz: a, b ∈ {0, 1} ⇒ faster.)
Some mistrust the NIST parameters for potentially having been carefully selected by the NSA, to
embed a vulnerability. https://safecurves.cr.yp.to/rigid.html

Brainpool (RFC 5639): seven similar curves over Zp, chosen by the German government.

The Standards for Efficient Cryptography Group SEC 2 specification lists eight curves over Zp

(secp{192,224,256}{k,r}1, secp{384,521}r1) and 12 over F2n (sect163k1,. . . ,sect571r1).
(Vers. 2.0 dropped smaller secp{112,128,160}r{1,2}, secp160k1 and sect{113,131}r{1,2}.)
The numbers indicate the bit length of one coordinate, i.e. roughly twice the
equivalent symmetric-key strength.

ANSI X9.62 (and SEC 1) define a compact binary syntax for curve points.

Curve25519 was proposed by Daniel J. Bernstein in 2005 and has since
become a highly popular P-256 alternative due to faster implementation, better
resiliency against some implementation vulnerabilities (e.g., timing attacks),
lack of patents and worries about NSA backdoors.

206

https://safecurves.cr.yp.to/rigid.html

ElGamal encryption scheme

The DH key exchange requires two messages. This can be eliminated if
everyone publishes their gx as a public key in a sort of phonebook.
Assume ((G, ·), q, g) are fixed for all participants.

A chooses secret key x ∈ Z∗q and publishes gx ∈ G as her public key.
B generates for each message a new nonce y ∈ Z∗q and then sends

B → A : gy, (gx)y ·M
where M ∈ G is the message that B sends to A in this asymmetric
encryption scheme. Then A calculates

[(gx)y ·M] · [(gy)q−x] = M

to decrypt M .

In practice, this scheme is rarely used because of the difficulty of fitting
M into G. Instead, B only sends gy. Then both parties calculate
K = h(gxy) and use that as the private session key for an efficient
blockcipher-based authenticated encryption scheme that protects the
confidentiality and integrity of the bulk of the message M :

B → A : gy, EncK(M)

207

Number theory: easy and difficult problems

Easy:

▶ given integer n, i and x ∈ Z∗n: calculate x−1 ∈ Z∗n or xi ∈ Z∗n
▶ given prime p and polynomial f(x) ∈ Zp[x]:

find x ∈ Zp with f(x) = 0
runtime grows linearly with the degree of the polynomial

Difficult:

▶ given safe prime p, generator g ∈ Z∗p (or large subgroup):
• given value a ∈ Z∗p: find x such that a = gx.
→ Discrete Logarithm Problem

• given values gx, gy ∈ Z∗p: find gxy.
→ Computational Diffie–Hellman Problem

• given values gx, gy, z ∈ Z∗p: tell whether z = gxy.
→ Decision Diffie–Hellman Problem

▶ given a random n = p · q, where p and q are ℓ-bit primes (ℓ ≥ 1024):
• find integers p and q such that n = p · q in N
→ Factoring Problem

• given a polynomial f(x) of degree > 1:
find x ∈ Zn such that f(x) = 0 in Zn (if p and q are unknown)

208

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

209

“Textbook” RSA encryption

Key generation
▶ Choose random prime numbers p and q (each ≈ 1024 bits long)

▶ n := pq (≈ 2048 bits = key length) φ(n) = (p− 1)(q − 1)

▶ pick integer values e, d such that: ed mod φ(n) = 1

▶ public key PK := (n, e)

▶ secret key SK := (n, d)

Encryption
▶ input plaintext M ∈ Z∗n, public key (n, e)

▶ C := Me mod n

Decryption
▶ input ciphertext C ∈ Z∗n, secret key (n, d)

▶ M := Cd mod n

In Zn: (M
e)d = Med = Med mod φ(n) = M1 = M .

Common implementation tricks to speed up computation:
▶ Choose small e with low Hamming weight (e.g., 3, 17, 216 +1) for faster modular encryption
▶ Preserve factors of n in SK = (p, q, d), decryption in both Zp and Zq , use Chinese

remainder theorem to recover result in Zn.
210

“Textbook” RSA is not secure

There are significant security problems with a naive application of the
basic “textbook” RSA encryption function C := Me mod n:

▶ deterministic encryption: cannot be CPA secure

▶ malleability:

• adversary intercepts C and replaces it with C′ := Xe · C
• recipient decrypts M ′ = DecSK (C′) = X ·M mod n

▶ chosen-ciphertext attack recovers plaintext:

• adversary intercepts C and replaces it with C′ := Re · C mod n

• decryption oracle provides M ′ = DecSK (C′) = R ·M mod n

• adversary recovers M = M ′ ·R−1 mod n

▶ Small value of M (e.g., 128-bit AES key), small exponent e = 3:

• if Me < n then C = Me mod n = Me and then M = 3
√
C can be

calculated efficiently in Z (no modular arithmetic!)

▶ many other attacks exist . . .
211

Trapdoor permutations

A trapdoor permutation is a tuple of polynomial-time algorithms
(Gen, F, F−1) such that

▶ the key generation algorithm Gen receives a security parameter ℓ
and outputs a pair of keys (PK ,SK)← Gen(1ℓ), with key lengths
|PK | ≥ ℓ, |SK | ≥ ℓ;

▶ the sampling function F maps a public key PK and a value x ∈ X
to a value y := FPK (x) ∈ X ;

▶ the inverting function F−1 maps a secret key SK and a value
y ∈ X to a value x := F−1SK (y) ∈ X ;

▶ for all ℓ, (PK ,SK)← Gen(1ℓ), x ∈ X : F−1SK (FPK (x)) = x.

In practice, the domain X may depend on PK .

This looks almost like the definition of a public-key encryption scheme,
the difference being

▶ F is deterministic;

▶ the associated security definition.
212

Secure trapdoor permutations
Trapdoor permutation: Π = (Gen, F, F−1)

Experiment/game TDInvA,Π(ℓ):

A

adversary x′x

1ℓ

challenger

PK , y

(PK , SK)← Gen(1ℓ)

x ∈R X
y := FPK (x)

1 The challenger generates a key pair (PK ,SK)← Gen(1ℓ) and a
random value x ∈R X from the domain of FPK .

2 The adversary A is given inputs PK and y := FPK (x).

3 Finally, A outputs x′.

If x′ = x then A has succeeded: TDInvA,Π(ℓ) = 1.

A trapdoor permutation Π is secure if for all probabilistic polynomial time
adversaries A the probability of success P(TDInvA,Π(ℓ) = 1) is negligible.

While the definition of a trapdoor permutation resembles that of a public-key encryption scheme,
its security definition does not provide the adversary any control over the input (plaintext).

213

Public-key encryption scheme from trapdoor permutation

Trapdoor permutation: ΠTD = (GenTD, F, F
−1) with FPK : X ↔ X

Authentic. encrypt. scheme: ΠAE = (GenAE,Enc,Dec) with key space K
Secure hash function h : X → K

We define the public-key encryption scheme Π′ = (Gen′,Enc′,Dec′):

▶ Gen′: output key pair (PK ,SK)← GenTD(1
ℓ)

▶ Enc′: on input of plaintext message M , generate random x ∈R X ,
y = FPK (x), K = h(x), C ← EncK(M), output ciphertext (y, C);

▶ Dec′: on input of ciphertext message (y, C), recover
K = h(F−1SK (y)), output DecK(C)

Encrypted message: FPK (x),Ench(x)(M)

The trapdoor permutation is only used to communicate a “session key” h(x), the actual message
is protected by a symmetric authenticated encryption scheme. The adversary A in the PubKcca

A,Π′
game has no influence over the input of F .

If hash function h is replaced with a “random oracle” (something that
just picks a random output value for each input from X), the resulting
public-key encryption scheme Π′ is CCA secure.

214

Using RSA as a CCA-secure encryption scheme

Solution 1: use only as trapdoor permutation to build encryption scheme

▶ Pick random value x ∈ Z∗n
▶ Ciphertext is (xe mod n,Ench(x)(M)), where Enc is from an

authenticated encryption scheme

Solution 2: Optimal Asymmetric Encryption Padding

Make M (with zero padding) the left half,
and a random string R the right half, of the
input of a two-round Feistel cipher, using a
secure hash function as the round function.

Interpret the result (X,Y) as an integer
M ′.

Then calculate C := M ′e mod n.

PKCS #1 v2.0

Wikipedia/Ozga

215

https://datatracker.ietf.org/doc/html/rfc2437

Practical pitfalls with implementing RSA

▶ low entropy of random-number generator seed when generating p
and q (e.g. in embedded devices):

• take public RSA modulus n1 and n2 from two devices

• test gcd(n1, n2)
?
= 1 ⇒ if no, n1 and n2 share this number as a

common factor

• February 2012 experiments: worked for many public HTTPS keys

Lenstra et al.: Public keys, CRYPTO 2012
Heninger et al.: Mining your Ps and Qs, USENIX Security 2012.

216

https://link.springer.com/chapter/10.1007/978-3-642-32009-5_37
https://factorable.net/paper.html

1 Historic ciphers

2 Perfect secrecy

3 Semantic security

4 Block ciphers

5 Modes of operation

6 Message authenticity

7 Authenticated encryption

8 Secure hash functions

9 Secure hash applications

10 Key distribution problem

11 Number theory and group theory

12 Discrete logarithm problem

13 RSA trapdoor permutation

14 Digital signatures

217

Digital signature schemes: existential unforgeability
Signature scheme Π = (Gen, Sign,Vrfy),M = {0, 1}∗, security parameter ℓ.

Experiment/game Sig-forgeA,Π(ℓ):

b

1ℓ

A

adversary

1ℓ

M,S
M ̸∈{M1,M2,...,Mt}

PK

St, . . . , S2, S1

M1,M2, . . . ,Mt

(PK ,SK)← Gen(1ℓ)

Si ← SignSK (M i)

b := VrfyPK (M,S)

1 challenger generates key pair (PK ,SK)← Gen(1ℓ)

2 adversary A is given PK and oracle access to SignSK (·); let
Q = {M1, . . . ,M t} denote the set of queries that A asks the oracle

3 adversary outputs (M,S)

4 the experiment outputs 1 if VrfyK(M,S) = 1 and M ̸∈ Q
Definition: A signature scheme Π = (Gen,Sign,Vrfy) is existentially
unforgeable under an adaptive chosen-message attack (“secure”) if for all
probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

P(Sig-forgeA,Π(ℓ) = 1) ≤ negl(ℓ)

218

One-time signatures

A simple digital signature scheme can be built using a one-way function h
(e.g., secure hash function):

Secret key: 2n random bit strings Ri,j (i ∈ {0, 1}, 1 ≤ j ≤ n)

Public key: 2n bit strings h(Ri,j)

Signature: (Rb1,1, Rb2,2, . . . , Rbn,n), where h(M) = b1b2 . . . bn

Problem: Can only be used once (i.e., provides no existential
unforgeability if t > 1 oracle queries are allowed).

219

RSA signatures

Basic idea: n = pq, ed ≡ 1 (mod ϕ(n)), PK = (e, n), SK = (d, n)

S = SignSK (M) := Md mod n

VrfyPK (M,S) := (Se mod n
?
= M)

This “textbook” RSA signature, where adversary has free choice of
message M ∈ Z∗n, is completely insecure (no existential unforgeability):

▶ No-message attack: pick any S and present (M,S) with
M := Se mod n to challenger

▶ Choose message M , factor it into M = M1M2, query oracle for
signatures S1 ≡Md

1 , S2 ≡Md
2 , present (M,S1S2 mod n)

▶ If M and e are small (e.g., e = 3, M < 2256 SHA-256 hash,
⌈log2 n⌉ = 2048), then Me < n and S = e

√
M may be integer

Solution: RSA with full-domain hashing (RSA-FDH).
Use a collision-resistant H : {0, 1}∗ → Z∗n and S := [H(M)]d mod n.

There is also RSA-PSS (PKCS #1 v2.1) which adds a “salt” value for randomization.

220

https://www.rfc-editor.org/rfc/rfc3447

Schnorr identification scheme

Cyclic group G of prime order q with generator g, DLOG hard

Secret key: x ∈R Z∗q , public key: y = gx

Prover P picks k ∈R Zq, Verifier V picks r ∈R Zq

P → V : I := gk

V → P : r

P → V : s := (rx+ k) mod q

Verifier checks
gs · y−r ?

= I

Works because:

gs · y−r = grx+k · (gx)−r = grx+k−rx = gk = I

As secure as DLOG: an attacker who can find s1, s2 for two challenges
r1, r2 with same I could also calculate any discrete logarithm:

gs1 · y−r1 = I = gs2 · y−r2

gs1−s2 = yr1−r2 = gx(r1−r2)

logg y = (s1 − s2)(r1 − r2)
−1 mod q

221

Schnorr signature scheme

Idea (“Fiat-Shamir transform”): a prover can run the identification
protocol itself, by generating the challenge r from I using a secure hash
function H : {0, 1}∗ → Zq, and that can then also incorporate the
message M to be signed:

r := H(I,M)

Secret key x ∈R Z∗
q and public key y = gx ∈ G in some DLOG hard cyclic group, as before.

Sign: on input of a message M ∈ {0, 1}∗, generate signature (r, s) with

k ∈R Zq

I := gk

r := H(I,M)

s := rx+ k mod q

Verify: on input of message M and signature (r, s), compute

I := gs · y−r

and output 1 iff H(I,M) = r.
222

Digital Signature Algorithm (DSA)

Let (G, q, g) be system-wide choices of a cyclic group G of order q with
generator g. In addition, we need two functions H : {0, 1}∗ → Zq and
F : G→ Zq where H must be collision resistant.
Both H and F are random oracles in security proofs, but common F not even preimage resistant.

Key generation: uniform secret key x ∈ Zq, then public key y := gx ∈ G.

Signing: On input of a secret key x ∈ Zq and a message m ∈ {0, 1}∗, first
choose (for each message!) uniformly at random k ∈ Z∗q and set r := F (gk).
Then solve the linear equation

k · s− x · r ≡ H(m) (mod q) (1)

for s := k−1 · (H(m) + xr) mod q. If r = 0 or s = 0, restart with a fresh k,
otherwise output Signx(m)← (r, s).

Verification: On input of public key y, message m, and signature (r, s), verify
equation (1) after both sides have been turned into exponents of g:

gks/gxr = gH(m) (2)

(gk)s = gH(m)yr (3)

gk = gH(m)s−1

yrs−1

(4)

=⇒ actually verify: r
?
= F

(
gH(m)s−1

yrs−1)
(5)

223

DSA variants

ElGamal signature scheme

The DSA idea was originally proposed by ElGamal with G = Z∗p,
ord(g) = q = p− 1 and F (x) = x.
Unless the p and g are chosen more carefully, ElGamal signatures can be vulnerable to forgery:
D. Bleichenbacher: Generating ElGamal signatures without knowing the secret key.
EUROCRYPT ’96. https://link.springer.com/chapter/10.1007/3-540-68339-9_2

NIST DSA

In 1993, the US government standardized the Digital Signature
Algorithm, a modification of the ElGamal signature scheme where

▶ G is a prime-order subgroup of Z∗p
▶ prime number p (1024 bits), prime number q (160 bits) divides p− 1

▶ g = h(p−1)/q mod p, with 1 < h < p− 1 so that g > 1 (e.g., h = 2)

▶ H is SHA-1

▶ F (x) = x mod q

Generate key: random 0 < x < q, y := gx mod p.
Signature (r, s) := Signx(m): random 0 < k < q,
r := (gk mod p) mod q, s := (k−1(H(m) + x · r)) mod q
Later versions of the DSA standard FIPS 186 added larger values for (p, q, g), as well as ECDSA,
where G is one of several elliptic-curve groups over Zp or F2n and F ((x, y)) = x mod q.

224

https://link.springer.com/chapter/10.1007/3-540-68339-9_2

Elliptic-Curve Digital Signature Algorithm (ECDSA)

System-wide domain parameters:
order q of finite field Fq, a representation of Fq, curve parameters a and b, base
point P = (xP , yP) ∈ E(Fq), prime order n of P , cofactor h = |E(Fq)|/n.

ECDSA KeyGen: secret key d ∈R Z∗n, public key Q := dP

ECDSA Sign(m, d):
select k ∈R Z∗n
(x1, y1) := kP , convert x1 to integer x̄1

r := x̄1 mod n, if r = 0 restart with new k
e := H(m)
s := k−1(e+ dr) mod n, if s = 0 restart
return (r, s)

ECDSA Vrfy(m, r, s,Q):
reject unless r, s ∈ Z∗n
e := H(m)
w := s−1 mod n, u1 := ew mod n, u2 := rw mod n
X := u1P + u2Q, reject if X = O
v := x̄1 mod n where x̄1 is x1 of X converted to integer
accept signature if v = r, otherwise reject signature

225

226

Proper generation of k is important

DSA fails catastrophically if the adversary can ever guess k:

s ≡ k−1 · (H(m) + xr) ⇒ x ≡ (k · s−H(m)) · r−1 (mod q)

All that is needed for k to leak is two messages m ̸= m′ signed with the
same k = k′ (easily recognized from r = r′ = F (gk)):

s ≡ k−1 ·
(
H(m) + xr

)
s′ ≡ k−1 ·

(
H(m′) + xr

)
s− s′ ≡ k−1 ·

(
H(m)−H(m′)

)
k ≡

(
H(m)−H(m′)

)
(s− s′)−1 (mod q)

Sony used a fixed k in firmware signatures for their PlayStation 3
(fail0verflow, 27th Chaos Communication Conf., Berlin 2010).

Without a good random-bit generator to generate k, use e.g.
k := SHA-3(x∥m) mod q (with hash output longer than q).

227

Public-key infrastructure I

Public key encryption and signature algorithms allow the establishment of
confidential and authenticated communication links with the owners of
public/secret key pairs.

Public keys still need to be reliably associated with identities of owners.
In the absence of a personal exchange of public keys, this can be
mediated via a trusted third party. Such a certification authority C issues
a digitally signed public key certificate

CertC(A) = (A,PKA, T, L,N,SignSKC
(A,PKA, T, L,N))

in which C confirms that the public key PKA belongs to entity A,
starting at time T and that this confirmation is valid for the time interval
L, and all this has a serial number N and is digitally signed with C’s
secret signing key SKC .

Anyone who knows C’s public key PKC from a trustworthy source can
use it to verify the certificate CertC(A) and obtain a trustworthy copy of
A’s public key PKA this way.

228

Public-key infrastructure II

We can use the operator • to describe the extraction of A’s public key
PKA from a certificate CertC(A) with the certification authority public
key PKC :

PKC • CertC(A) =

{
PKA if certificate valid
failure otherwise

The • operation involves not only the verification of the certificate
signature, but also the validity time and other restrictions specified in the
signature. For instance, a certificate issued by C might contain a
reference to an online certificate revocation list published by C, which
lists the serial numbers N of all certificates of public keys that might
have become compromised (e.g., the smartcard containing SKA was
stolen or the server storing SKA was broken into) and whose certificates
have not yet expired.

229

Public-key infrastructure III

Public keys can also be verified via several trusted intermediaries in a
certificate chain:

PKC1 •CertC1(C2)•CertC2(C3)• · · · •CertCn−1(Cn)•CertCn(B) = PKB

A has received directly a trustworthy copy of PKC1 (which many
implementations store locally as a certificate CertA(C1) to minimise the
number of keys that must be kept in tamper-resistant storage).

Certification authorities could be made part of a hierarchical tree, in
which members of layer n verify the identity of members in layer n− 1
and n+ 1. For example layer 1 can be a national CA, layer 2 the
computing services of universities and layer 3 the system administrators
of individual departments.

Practical example: A personally receives KC1
from her local system administrator C1, who

confirmed the identity of the university’s computing service C2 in CertC1
(C2), who confirmed the

national network operator C3, who confirmed the IT department of B’s employer C3 who finally
confirms the identity of B. An online directory service allows A to retrieve all these certificates
(plus related certificate revocation lists) efficiently.

In today’s Transport Layer Security (TLS) practice (HTTPS, etc.), most private users use their
web-browser or operating-system vendor as their sole trusted source of PKC1

root keys.

230

Example of an X.509 certificate
$ openssl s_client -showcerts www.cst.cam.ac.uk:443 </dev/null >cst.crt

depth=2 C = BM, O = QuoVadis Limited, CN = QuoVadis Root CA 2 G3

depth=1 C = BM, O = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

depth=0 C = GB, ST = Cambridgeshire, L = CAMBRIDGE, O = University of Cambridge, OU = UIS, CN = www.cst.cam.ac.uk

$ openssl x509 -text -noout -in cst.crt

Certificate:

Data:

Version: 3 (0x2)

Serial Number:

03:07:fb:5f:76:c8:1d:8f:7e:e3:5e:d6:ab:71:5d:a5:1a:c0:e6:70

Signature Algorithm: sha256WithRSAEncryption

Issuer: C = BM, O = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3

Validity

Not Before: Sep 13 15:33:05 2017 GMT

Not After : Sep 13 15:43:00 2020 GMT

Subject: C = GB, ST = Cambridgeshire, L = CAMBRIDGE, O = University of Cambridge, OU = UIS, CN = www.cst.cam.ac.uk

Subject Public Key Info:

Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)

Modulus:

00:c3:cb:9f:77:9d:c8:09:f1:b3:aa:f7:8f:34:e5:

8e:92:45:50:a7:35:ee:09:27:ec:b8:7c:af:07:9d:

f4:30:79:37:2e:81:ad:85:ff:f9:c4:93:ca:27:28:

a0:d1:93:27:9f:0f:b4:c8:1c:55:7b:f9:90:46:c5:

69:56:40:b5:90:d6:34:06:8f:cc:b7:e0:31:3e:2f:

d9:2f:57:13:f5:4f:7d:ef:d8:7e:16:5a:d7:72:14:

e4:0b:13:87:b2:df:2a:0f:30:f1:6d:9a:b6:0b:c8:

e0:87:0f:b5:72:a0:b9:07:2e:48:32:bb:12:dd:d3:

96:21:1c:c9:94:8f:47:1d:9a:3b:35:ec:20:45:38:

06:15:ed:4e:43:80:96:94:90:fc:25:05:88:f6:7b:

cb:27:a9:49:e4:80:20:e7:f1:f0:23:05:e8:91:77:

c3:04:2e:2e:33:ca:76:fc:00:17:a4:93:88:f4:e1:

66:ac:51:56:8d:27:91:2d:d2:5a:e7:01:83:b9:ab:

c1:94:38:54:5a:f4:e9:dc:c5:91:96:b7:17:c6:55:

bf:ea:85:41:d5:0b:d7:09:62:26:01:c9:e1:fe:b3:

57:e0:b8:f9:fc:0b:76:65:6c:43:f0:5f:30:77:38:

17:00:df:6a:27:25:1d:30:9e:19:01:e9:0c:78:cc:

c9:3d

Exponent: 65537 (0x10001)

231

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

X509v3 Authority Key Identifier:

keyid:B3:12:89:B5:A9:4B:35:BC:15:00:F0:80:E9:D8:78:87:F1:13:7C:76

Authority Information Access:

CA Issuers - URI:http://trust.quovadisglobal.com/qvsslg3.crt

OCSP - URI:http://ocsp.quovadisglobal.com

X509v3 Subject Alternative Name:

DNS:www.cst.cam.ac.uk

X509v3 Certificate Policies:

Policy: 1.3.6.1.4.1.8024.0.2.100.1.1

CPS: http://www.quovadisglobal.com/repository

X509v3 Extended Key Usage:

TLS Web Client Authentication, TLS Web Server Authentication

X509v3 CRL Distribution Points:

Full Name:

URI:http://crl.quovadisglobal.com/qvsslg3.crl

X509v3 Subject Key Identifier:

16:19:61:83:6F:AE:05:98:FA:62:9D:B8:AA:99:4B:C5:0A:04:8B:D9

X509v3 Key Usage: critical

Digital Signature, Key Encipherment

Signature Algorithm: sha256WithRSAEncryption

8a:94:59:8a:70:00:c5:f9:1b:25:f0:04:c7:b8:79:46:6b:0c:

2b:d1:01:1a:9e:83:4a:53:f9:c5:45:38:85:1d:f3:32:8a:f8:

03:a2:bd:6d:f7:e6:5b:97:81:11:7d:c6:9c:d0:78:01:2a:f4:

8a:d1:51:13:b0:a4:72:cc:40:55:8f:e8:bb:b1:ff:f9:66:0a:

2d:fe:9c:69:12:2c:32:45:bc:0b:39:02:ff:68:12:94:ad:04:

a2:4a:f0:5b:c6:cb:6d:d2:38:ad:dd:be:4c:1c:19:d2:69:b3:

eb:98:e7:8e:bf:84:cb:a2:7c:07:47:de:99:d9:79:6e:e0:7a:

01:89:a5:93:de:70:b5:69:56:1f:09:8d:15:04:88:e5:59:86:

65:b3:fb:42:24:db:86:8c:d5:f7:f3:1c:cc:cd:7c:79:d4:32:

4a:70:b7:f8:87:b3:0e:9b:93:ef:99:7f:a4:27:fb:7d:03:93:

[... 16 lines deleted ...]

5c:76:39:6d:51:dc:80:2e:cf:96:90:0c:b8:f1:ed:88:c8:c2:

27:69:fe:0d:b9:ec:48:da:d4:f3:79:77:e1:3a:15:be:03:58:

a6:d1:74:d7:4e:ec:d1:17

$ ls -l /etc/ssl/certs/

232

Outlook

Modern cryptography is still a young discipline (born in the early 1980s),
but well on its way from a collection of tricks to a discipline with solid
theoretical foundations.

Some important concepts that we did not touch here for time reasons:

▶ password-authenticated key exchange

▶ identity-based encryption

▶ side-channel and fault attacks

▶ application protocols: electronic voting, digital cash, etc.

▶ secure multi-party computation

▶ post-quantum cryptography

233

Appendix

234

Some basic discrete mathematics notation

▶ |A| is the number of elements (size) of the finite set A.

▶ A1 ×A2 × · · · ×An is the set of all n-tuples (a1, a2, . . . , an) with
a1 ∈ A1, a2 ∈ A2, etc. If all the sets Ai (1 ≤ i ≤ n) are finite:
|A1 ×A2 × · · · ×An| = |A1| · |A2| · · · · · |An|.

▶ An is the set of all n-tuples (a1, a2, . . . , an) = a1a2 . . . an with
a1, a2, . . . , an ∈ A. If A is finite then |An| = |A|n.

▶ A≤n =
⋃n

i=0 A
i and A∗ =

⋃∞
i=0 A

i

▶ Function f : A→ B maps each element of A to an element of B:
a 7→ f(a) or b = f(a) with a ∈ A and b ∈ B.

▶ A function f : A1 ×A2 × · · · ×An → B maps each parameter tuple
to an element of B: (a1, a2, . . . , an) 7→ f(a1, a2, . . . , an) or
f(a1, a2, . . . , an) = b.

▶ A permutation f : A↔ A maps A onto itself and is invertible:
x = f−1(f(x)). There are |Perm(A)| = |A|! = 1 · 2 · · · · · |A|
different permutations over a finite set A.

▶ BA is the set of all functions of the form f : A→ B. If A and B
are finite, there will be |BA| = |B||A| such functions.

235

Bit-sequence notations

We can further simplify some set and tuple notation to represent bit
strings/sequences. For example, we can write the set of all 23 = 8
sequences of three bits as

{0, 1}3 = {0, 1} × {0, 1} × {0, 1}
= {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
= {000, 001, 010, 011, 100, 101, 110, 111}

Here we treat tuples of bits as bit sequences, merely dropping the
separating commas and enclosing parentheses.

A superscript asterix (“Kleene star”) denotes the set of all finite-length
bit sequences, including the empty string ε = {0, 1}0:

{0, 1}∗ =
∞⋃
i=0

{0, 1}i

These notations are borrowed from formal languages theory.

236

Bit-sequence notations

It is also customary to use the exponentiation operator on bit sequences
to denote repetition, e.g.

13 = 111, 013 = 0111, (10)3 = 101010

Here we can think of operating on the free monoid ({0, 1}∗, ∥) of bits
with concatenation as the operator (slide 161), while also using
multiplicative notation (slide 164), meaning that the monoid operator ∥
can also be represented through juxtaposition (e.g., 1∥0 = 10) and its
repeated application can be written as exponentiation with a
non-negative integer.

Occasionally, we need to represent a non-negative (or “unsigned”, in C
parlance) integer i in the range 0 ≤ i < 2n as an n-bit sequence. We use
here the notation ⟨i⟩n, or simply ⟨i⟩ if the number of bits n is clear from
context. Using the “big-endian” or “most-significant-bit (MSB) first”
convention, this means e.g. ⟨11⟩4 = 1011.
In practice, the efficient and portable binary representation of integer numbers has to consider
additional alignment constraints and memory-layout complications. Computer memory is
commonly structured into 8-bit bytes, and different conventions (“big-endian” vs “little-endian”)
for the order of bytes representing an integer value in memory have been used by different
manufacturers. As a result, cryptographic standards often have to spend significant text on
unambiguously specifying the exact bit and byte layout of input and output values, to ensure
interoperability between different implementations. 237

Confidentiality games at a glance

PrivKeav

C ← EncK(Mb)

K ← Gen(1ℓ)

b ∈R {0, 1}

challenger

A

adversaryC

M0,M1
1ℓ

b′b

1ℓ

PrivKmult

C ← EncK(Mb)

K ← Gen(1ℓ)

b ∈R {0, 1}

challenger

A

adversaryC1, C2, . . . , Ct

M1
1 ,M

2
1 , . . . ,M

t
1

M1
0 ,M

2
0 , . . . ,M

t
0

1ℓ

b′

1ℓ

b

PrivKcpa A

adversary

Ct, . . . , C2, C1

M1,M2, . . . ,Mt

M0,M1

C

Ct+t′ , . . . , Ct+1

Mt+1, . . . ,Mt+t′

b ∈R {0, 1}
K ← Gen(1ℓ)

Ci ← EncK(M i)

C ← EncK(Mb)
challenger

1ℓ

b′b

1ℓ

238

Integrity games at a glance

PrivKcca A

adversary

. . . ,M2, C1

M1, C2, . . .

M0,M1

C

. . . , Mt+2, Ct+1

Mt+1, Ct+2 ̸= C, . . .

b ∈R {0, 1}
K ← Gen(1ℓ)

Ci ← EncK(M i)

M i ← DecK(Ci)

C ← EncK(Mb)

1ℓ

b′

1ℓ

b

Mac-forge A

adversary

1ℓ

b

1ℓ K ← Gen(1ℓ)

T i ← MacK(M i)
T t, . . . , T 2, T 1

M1,M2, . . . ,Mt

b := VrfyK(M,T)
M,T

M ̸∈{M1,M2,...,Mt}

CI A

adversary

1ℓ

b

1ℓ K ← Gen(1ℓ)

Ci ← EncK(M i)
Ct, . . . , C2, C1

M1,M2, . . . ,Mt

b :=

{
0, DecK (C) = ⊥
1, DecK (C) ̸= ⊥ C

C ̸∈{C1,C2,...,Ct}

239

	Introduction
	Historic ciphers
	Perfect secrecy
	Semantic security
	Block ciphers
	Modes of operation
	Message authenticity
	Authenticated encryption
	Secure hash functions
	Secure hash applications
	Key distribution problem
	Number theory and group theory
	Discrete logarithm problem
	RSA trapdoor permutation
	Digital signatures
	Appendix

