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What is this course about?

Aims

This course provides an overview of basic modern cryptographic
techniques and covers essential concepts that users of cryptographic
standards need to understand to achieve their intended security goals.

Objectives

By the end of the course you should

>

>

>

be familiar with commonly used standardized cryptographic building
blocks;

be able to match application requirements with concrete security
definitions and identify their absence in naive schemes;

understand various adversarial capabilities and basic attack
algorithms and how they affect key sizes;

understand and compare the finite groups most commonly used with
discrete-logarithm schemes;

understand the basic number theory underlying the most common
public-key schemes, and some efficient implementation techniques.
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Related textbooks

Main reference:

» Jonathan Katz, Yehuda Lindell:
Introduction to Modern Cryptography, Chapman & Hall/CRC

Further reading:

» Christof Paar, Jan Pelzl: Understanding Cryptography, Springer

https://link.springer.com/book/10.1007/978-3-642-04101-3
https://www.cryptography-textbook.com/

» Douglas Stinson: Cryptography — Theory and Practice,
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Common information security targets

Most information-security concerns fall into three broad categories:

Confidentiality ensuring that information is accessible only to those
authorised to have access

Integrity safeguarding the accuracy and completeness of
information and processing methods

Availability ensuring that authorised users have access to
information and associated assets when required

Basic threat scenarios:

Eavesdropper: Alice l Bob
(passive)
Eve
Middle-person attack: Alice <«  Mallory «——  Bob
(active)
Eve
Storage security: Alice «— disk —_

Mallory



Encryption schemes

Encryption schemes are algorithm triples (Gen, Enc, Dec) aimed at
facilitating message confidentiality:

Private-key (symmetric) encryption scheme

> K < Gen private-key generation
» C « Encg(M) encryption of plain-text message M
» Decx(C)=M decryption of cipher-text message C

Public-key (asymmetric) encryption scheme
» (PK,SK) + Gen public/secret key-pair generation
» C + Encpg (M) encryption using public key
» Decsk(C)=M decryption using secret key

Probabilistic algorithms: Gen and (often also) Enc access a random-bit
generator that can toss coins (uniformly distributed, independent).

Notation: <— assigns the output of a probabilistic algorithm, := that of a deterministic algorithm.



Message integrity schemes

Other cryptographic algorithm triples instead aim at authenticating the
integrity and origin of a message:

Message authentication code (MAC)

> K < Gen private-key generation

» T := Mack (M) message tag generation

> M+ M N MAC verification:
Macg(M') #T recalculate and compare tag

» PK,SK < Gen public/secret key-pair generation

» S < Signgx (M) signature generation using secret key

» Vrfypr (M,S) =1, signature verification using public key
M #M>

Vrfy pre (M, 5) =0



Key exchange

Key-agreement protocol

» (PK 4,SK 4) < Gen  public/secret key-pair generation by Alice

» (PKp,SKpg) + Gen public/secret key-pair generation by Bob

» K :=DH(SK 4, PKpg) key derivation from exchanged public keys
= DH(PK 4,SK g)

Diffie—Hellman protocol:

Alice and Bob standardize suitably chosen very large public numbers g, p and q.
Alice picks a random number 0 < x < g and Bob a secret number 0 < y < q as
their respective secret keys. They then exchange the corresponding public keys:

A— B: PK s = ¢® modp

B— A: PKp =gY modp

Alice and Bob each now can calculate
K = (¢¥ mod p)” mod p = (¢g” mod p)¥ mod p

and use that as a shared private key. With suitably chosen parameters, outside
observers will not be able to infer z, y, or K.
Why might one also want to sign or otherwise authenticate PK 4 and/or PK g?



Key types

Private keys = symmetric keys

Public/secret key pairs = asymmetric keys

Warning: this “private” vs “secret” key terminology is not universal in the literature
» Ephemeral keys / session keys are only used briefly and often

generated fresh for each communication session.

They can be used to gain privacy (observers cannot identify users from public keys
exchanged in clear) and forward secrecy (if a communication system gets compromised in
future, this will not compromise past communication).

> Static keys remain unchanged over a longer period of time (typically
months or years) and are usually intended to identify users.
Static public keys are usually sent as part of a signed ‘certificate” SignSKC (A, PK 4),

where a “trusted third party” or “certification authority” C' certifies that PK 4 is the public
key associated with user A.

Master keys are used to generate other derived keys.

By purpose: encryption, message-integrity, authentication, signing,
key-exchange, certification, revocation, attestation, etc. keys



When is a cryptographic scheme “secure”?

For an encryption scheme, if no adversary can ...
» ... find out the secret/private key?

. find the plaintext message M?

» ... determine any character/bit of M?
» ... determine any information about M from C?
» ... compute any function of the plaintext M from ciphertext C?

= ‘“semantic security”

For an integrity scheme, should we demand that no adversary can ...

» ... find out the secret/private key?

. create a new message M’ and matching tag/signature?

> ... create a new M’ that verifies with a given tag/signature?
» ... modify or recombine a message+tag so they still verify?
> .

. create two messages with the same signature?



What capabilities may the adversary have?

| 4
>
>

access to some ciphertext C'

access to some plaintext/ciphertext pairs (M, C) with
C < Encg(M)?

ability to trick the user of Encg into encrypting some plaintext of
the adversary’s choice and return the result?
(“oracle access” to Enc)

ability to trick the user of Deck into decrypting some ciphertext of
the adversary’s choice and return the result?
(“oracle access” to Dec)?

ability to modify or replace C' en route?
(not limited to eavesdropping)

how many applications of Encg or Deck can be observed?
unlimited / polynomial / realistic (< 28 steps) computation time?

knowledge of all algorithms used

Wanted: Clear definitions of what security of an encryption scheme
means, to guide both designers and users of schemes, and allow proofs.



Kerckhoffs' principles (1883)

Requirements for a good traditional military encryption system:

@ The system must be substantially, if not mathematically,
undecipherable;

® The system must not require secrecy and can be stolen by the
enemy without causing trouble;

© It must be easy to communicate and remember the keys without
requiring written notes, it must also be easy to change or modify the
keys with different participants;

O The system ought to be compatible with telegraph communication;

@ The system must be portable, and its use must not require more
than one person;

@ Finally, regarding the circumstances in which such system is applied,
it must be easy to use and must neither require stress of mind nor
the knowledge of a long series of rules.

Auguste Kerckhoffs: La cryptographie militaire, Journal des sciences militaires, 1883.
https://petitcolas.net/fabien/kerckhoffs/


https://petitcolas.net/fabien/kerckhoffs/

Kerckhoffs' principle today

Requirement for a modern encryption system:
@ It was evaluated assuming that the enemy knows the system.

@ lts security relies entirely on the key being secret.

Note:

» The design and implementation of a secure communication system is
a major investment and is not easily and quickly repeated.

» Relying on the enemy not knowing the encryption system is
generally frowned upon as “security by obscurity”.

» The most trusted cryptographic algorithms have been published,
standardized, and withstood years of cryptanalysis.

» A cryptographic key should be just a random choice that can be
easily replaced, by rerunning a key-generation algorithm.

» Keys can and will be lost: cryptographic systems should provide
support for easy rekeying, redistribution of keys, and quick
revocation of compromised keys.



A note about message length

We explicitly do not worry in the following about the adversary being
able to infer something about the length m of the plaintext message M
by looking at the length n of the ciphertext C.

Therefore, we will consider here in security definitions for encryption
schemes only messages of fixed length m.
Variable-length messages could be extended to a fixed length, by
padding, but this can be expensive. It will depend on the specific
application whether the benefits of fixed-length padding outweigh the
added transmission cost.
Nevertheless, in practice, ciphertext length must always be considered as
a potential information leak. Examples:

» Encrypted-file lengths often permit unambiguous reconstruction of

what pages a HTTPS user accessed on a public web site.
G. Danezis: Traffic analysis of the HTTP protocol over TLS.
http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf

» Data compression can be abused to extract information from an

encrypted message if an adversary can control part of that message.
J. Kelsey: Compression and information leakage of plaintext.
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf

Also: CVE-2012-4929/CRIME


http://www0.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
https://www.iacr.org/cryptodb/archive/2002/FSE/3091/3091.pdf

Demo: leaking plaintext through compressed data length

$ cat compression-leak

#!/bin/bash

PLAINTEXT=cafe <

KEY="N-32m5qEj/emdVr.69w1fX"

ENC="openssl enc -aes-128-ctr -pass pass:$KEY"

for t in {a,b,c,d,e,f}{a,b,c,d,e,f}{a,b,c,d,e,f}{a,b,c,d,e,f} ; do
echo -n "$t "
echo $t $PLAINTEXT | gzip -c | $ENC | wc -c

done | sort -nk2

$ ./compression-leak
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Historic examples of simple ciphers

Shift Cipher: Treat letters {A,...,Z} like integers {0,...,25} = Z.
Choose key K € Zye, encrypt each letter individually by addition modulo
26, decrypt by subtraction modulo 26.

Example with K =25 = —1 (mod 26): IBM—HAL.
K = —3 known as Caesar Cipher, K = 13 as rot13.

The tiny key-space size 26 makes brute-force key search trivial.

Transposition Cipher: K is permutation of letter positions.

Key space is n!, where n is the permutation block length.
ATTACKATDAWN

TANWTCAKDATA

Substitution Cipher (monoalphabetic): Key is permutation
K : Zye <> Zoe. Encrypt plaintext M = mymy ... m, with ¢; = K(m;)
to get ciphertext C' = c1¢a. .. ¢, decrypt with m; = K~1(c;).

Key space size 26! > 4 x 10%® makes brute-force search infeasible.




Statistical properties of plain text

English letter frequency

£

%

OFRNWAOOIONO

D |
U W M
FCGcyp B K\

HD IR
The most common letters in English:
E,T,A O, LN S HRDLU,...
The most common digrams in English:
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, ...

The most common trigrams in English:
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, ...

I
X
I o

English text is highly redundant: very roughly 1 bit/letter entropy.

Monoalphabetic substitution ciphers allow simple ciphertext-only attacks based on
digram or trigram statistics (for messages of at least few hundred characters).



Vigenere cipher

Inputs:
> Key word K = kiks ... k;

» Plain text M = mymy...my,
Encrypt into ciphertext:
ci = (m; + kj(i—1) mod 1]+1) mod 26
Example: K = SECRET

S|E|C|R|E

T
A T| TIA|C|K
S| X|V|R|G|D

N> un
| | m
uikelie!

The modular addition can be replaced with XOR:
ci =m; Kki—1)mod 141 M, ki, ci € {0,1}

Vigeneére is an example of a polyalphabetic cipher.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA
CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC
EFGHIJKLMNOPQRSTUVWXYZABCD
FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF
HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
JKLMNOPQRSTUVWXYZABCDEFGHI
KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGHIJKL
NOPQRSTUVWXYZABCDEFGHIJKLM
OPQRSTUVWXYZABCDEFGHIJKLMN
PQRSTUVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMNOP
RSTUVWXYZABCDEFGHIJKLMNOPQ
STUVWXYZABCDEFGHIJKLMNOPQR
TUVWXYZABCDEFGHIJKLMNOPQRS
UVWXYZABCDEFGHIJKLMNOPQRST
VWXYZABCDEFGHIJKLMNOPQRSTU
WXYZABCDEFGHIJKLMNOPQRSTUV
XYZABCDEFGHIJKLMNOPQRSTUVW
YZABCDEFGHIJKLMNOPQRSTUVWX
ZABCDEFGHIJKLMNOPQRSTUVWXY



Attacking the Vigenere cipher

First determine the key length [. For each candidate keylength I:

>

Treat each [-th ciphertext character as part of a separate message

Mji, My, ..., M; encrypted with just a (monoalphabetic) shift cipher, resulting in
separate ciphertexts Cq,C5, ..., C).

Consider the [ letter-frequency histograms for these C; (1 < <1).

If choice of [ is incorrect, the letter-frequency histograms of each of
C1,Ch, ..., Cy will be more even/flatter (as they are the average of several
rotated histograms) than if [ was correct.

If pa,i is the relative frequency of letter a in C; (for all a in alphabet A), then

the index of coincidence
IC(Cy) = phs

acA
is the probability that two randomly chosen letters from C}; are identical. IC is a
measure of the unevenness of a histogram (minimal if Va € A : p, ; = |A|71).

Pick the key length I that leads to the highest I~1 22:1 IC(C;). In other words,
maximise the probability of two letters being identical when looking only at
letters that are a multiple of | characters apart in C.

Once the correct key length [ is known, compare the histograms of C1,C5,...,C].
They will just be shifted versions of each other (pq,2 = P(a—ko+k1) mod 26,1, etc.), and
the shift offsets reveal the differences between the corresponding key characters.
Finally, try decryption with all possible first key characters k.
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Perfect secrecy

Computational security

The most efficient known algorithm for breaking a cipher would require
far more computational steps than all hardware available to any adversary
can perform.

Unconditional security

Adversaries have not enough information to decide (from the ciphertext)
whether one plaintext is more likely to be correct than another, even with
unlimited computational power at their disposal.

23



Perfect secrecy Il
Consider a private-key encryption scheme
Enc: K xM —C, Dec:KxC— M

with Decg (Encg (M)) = M for all K € K, M € M, where M,C, K are
the sets of possible plaintexts, ciphertexts and keys, respectively.

Let also M € M, C' € C and K € K be values of plaintext, ciphertext
and key. Let P(M) and P(K) denote an adversary's respective a-priori
knowledge of the probability that plaintext M or key K are used.

The adversary can then calculate the probability of any ciphertext C as

= ) P(K)P(Deck(C)).

KeK

and can also determine the conditional probability

P(C|M) = > P(K)

{KeK|M=Deck (C)}

24



Perfect secrecy Il

Having eavesdropped some ciphertext C, an adversary can then use
Bayes' theorem to calculate for any plaintext M € M

P(M) - P(C|M) _ P(M) - Z{K|M:DecK(C)} P(K)
P(C) - Xk P(K) - P(Deck(C))

P(M|C) =

Perfect secrecy

An encryption scheme over a message space M is perfectly secret if for
every probability distribution over M, every message M € M, and every
ciphertext C' € C with P(C) > 0 we have

P(M|C) = P(M).

In other words: looking at the ciphertext C' leads to no new information
beyond what was already known about M in advance = eavesdropping
C has no benefit, even with unlimited computational power.

C.E. Shannon: Communication theory of secrecy systems. Bell System Technical Journal, Vol 28,
Oct 1949, pp 656—715. https://archive.org/details/bstj28-4-656/page/n55/mode/2up

25


https://archive.org/details/bstj28-4-656/page/n55/mode/2up

Vernam cipher / one-time pad |

Shannon’s theorem:

Let (Gen, Enc, Dec) be an encryption scheme over a message space M
with | M| = |K| = |C|. It is perfectly secret if and only if
@ Gen chooses every K with equal probability 1/|K|;

@ for every M € M and every C € C, there exists a unique key K € K
such that C' = Encg M.

The standard example of a perfectly-secure symmetric encryption scheme:

One-time pad

K=C=M={0,1}"
» Gen: K €g {0,1}™ (m uniform, independent coin tosses)
> Encx(M)=K® M (& = bit-wise XOR)
» Decg(C)=KaC

Example:
0xbd4b083f6aae @ “Vernam” = 0xbd4b083f6aae P 0x5665726e616d — Oxeb2e7a510bc3
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Vernam cipher / one-time pad Il

The one-time pad is a variant of the Vigenére Cipher with [ = n: the
key is as long as the plaintext. No key bit is ever used to encrypt more
than one plaintext bit.

Note: If  is a random bit with any probability distribution and y is one with uniform probability
distribution (P(y = 0) = P(y = 1) = 1), then the exclusive-or result = @ y will have uniform
probability distribution. This also works for addition modulo m (or for any finite group).

For each possible plaintext M, there exists a key K = M & C that turns
a given ciphertext C into M = Deck(C). If all K are equally likely, then

also all M will be equally likely for a given C, which fulfills Shannon'’s
definition of perfect secrecy.

What happens if you use a one-time pad twice?

One-time pads have been used intensively during significant parts of the 20th century for
diplomatic communications security, e.g. on the telex line between Moscow and Washington. Keys
were generated by hardware random bit stream generators and distributed via trusted couriers.

In the 1940s, the Soviet Union encrypted part of its diplomatic communication using duplicate
one-time pads, leading to the success of the US decryption project VENONA.
https://wuw.nsa.gov/portals/75/documents/news-features/declassified-documents/
crypto-almanac- 50th/VENONA_An_Overview. pdf
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Making the one-time pad more efficient

The one-time pad is very simple, but also very inconvenient:
one key bit for each message bit!

Many standard libraries contain pseudo-random number generators
(PRNGs). They are used in simulations, games, probabilistic algorithms,
testing, etc.

They expand a “seed value” Ry into a sequence of numbers Ry, Ry, ...
that look very random:

Ri = f(Ri-1.7)
The results pass numerous statistical tests for randomness (e.g. Marsaglia's “Diehard” tests).
Can we not use Ry as a short key, split our message M into chunks
My, My, ... and XOR with (some function g of) R; to encrypt M;?

Cz' =M,; & .(](Ri« /)

But what are secure choices for f and g7

What security propery do we expect from such a generator, and what

security can we expect from the resulting encryption scheme?
29



A non-secure pseudo-random number generator
Example (insecure)
Linear congruential generator with secret parameters (a, b, Rp):
R;11 = (aR; + b) mod m

Attack: guess some plain text (e.g., known file header), obtain for
example (Ry, Ry, R3), then solve system of linear equations over Z,,:

R
R

aR; +b (mod m)
aRy, +b (mod m)

Solution:

a (R2 — R3)/(R1 — RQ) (mod m)
b = R2 — Rl(Rz — R3)/(R1 — Rg) (mod m)

Multiple solutions if gcd(R; — Ry, m) # 1: resolved using R4 or just by
trying all possible values.



Private-key (symmetric) encryption

A private-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen, Enc, Dec) and sets K, M, C such that

> the key generation algorithm Gen receives a security parameter ¢
and outputs a key K < Gen(1%), with K € K, key length | K| > ¢;

» the encryption algorithm Enc maps a key K and a plaintext
message M € M = {0,1}™ to a ciphertext message
C + Encg(M);

» the decryption algorithm Dec maps a key K and a ciphertext
C e€C={0,1}" (n > m) to a plaintext message M := Deck(C);

> for all £, K + Gen(1%), and M € {0,1}™: Decx(Encg(M)) = M.

Notes:

A “polynomial-time algorithm"” has constants a, b, ¢ such that the runtime is
always less than a - £° + c if the input is £ bits long. (think Turing machine)
Technicality: we supply the security parameter £ to Gen here in unary encoding (as a sequence of £

“1" bits: le), merely to remain compatible with the notion of “input size” from computational
complexity theory. In practice, Gen usually simply picks ¢ random bits K €g {0, 1}‘7.
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Negligible functions

We call a function f : N — R>q “negligible” if, as its input n increases,
its output converges to zero faster than the inverse of any polynomial.

Negligible functions appear in formal security definitions for encryption schemes to limit the allowed
success probability of an adversary as a function of some security parameter, e.g. a key length.

Definition: negligible function

A function f from the natural numbers to the non-negative real numbers
is “negligible” if for every polynomial p there is an integer NV such that
for all n > N it holds that f(n) < ;i

Equivalently: for all positive integers c there exists an N, such that for all
n > N, it holds that f(n) < n—°.

Examples of negligible functions: n+ 27", n 2=V oy plogn

For example: if f(n) =2~ V" and p(n) = n® then solving f(n) < 1/p(n) we get n > 25 log2 n,
which holds for all n > 3453, i.e. Ns = 3453.

We normally will write a negligible function as “negl”.

Closure properties: If negl and negl2 are negligible, then so are
n — negl(n) + negl2(n) and n — negl(n) - p(n) for any polynomial p(n).
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Security definitions for encryption schemes

We define security via the rules of a game played between two players:
» a challenger, who uses an encryption scheme M = (Gen, Enc, Dec)
» an adversary A, who tries to demonstrate a weakness in I1.

Most of these games follow a simple pattern:

@ the challenger uniformly picks at random a secret bit b €g {0,1}
® A interacts with the challenger according to the rules of the game
© At the end, A has to output a bit b’.

The outcome of such a game X 4 n(¢) is either

> b=10 = A won the game, we write X 4 n(¢) =1

> b#b = A lost the game, we write X4 n(¢) =0

33



1, b=0

Probabilistic security game X: Xan() = {0 by

Security definition

An encryption scheme I1 is considered “X secure” if for all probabilistic
polynomial-time (PPT) adversaries A there exists a “negligible” function
negl such that

P(X4n(0)=1)< % + negl(¥4).

In practice: We want negl(£) to drop below a small number (e.g., 275 or 271%) for modest key
lengths £ (e.g., logyg £ =~ 2...3). Then no realistic opponent will have the computational power
to repeat the game often enough to win at least once more than what is expected from random
guessing.

Negligible advantage: Some authors prefer an alternative definition
where A's ability to guess b is quantified instead as

Advy  qo=|P(b=1and b’ =1) —P(b=0and b’ = 1)| < negl(¢).
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“Computationally infeasible”

With good cryptographic primitives, the only form of possible
cryptanalysis should be an exhaustive search of all possible keys (brute
force attack).

The following numbers give a rough idea of the limits involved:

Let's assume we can later this century produce VLSI chips with 10 GHz
clock frequency and each of these chips costs 10 $ and can test in a
single clock cycle 100 keys. For 10 million $, we could then buy the chips
needed to build a machine that can test 10! ~ 2°0 keys per second.
Such a hypothetical machine could break an 80-bit key in 7 days on
average. For a 128-bit key it would need over 102 years, that is over
100x the age of the universe.

Rough limit of computational feasiblity: 220 iterations
(i.e., < 2% feasible with effort, but > 2% certainly not)

For comparison:

P The fastest key search effort using thousands of Internet PCs (RC5-64, 2002) achieved in
the order of 2%7 keys per second.
https://www.cl.cam.ac.uk/~rncl/brute.html
https://www.distributed.net/

P Since 2025, the Bitcoin network has been searching through about 10% & 27° cryptographic
hash values per second, mostly using ASICs.
https://bitcoin.sipa.be/
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Indistinguishability in the presence of an eavesdropper

Private-key encryption scheme M = (Gen, Enc, Dec), M = {0,1}™, security parameter £.

Experiment/game PrivK%'(¢):

¢ — - 1¢
b eg {0,1} Mo, My
K « Gen(1%) A
C <+ EncK(Mb)
h = challenger c adversary —~
Setup:

© The challenger generates a bit b €g {0,1} and a key K «+ Gen(1%).

@® The adversary A is given input 1¢
Rules for the interaction:
@ The adversary A outputs a pair of messages:
My, My € {07 1}m
® The challenger computes C' + Encg(M;) and returns
Cto A
Finally, A outputs b'. If o = b then A has succeeded = PrivK'n(¢) =

1
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Indistinguishability in the presence of an eavesdropper

Definition: A private-key encryption scheme I1 has indistinguishable
encryption in the presence of an eavesdropper if for all probabilistic,
polynomial-time adversaries A there exists a negligible function negl,
such that 1

P(PrivKi'n(4) = 1) < 5+ negl(¢)

In other words: as we increase the security parameter ¢, we quickly
reach the point where no eavesdropper can do significantly better than
just randomly guessing b.
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Pseudo-random generator |

G :{0,1}" — {0,1}( where e(+) is a polynomial (expansion factor)

G is a pseudo-random generator if both
® e(n) > n for all n (expansion)

@ for all probabilistic, polynomial-time distinguishers D there exists a
negligible function negl such that

[P(D(r) = 1) = P(D(G(s)) = 1)| < negl(n)

where both 7 €g {0,1}(") and the seed s €g {0,1}" are chosen at
random, and the probabilities are taken over all coin tosses used by
D and for picking r and s.
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Pseudo-random generator ||

A brute-force distinguisher D would enumerate all 2™ possible outputs of
G, and return 1 if the input is one of them.

It would achieve
P(D(G(s))=1)=1

2’ﬂ
P(D(r) =1) = 2e(n)
the difference of which converges to 1, which is not negligible.

But a brute-force distinguisher has a exponential run-time O(2"), and is
therefore excluded!

We do not know how to prove that a given algorithm is a pseudo-random
generator, but there are many algorithms that are widely believed to be.

Some constructions are pseudo-random generators if another well-studied
problem is not solvable in polynomial time.
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Encrypting using a pseudo-random generator

We define the following fixed-length private-key encryption scheme:

Mprc = (Gen, Enc, Dec):
Let G be a pseudo-random generator with expansion factor e(-),
K =1{0,1}*, M =C = {0,1}°()

» Gen: on input 1 chose K €g {0,1}¢ randomly

» Enc: C:=G(K)® M

» Dec: M :=G(K)® C

Such constructions are known as “stream ciphers”.

We can prove that lNprg has “indistinguishable encryption in the
presence of an eavesdropper” assuming that G is a pseudo-random
generator: if we had a polynomial-time adversary A that can succeed
with non-negligible advantage against lNprg, we can turn that using a
polynomial-time algorithm into a polynomial-time distinguisher for G,
which would violate the assumption.
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Security proof for a stream cipher

Claim: lprg has indistinguishability in the presence of an eavesdropper
if G is a pseudo-random generator.

Proof: (outline) If Mprg did not have indistinguishability in the presence
of an eavesdropper, there would be an adversary A for which

(€)== P(PrivK{'n,.(£) = 1) — 5
is not negligible.
Use that A to construct a distinguisher D for G:
> receive input W € {0,1}¢(®)
> pick b €g {0,1}
> run A(1%) and receive from it My, M; € {0,1}°()
» return C:=W & M, to A
> receive b’ from A
» return 1 if b’ = b, otherwise return 0
Now, what is |[P(D(r) = 1) — P(D(G(K)) = 1)|?
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Security proof for a stream cipher (cont'd)

What is [B(D(r) = 1) — P(D(G(K)) = 1)|?

» What is P(D(r) = 1)?
Let 1 be an instance of the one-time pad, with key and message
length e(£), i.e. compatible to Mpgrg. In the D(r) case, where we
feed it a random string r €g {0,1}¢("), then from the point of view
of A being called as a subroutine of D(r), it is confronted with a
one-time pad [1. The perfect secrecy of i1 implies P(D(r) = 1) = %
» What is P(D(G(K)) =1)?
In this case, A participates in the game PrivK' . (£). Thus we
have P(D(G(K)) = 1) = P(PrivK$ ... (0) = 1) = 3 + €(0).

Therefore
IP(D(r) = 1) = P(D(G(K)) = 1)| = €()

which we have assumed not to be negligible, which implies that G is not
a pseudo-random generator, contradicting the assumption. O
Katz/Lindell (1st ed.), pp 73-75
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Security proofs through reduction

Some key points about this style of “security proof”:

» We have not shown that the encryption scheme [Nprg is “secure”.
(We don't know how to do this!)

» We have shown that lprg has one particular type of security
property, if one of its building blocks (G) has another one.

» We have “reduced” the security of construct lNprg to another

problem X:
instance of K
bl X instance of
roblem :
p Reduction scheme N A
A’
solution
to X attack
o

Here: X = distinguishing output of G from random string

» We have shown how to turn any successful attack on lNpgrg into an
equally successful attack on its underlying building block G.

» “Successful attack” means finding a polynomial-time probabilistic
adversary algorithm that succeeds with non-negligible success
probability in winning the game specified by the security definition.
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Security proofs through reduction

In the end, the provable security of some cryptographic construct (e.g.,
Mpre, some mode of operation, some security protocol) boils down to
these questions:

» What do we expect from the construct?
» What do we expect from the underlying building blocks?
» Does the construct introduce new weaknesses?

» Does the construct mitigate potential existing weaknesses in its
underlying building blocks?
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Security for multiple encryptions

Private-key encryption scheme M = (Gen, Enc, Dec), M = {0,1}™, security parameter £.

Experiment/game PrvimUIt(E)

1 — 1 22 . - 1¢
b er {0,1} MolvMov ~» My
t
K « Gen(1%) M, Mg, ..., M A
C + EncK(Mb) T 5 n
h = challenger o050 adversary =
Setup:

© The challenger generates a bit b €g {0,1} and a key K «+ Gen(1%).
® The adversary A is given input 1°
Rules for the interaction:
@ The adversary A outputs two sequences of ¢ messages:
M}, M2, ..., Mt and M, M2, ... M}, where all M} € {0,1}™.
® The chaIIenger computes C* +— Encg(M}) and returns
CHC?...,Ctto A
Finally, A outputs o’. If b’ = b then A has succeeded = Prvi"‘“'t(é) =1
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Security for multiple encryptions (cont’d)

Definition: A private-key encryption scheme I1 has indistinguishable
multiple encryptions in the presence of an eavesdropper if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PrivKTH(0) = 1) < % + negl(0)

Same definition as for indistinguishable encryptions in the presence of an eavesdropper, except for
referring to the multi-message eavesdropping experiment PrivKT‘f—I (0).

Example: Does our stream cipher lNpgrg offer indistinguishable multiple
encryptions in the presence of an eavesdropper?

Adversary A, outputs four messages , and

returns b’ = 1 iff . P(PrivKﬂZ’!hpRG(ﬁ) =1)=

Actually: Any encryption scheme is going to fail here!
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Securing a stream cipher for multiple encryptions |

How can we still use a stream cipher if we want to encrypt multiple
messages My, M5, ..., M; using a pseudo-random generator G7

Synchronized mode

Let the PRG run for longer to produce enough output bits for all
messages:

G(K) = Ri|Ra| ... |R:,  Ci=R; &M,

|| is concatenation of bit strings
» convenient if My, My, ..., M; all belong to the same
communications session and G is of a type that can produce long
enough output
» requires preservation of internal state of G across sessions
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Securing a stream cipher for multiple encryptions Il

Unsynchronized mode

Some PRGs have two separate inputs, a key K and an “initial vector”
IV . The private key K remains constant, while IV is freshly chosen at
random for each message, and sent along with the message.

for each i: IV, er {0,1}", C; :=(1V;,G(K,IV;) @ M;)

But: what exact security properties do we expect of a G with IV input?

This question leads us to a new security primitive and associated security
definition: pseudo-random functions and CPA security.
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Security against chosen-plaintext attacks (CPA)

Private-key encryption scheme M = (Gen, Enc, Dec), M = {0,1}™, security parameter £.

Experiment/game PrivK (T, (¢):

1! — begr {0,1} M, M?,. ., M == 1t
R Ct,...,C?,Ct
K «— Gen(le)‘ Mo,Ml
C" + Encg (M*) A
C «+ EncK(Mb) c ’
h = challenger MU M adversary =

C«t+t’7 ..., Ot
Setup: (as before)
© The challenger generates a bit b €g {0,1} and a key K + Gen(1%).
® The adversary A is given input 1¢
Rules for the interaction:
@ The adversary A is given oracle access to Encg:
A outputs M?, gets Ency(M?), outputs M?, gets Encg (M?), ...
® The adversary A outputs a pair of messages: My, My € {0,1}™.
©® The challenger computes C' < Ency (Mp) and returns C to A
O The adversary A continues to have oracle access to Encg.
Finally, A outputs b'. If b’ = b then A has succeeded = PrivKT,(¢) = 1
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Security against chosen-plaintext attacks (cont'd)

Definition: A private-key encryption scheme I1 has indistinguishable
multiple encryptions under a chosen-plaintext attack (“is CPA-secure") if
for all probabilistic, polynomial-time adversaries A there exists a
negligible function negl, such that

P(PrvK™ (6) = 1) < % + negl(0)

Advantages:

» Eavesdroppers can often observe their own text being encrypted,
even where the encrypter never intended to provide an oracle.
(WW?2 story: Midway Island/AF, server communication).

» CPA security provably implies security for multiple encryptions.

» CPA security allows us to build a variable-length encryption scheme
simply by using a fixed-length one many times.
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Random functions and permutations

Random function

Consider all possible functions of the form
f:{0,1}™ —{0,1}"
How often do you have to toss a coin to fill the value table of such a
function f with random bits?
How many different such f are there?
An m-bit to n-bit random function f is one that we have picked
uniformly at random from all these possible functions.
Random permutation

Consider all possible permutations of the form
g:{0,1}" « {0,1}"

How many different such g are there?

An n-bit to n-bit random permutation g is one that we have picked
uniformly at random from all these possible permutations.
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Pseudo-random functions and permutations

Basic idea:

A pseudo-random function (PRF) is a fixed, efficiently computable

function
F:{0,1}* x {0,1}™ — {0,1}"

that (compared to a random function) depends on an additional input
parameter K € {0,1}*, the key. Each choice of K leads to a function

Fr - {0,1}™ — {0,1}"

For typical key lengths (e.g., k, m > 128), the set of all possible functions
Fx will be a tiny subset of the set of all possible random functions f.

For a secure pseudo-random function F' there must be no practical way
to distinguish between Fx and a corresponding random function f for
anyone who does not know key K.

We can similarly define a keyed pseudo-random permutation.

In some proofs, in the interest of simplicity, we will only consider PRFs with k = m = n.
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Pseudo-random function (formal definition)

F:{0,1}" x {0,1}" — {0,1}" efficient, keyed, length preserving
key input output |input|=|output|

Definition

F'is a pseudo-random function if for all probabilistic, polynomial-time

distinguishers D there exists a negligible function negl such that

[P(D7<O(1") = 1) - B(D/O(1") = 1)| < negl(n)

where K €g {0,1}" is chosen uniformly at random and f is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bitstrings.

Notation: D7) means that algorithm D has “oracle access” to function f.

How does this differ from a pseudo-random generator?

The distinguisher of a pseudo-random generator examines a string. Here, the
distinguisher examines entire functions Fx and f.

Any description of f would be at least n - 2" bits long and thus cannot be read
in polynomial time. Therefore we can only provide oracle access to the
distinguisher (i.e., allow D to query f a polynomial number of times).
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CPA-secure encryption using a pseudo-random function

We define the following fixed-length private-key encryption scheme:

Mpre = (Gen, Enc, Dec):

Let F' be a pseudo-random function.

> Gen: on input 1* choose K € {0,1}* randomly
> Enc: read K € {0,1}* and M € {0,1}*, choose R € {0,1}* randomly,
then output
C:=(R,Fx(R)® M)
» Dec: read K € {0,1}%, C = (R, S) € {0,1}*, then output

M = FK(R)@S

Strategy for proving [Nprr to be CPA secure:

@ Show that a variant scheme i1 in which we replace Fix with a random
function f is CPA secure (just not efficient).

@ Show that replacing f with a pseudo-random function Fx cannot make it
insecure, by showing how an attacker on the scheme using Fx can be
converted into a distinguisher between f and Fk, violating the
assumption that Fx is a pseudo-random function.

54



Security proof for encryption scheme [pge

First consider [1, a variant of Mpge in which the pseudo-random function
F was replaced with a random function f. Claim:
1 q(0)

P(Priijfﬁ(E) =1)< = >+ o with g(¢) oracle queries

Recall: when the challenge ciphertext C'in PrivK®?%. (¢) is computed, the

challenger picks Rc €gr {0,1}¢ and returns C := (R¢, f(Rc) © My).
Case 1: R is also used in one of the oracle queries. In which case
A can easily find out f(R¢) and decrypt M;. A makes at most g(£)
oracle queries and there are 2¢ possible values of R¢, this case happens
with a probability of at most ¢(¢)/2°.

Case 2: R is not used in any of the oracle queries. For A the value
R¢ remains completely random, f(R¢) remains completely random, my,
is returned one-time pad encrypted, and A can only make a random
guess, so in this case P(b' = b) = 1.

P(PrivK, (£) = 1)
= ]P’(PrviCpa () =1ACasel)+ IP’(PrivKCpa (£) =1 A Case 2)

< B(Case 1) + B(PrivK () = 1|Case 2) < XD ¢ 1
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Security proof for encryption scheme lMpge (cont’d)

Assume we have an attacker A against lNpre with non-negligible

1
e(l) = [P’(Privaff’nPRF(f) =1)- 5
Its performance against [1 is also limited by
: 1 q(0)
cpa _ -
P(P”VKA,I:IM) =1)< 5 + o

Combining those two equations we get

P(PrivK} T, (€) = 1) — B(PrivK % (0) = 1) > e(6) — %

which is not negligible either, allowing us to distinguish f from Fi:
cpa

Build distinguisher D using oracle O to play PrivKA)n(é) with A:
® Run A(1%) and for each of its oracle queries M* pick R' €g {0,1}¢,
then return C* := (R*, O(R") ® M") to A.
® When A outputs My, My, pick b €g {0,1} and R¢ €r {0,1}¢, then
return C := (Rc, O(Rc) @ M) to A.
© Continue answering A's encryption oracle queries. When A outputs
b, output 1 if b’ = b, otherwise 0.
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Security proof for encryption scheme lMpge (cont’d)

How effective is this D?

@ If D’s oracle is Fi: A effectively plays PrivK7, _(¢) because if

K was chosen randomly, D% behaves towards A just like Mprge,
and therefore

P(DFx0)(1%) = 1) = P(PrivKFy,.. (£) = 1)

® If D’s oracle is f: likewise, A effectively plays PrivKi‘:aﬁ(ﬁ) and
therefore

P(DIO(1Y) = 1) = P(PrivK T (6) = 1)

if f er ({0,1}9){%1}" is chosen uniformly at random.
All combined the difference
Vit Yl q(¢)
B(DFO(1Y) = 1)~ (DI = 1) = () - T
not being negligible implies that Fx is not a pseudo-random function,

which contradicts the assumption, so lMprr is CPA secure.
Katz/Lindell (1st ed.), pp 90-93

O

57



Pseudo-random permutation

F:{0,1}™ x {0,1}" — {0,1}" efficient, keyed, length preserving
key input output linput|=|output|
Fi is a pseudo-random permutation if

> for every key K, there is a 1-to-1 relationship for input and output
» Fy and Fgl can be calculated with polynomial-time algorithms

» there is no polynomial-time distinguisher that can distinguish Fx
(with randomly picked K') from a random permutation.
Note: Any pseudo-random permutation is also a pseudo-random function. A random function f
looks to any distinguisher just like a random permutation until it finds a collision z # y with
f(x) = f(y). The probability for finding one in polynomial time is negligible ( “birthday problem”).
A strong pseudo-random permutation remains indistinguishable even if
the distinguisher has oracle access to the inverse.

Definition: F is a strong pseudo-random permutation if for all
polynomial-time distinguishers D there exists a negligible function negl
such that

]P)(DFK()vFI;I()(]_n) = ]_) — }P(Df(')vfﬁl(')(]_") = ]_) < negl(n)
where K €g {0,1}" is chosen uniformly at random, and f is chosen

uniformly at random from the set of permutations on n-bit strings.
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Probability of collision / Birthday problem

With 23 random people in a room, there is a 0.507 chance that two share a birthday. Surprised?

We throw b balls into n bins, selecting each bin uniformly at random.
With what probability do at least two balls end up in the same bin?

1 7 10°

upper bound
lower bound

upper bound
lower bound

o
®

1010

°
>

10720

°
2
collision probability

collision probability

10-30

o
N

1040
10° 1010 10%° 1030 1040 10° 1010 1020 10% 1040

number of balls thrown into 10~ “° bins number of balls thrown into 10~ “° bins
Remember: for large n the collision probability
» isnear 1 forb> \/n
> i 0 for b i hi ional to ¥
1Is near O for b K \/ﬁ growing rougnhly proportional to -~

Expected number of balls thrown before first collision: /5n  (for n — o)

Approximation formulas: https://cseweb.ucsd.edu/~mihir/cse207/slides/w-birthday.pdf
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Iterating a random function

f:41,...,n} = {1,...,n} n™ such functions, pick one at random
Functional graph: vertices {1,...,n}, directed edges (i, f(¢))

L '\»(./_* '\ Y '\'

el

Several components, each a directed cycle and trees attached to it.

Some expected values for n — oo, random u €g {1,...,n}:
> tail length E(t(u)) = \/7n/8 fU(u) = frwrelw)i(y) v € N,
> cycle length E(c(u)) = \/mn/8 where t(u), ¢(u) minimal
» rho-length E(t(u) + c(u)) = y/7n/2
» predecessors E(|[{v|fi(v) = uAi > 0}]) = \/7n/8

> edges of component containing u: 2n/3

If f is a random permutation: no trees, expected cycle length (n + 1)/2

Menezes/van Oorschot/Vanstone, §2.1.6. Knuth: TAOCP, §1.3.3, exercise 17.
Flajolet/Odlyzko: Random mapping statistics, EUROCRYPT'89, LNCS 434.
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https://link.springer.com/chapter/10.1007/3-540-46885-4_34

@ Historic ciphers

® Perfect secrecy

© Semantic security

O Block ciphers

® Modes of operation

@ Message authenticity

@ Authenticated encryption
@ Secure hash functions

© Secure hash applications
@ Key distribution problem
® Number theory and group theory
® Discrete logarithm problem
® RSA trapdoor permutation

@ Digital signatures
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Block ciphers

Practical, efficient algorithms that try to implement a pseudo-random
permutation E (and its inverse D) are called “block ciphers”:

E:{0,1}* x {0,1}" — {0,1}"
D :{0,1}* x {0,1}" — {0,1}"

with Dy (Ex(M)) = M for all K € {0,1}%, M € {0,1}".
Alphabet size: 2™, size of key space: 2k

Examples: AES, Camellia: k,n = 128 bit; DES, PRESENT: n = 64 bit

Implementation strategies:

>
>
>

Confusion — complex relationship between key and ciphertext
Diffusion — remove statistical links between plaintext and ciphertext

Prevent adaptive chosen-plaintext attacks, including differential and
linear cryptanalysis

Product cipher: iterate many rounds of a weaker permutation
Feistel structure, substitution/permutation network, key-dependent
s-boxes, mix incompatible groups, transpositions, linear

transformations, arithmetic operations, non-linear substitutions, ...
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Feistel structure |

Problem: Build a pseudo-random permutation Ex : {0,1}" + {0,1}"
(invertible) using pseudo-random functions fr; : {0,1}% — {0,1}%
(non-invertible) as building blocks.

Solution: Split the plaintext block M (n bits) into two halves L and R
(n/2 bits each):
M = Lo||Ro

Then apply the non-invertible function fx in each round i alternatingly to
one of these halves, and XOR the result onto the other half, respectively:

Li=L,_1® fK}i(Rifl) and R,= R;,_1 for odd
Ri=R;_19® fxi(Li—1) and L;=1L;, 4 for even 4

After applying rounds ¢ = 1,...,r, concatenate the two halves to form
the ciphertext block C"

Ex(M)=C = L,||R,
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Feistel structure Il

r = 3 rounds:

Lo RO

éB fra ‘H
'
1 Ry
2

L
D fK3 H

L3 R

}

S2)

'
2




Feistel structure Il

Decryption:

Ly

L3

Ry

fra]-——

Ry

—D—

IK3 H

R
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Feistel structure IV

Decryption works backwards (i = r,...,1), undoing round after round,
starting from the ciphertext:

Li1=L;® fK,i(Ri) and R;,_1= R; for odd i
R, 1=R;® fK,i(Li) and L; 1=1; for even i

This works because the Feistel structure is arranged such that during
decryption of round 4, the input value for fx ; is known, as it formed half
of the output bits of round ¢ during encryption.

Luby—Rackoff result

If fis a pseudo-random function, then r = 3 Feistel rounds build a
pseudo-random permutation and r» = 4 rounds build a strong
pseudo-random permutation.

M. Luby, C. Rackoff: How to construct pseudorandom permutations from pseudorandom functions.
CRYPTO'85, LNCS 218, https://link.springer.com/chapter/10.1007/3-540-39799-X_34
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Data Encryption Standard (DES)

In 1977, the US government standardized a block cipher for unclassified
data, based on a proposal by an IBM team led by Horst Feistel.

DES has a block size of 64 bits and a key size of 56 bits. The relatively
short key size and its limited protection against brute-force key searches
immediately triggered criticism, but this did not prevent DES from
becoming the most commonly used cipher for banking networks and
numerous other applications for more than 25 years.

DES uses a 16-round Feistel structure. Its round function f is much
simpler than a good pseudo-random function, but the number of
iterations increases the complexity of the resulting permutation
sufficiently.

DES was designed for hardware implementation such that the same
circuit can be used with only minor modification for encryption and
decryption. It is not particularly efficient in software.

https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf
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The round function f expands the 32-bit LU

input to 48 bits, XORs this with a 48-bit
subkey, and applies eight carefully designed

6-bit to 4-bit substitution tables

(“s-boxes"). The expansion function E
makes sure that each sbox shares one input

bit with its left and one with its right [ v [ mlo@® HRo. ki)
neighbour. Ky
[ Re2ems) |
Ry=ty ® KRy, m
© e
' N
48 BITS ] [ K (48 BITS) | ;{‘:::-"'{b"__:::'
e e y
Lis=R14 R15=L14(DHR4, K15H
Kis

[Ris=t1s@times, Kloﬂ Li6=Ri5

P INVERSE INITIAL PERM

QUTPUT
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The key schedule of DES
breaks the key into two 28-bit
halves, which are left shifted
by two bits in most rounds
(only one bit in round
1,2,9,16) before 48 bits are
selected as the subkey for
each round.
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Strengthening DES
Two techniques have been widely used to extend the short DES key size:
DESX 2 x 64+ 56 = 184-bit keys:
DESXk, Kk, k5 (M) = K1 @ DESk, (M & K3)

Triple DES (TDES) 3 x 56 = 168-bit keys:

TDESk(M) = DESk,(DESy(DESK,(M)))
TDES,'(C) = DES}(DESk,(DESLL(C)))

Where key size is a concern, K1 = K3 is used = 112-bit key. With
K, = K> = K3, the TDES construction is backwards compatible to DES.

Double DES would be vulnerable to a meet-in-the-middle attack that
requires only 257 iterations and 257 blocks of storage space: the known
M is encrypted with 2% different keys, the known C' is decrypted with
2% keys and a collision among the stored results leads to K7 and K.

Neither extension fixes the small alphabet size of 2%*.
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Advanced Encryption Standard (AES)

In November 2001, the US government published the new Advanced
Encryption Standard (AES), the official DES successor with 128-bit block
size and either 128, 192 or 256 bit key length. It adopted the “Rijndael”
cipher designed by Joan Daemen and Vincent Rijmen, which offers
additional block/key size combinations.
Each of the 9-13 rounds of this substitution-permutation cipher involves:

» an 8-bit s-box applied to each of the 16 input bytes

» permutation of the byte positions

» column mix, where each of the four 4-byte vectors is multiplied with

a 4 X 4 matrix in Fos

» XOR with round subkey
The first round is preceded by another XOR with a subkey, the last round
lacks the column-mix step.
Software implementations usually combine the first three steps per byte
into 16 8-bit — 32-bit table lookups.

https://csrc.nist.gov/pubs/fips/197/final
Recent CPUs with AES hardware support: Intel/AMD x86 AES-NI instructions, VIA PadLock.
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AES round
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Illustration by John Savard, http://www.quadibloc.com/crypto/co040401.htm
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® Modes of operation
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Electronic Code Book (ECB) |

ECB is the simplest mode of operation for block ciphers (DES, AES).

The message M is cut into m n-bit blocks:

My ||Ms]| ... ||M,, = M]|padding

Then the block cipher E is applied to each n-bit block individually:

C=C1|Cy...||Cm

M, M, M,
! ! !
Ex Ex Ex

i | i

C1 Oy Cm
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Electronic Code Book (ECB) Il

Like any deterministic encryption scheme,
Electronic Code Book (ECB) mode is not CPA secure.

Therefore, repeated plaintext messages (or blocks) can be recognised by
the eavesdropper as repeated ciphertext. If there are only few possible
messages, an eavesdropper might quickly learn the corresponding
ciphertext.

Another problem:

Plaintext block values are often not uniformly distributed, for example in
ASCII encoded English text, some bits have almost fixed values.

As a result, not the entire input alphabet of the block cipher is utilised,
which simplifies for an eavesdropper building and using a value table of
Ex.

https://csrc.nist.gov/pubs/sp/800/38/a/final


https://csrc.nist.gov/pubs/sp/800/38/a/final

Electronic Code Book (ECB) Il

Plain-text bitmap:

TOUR OF ACCOUNTING |§ ARE
H NINE NINE | vou THAT'S THE
OVER HERE ¢ NINE NINE SURE PROBLEM
WE HAVE OUR % NINE NINE THATS lbdoI::\ng:;N—
N N .
RANDOM NUMBER RANDOM? DO ESE

GENERATOR .

MNEVER BE
SURE.

1oaslo) ® 2091 United Featurs Syndlcats, Inc,

www.dilbert.com

Copyright 2 2881 United Feature Syndicate, Inc.

DES-ECB encrypted:



Randomized encryption

Any CPA secure encryption scheme must be randomized, meaning that
the encryption algorithm has access to an r-bit random value that is not
predictable to the adversary:

Enc: {0,1}*x{0,1}" x{0,1}! — {0,1}™
Dec : {0,1}*x{0,1}™ — {0,1}!

receives in addition to the k-bit key and [-bit plaintext also an r-bit
random value, which it uses to ensure that repeated encryption of the
same plaintext is unlikely to result in the same m-bit ciphertext.

With randomized encryption, the ciphertext will be longer than the plaintext: m > [, for example
m=r+1L

Given a fixed-length pseudo-random function F', we could encrypt a variable-length message
M ||pad(M) = Mi||Ms|| ... || M, by applying Mpgr to its individual blocks M;, and the result
will still be CPA secure:

Enck (M) = (R1, Ex (R1) @ M1, Ry, Ex(R2) @ Ma, ... Ry, Ex(Rn) © M)
But this doubles the message length!

Several efficient “modes of operation” have been standardized for use

with blockciphers to provide CPA-secure encryption schemes for

arbitrary-length messages.
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Cipher Block Chaining (CBC) |

The Cipher Block Chaining mode is one way of constructing a
CPA-secure randomized encryption scheme from a block cipher E.

@ Pad the message M and split it into m n-bit blocks, to match the
alphabet of the block cipher used:

M1||M2H ||Mm = M||padding

@® Generate a random, unpredictable n-bit initial vector (V) Cp.

@ Starting with Cy, XOR the previous ciphertext block into the
plaintext block before applying the block cipher:

C; = EK(Ml D Ci—l) for0<i<m
@ Output the (m + 1) x n-bit cipher text
C=GCollCh] - ||Crm

(which starts with the random initial vector)

M; —-@Q—| Fg [—— C;
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Cipher Block Chaining (CBC) Il

M, M, M,
. | !
—® —® —D
! | '
RND Ex Ex e Ex
| | : J
Oo Cl 02 Cm

initial vector

The input of the block cipher Ex is now uniformly distributed.

Expect a repetition of block cipher input after around /2" = 27 blocks
have been encrypted with the same key K, where n is the block size in
bits (— birthday paradox). Change K well before that.



Plain-text bitmap:

TOUR OF ACCOUNTING

OVER HERE
WE HAVE QUR

GENERATOR .

RANDOM NUMBER

NIMNE NINE
NINE NINE
NINE NINE

www.dilbert.com  ecotsdams@ool com

(o]atley ® 2001 United Featurs Syndlcate, inc.

¢SE THAT'S THE

SURE PROBLEM

THAT'S WITH RAN-
DOMMESS

YOU CAN
NEVER BE
SURE.

Copuright @ 2881 United Featurs

DES-CBC encrypted:

Sundicate, Inc.

80



Cipher Feedback Mode (CFB)

Cl' = Mi S5 EK(Ci_l)

el
M; —OD > C;

As in CBC, (Y is a randomly selected, unpredictable initial vector, the
entropy of which will propagate through the entire ciphertext.

This variant has three advantages over CBC that can help to reduce
latency:

» The blockcipher step needed to derive C; can be performed before
M; is known.

» Incoming plaintext bits can be encrypted and output immediately;
no need to wait until another n-bit block is full.

» No padding of last block needed.
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Output Feedback Mode (OFB)

Output Feedback Mode is a stream cipher seeded by the initial vector:
@ Split the message into m blocks (blocks My, ..., M,,_1 each n-bit

long, M, may be shorter, no padding required):

M| M) ... | My = M

@® Generate a unique n-bit initial vector (IV) Cp.
© Start with Ry = Cy, then iterate

R, = Ex(Ri_1) 5
o| By |—!

Ci=M; ®R;

for 0 < i < m. From R,, use only the leftmost bits needed for M,,.

@ Output the cipher text C' = Cy||Ct]| ... ||Cm

Again, the key K should be replaced before in the order of 2% n-bit blocks have been generated.

Unlike with CBC or CFB, the IV does not have to be unpredictable or random (it can be a
counter), but it must be very unlikely that the same IV is ever used again or appears as another

value R; while the same key K is still used.

R;
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Counter Mode (CTR)

This mode is also a stream cipher. It obtains the pseudo-random bit
stream by encrypting an easy to generate sequence of mutually different
blocks T1,T5, ..., Ty, such as the block counter i plus some offset O,
encoded as an n-bit binary value:

Choose O such that probability of reusing any T; under the same K is
negligible. Send offset O as initial vector Cy = (O),,.

Here (i), shall mean “n-bit binary representation of integer i", where n is block length of .
Advantages:

> allows fast random access

» both encryption and decryption can be parallelized

> low latency

» no padding required

» no risk of short cycles
Today, Counter Mode is generally preferred over CBC, CFB, and OFB.

Alternatively, the T; can also be generated by a maximum-length linear-feedback shift register
(replacing the operation O + % in Zyn with O(z) - 2* in Fon to avoid slow carry bits).
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@ Message authenticity
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Security against chosen-ciphertext attacks (CCA)

Private-key encryption scheme M = (Gen, Enc, Dec), M = {0,1}™, security parameter £.

Experiment/game PrivK(£):

M C?, ...
1 =| ber{o1} [YeReE = 1
K — Gen(le)‘ M()’Ml
C* < Encg (M?) A

M? + Deck (C?)

c
Mt Ct+2
b =<—| C « Encg (M) O 7 C,

2 T
L., M2 ot

adversary —

Setup:
» handling of ¢, b, K as before
Rules for the interaction:
@ The adversary A is given oracle access to Encx and Decg:
A outputs M?!, gets Ency(M?), outputs C?, gets Decx (C?), ...
® The adversary A outputs a pair of messages: My, My € {0,1}™.
©® The challenger computes C' < Encg(M;) and returns C' to A

O The adversary A continues to have oracle access to Enck and Decy
but is not allowed to ask for Decg (C).

Finally, A outputs b'. If b" = b then A has succeeded = PrivKG(¢) =1
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Malleability

We call an encryption scheme (Gen, Enc, Dec) malleable if an adversary
can modify the ciphertext C' in a way that causes a predictable/useful
modification to the plaintext M.

Example: stream ciphers allow adversary to XOR the plaintext M with
arbitrary value X:

Sender:  C =Enckx(M)=(R,Fx(R)® M)
Adversary:  C' = (R,(Fx(R)® M) & X)
Recipient: M’ = Deck(C’) = Fx(R) ® ((Fx(R)® M) ® X)
=MoX

Malleable encryption schemes are usually not CCA secure.

CBC, OFB, and CTR are all malleable and not CCA secure.

Malleability is not necessarily a bad thing. If carefully used, it can be an essential building block to
privacy-preserving technologies such as digital cash or anonymous electonic voting schemes.

Homomorphic encryption schemes are malleable by design, providing anyone not knowing the key a
means to transform the ciphertext of M into a valid encryption of f(M) for some restricted class
of transforms f.
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Message authentication code (MAC)

A message authentication code is a tuple of probabilistic
polynomial-time algorithms (Gen, Mac, Vrfy) and sets XC, M such that

> the key generation algorithm Gen receives a security parameter /
and outputs a key K < Gen(1%), with K € K, key length |K| > ¢;

> the tag-generation algorithm Mac maps a key K and a message
M e M ={0,1}* to a tag T < Macg(M);

» the verification algorithm Vrfy maps a key K, a message M and a
tag T to an output bit b := Vrfy (M, T) € {0,1}, with b =1
meaning the tag is “valid” and b = 0 meaning it is “invalid”.

» for all /, K + Gen(1%), and M € {0,1}™:
Vrfy i (M, Mack (M)) = 1.

87



MAC security definition: existential unforgeability

Message authentication code N = (Gen, Mac, Vrfy), M = {0,1}", security parameter £.

Experiment/game Mac-forge 4 (£):

1 = g Gen(1%)

T < Macg (M?)

[ b:= Vrfy (M, T)

MY M2, Mt

Tt ..., T2, T1

M, T
M@{M!,M2,... Mt}

A

adversary

© challenger generates random key K < Gen(1¢)

@® adversary A is given oracle access to Mack(+); let
Q= {M* ...,M"} denote the set of queries that A asks the oracle

© adversary outputs (M, T)

O the experiment outputs 1 if Vrfy (M, T)=1and M ¢ Q

- 1¢

Definition: A message authentication code N = (Gen, Mac, Vrfy) is
existentially unforgeable under an adaptive chosen-message attack

(“secure™) if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

P(Mac-forge 4 n(£) = 1) < negl(¢)
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MACs versus security protocols

MACs prevent adversaries forging new messages. But adversaries can still

@ replay messages seen previously (“pay £1000", old CCTV image)

@® drop or delay messages (“smartcard revoked")

© reorder a sequence of messages

O redirect messages to different recipients

A security protocol is a higher-level mechanism that can be built using
MACGs, to prevent such manipulations. This usually involves including
into each message additional data before calculating the MAC, such as

» nonces

message sequence counters
message timestamps and expiry times
random challenge from the recipient

MAC of the previous message

» identification of source, destination, purpose, protocol version

> “heartbeat” (regular message to confirm sequence number)

Security protocols also need to define unambiguous syntax for such
message fields, delimiting them securely from untrusted payload data.
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Stream authentication

Alice and Bob want to exchange a sequence of messages M;, Mo, . ..

They want to verify not just each message individually, but also the
integrity of the entire sequence received so far.

One possibility: Alice and Bob exchange a private key K and then send

A— B:
B— A:
A— B:

B— A:
A— B:

(My,T1)
(M2, T>)
(M3,T3)

(Ma;, T;)
(M241,Toi41)

with T7 = MacK(Ml,O)
with 75 = MaCK(Mz,Tl)
with T3 = MaCK(M3,T2)

with T5; = MacK(Mgi,Tgi,l)
with T 11 = Mack (Ma; 1, To;)

Mallory can still delay messages or replay old ones. Including in addition unique transmission
timestamps in the messages (in at least M7 and M>) allows the recipient to verify their
“freshness” (using a secure, accurate local clock).
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MAC using a pseudo-random function

Let F' be a pseudo-random function.
» Gen: on input 1¢ choose K €g {0,1}* randomly

» Mac: read K € {0,1}* and M € {0,1}™,
then output 7' := Fx (M) € {0,1}"

> Vrfy: read K € {0,1}¢, M € {0,1}™, T € {0,1}",
then output 1 iff T = Fg(M).

If Fis a pseudo-random function, then (Gen, Mac, Vrfy) is existentially
unforgeable under an adaptive chosen message attack.
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MAC using a block cipher: CBC-MAC

Blockcipher E : {0,1}* x {0,1}™ — {0,1}™

M]_ M2 Mn
J } }
—D —D

} }

N I {

CBC-MACg, (M)

Similar to CBC: IV = 0™, last ciphertext block serves as tag.

Provides existential unforgeability, but only for fixed message length n:
Adversary asks oracle for T := CBC-MACg, (M*') = Ex (M) and then
presents M = M*||(T* @ M') and T := CBC-MACg, (M) =
Ex(M*aTY)® Ex(MY) = Ex(M'e T e T!) = Ex(MY) =T



Variable-length MAC using a block cipher: ECBC-MAC

Blockcipher E : {0,1}* x {0,1}™ — {0,1}™

M, My
J |
4>®
'

Ex, Ey,

Padding: M ||10P
p=m— (|[M|modm)—1

Disadvantages:

» up to two additional
applications of block cipher

» need to rekey block cipher
» added block if m divides |M]|

Fk

|

2

ECBC-MACp,, ., (M)
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Variable-length MAC using a block cipher: CMAC
Blockcipher E : {0,1}¢ x {0,1}™ — {0,1}™ (typically AES: m = 128)

Derive subkeys K1, K> € {0,1}™ from key K € {0,1}*:
> Ky := FEx(0)
» if msb(Ky) =0 then K; := (Ko < 1) else Ky := (Ko< 1)@ J
» if msb(K1) =0 then Ky := (K7 < 1) else Kp := (K1 < 1)@ J

This merely clocks a linear-feedback shift register twice, or equivalently multiplies a value in Fom
twice with z. J is a fixed constant (generator polynomial), < is a left shift.

CMAC algorithm:

M| Mol 1My = M

r=|M,|

if r =m then M,, = K; & M,

else M, := K, & (M,,[|10m—"~1)
return CBC-MACk (M1 || Ma]| . .. || My,)

Provides existential unforgeability, without the disadvantages of ECBC.

NIST SP 800-38B, RFC 4493
04


https://csrc.nist.gov/pubs/sp/800/38/b/upd1/final
https://www.ietf.org/rfc/rfc4493.txt

Birthday attack against CBC-MAC, ECBC-MAC, CMAC

Let E be an m-bit block cipher, used to build MACg with m-bit tags.
Birthday/collision attack:

> Make t & /2™ oracle queries for T := MACk ((i)||R;||(0)) with
R; €r {0,1}m, 1<:<t.

Here (i) € {0,1}™ is the m-bit binary integer notation for .
» Look for collision T? = T7 with i # j
> Ask oracle for T" := MACk ({i)||R;]|(1))
» Present M := (j)||R;[|(1) and T :=T" = MACk (M)

The same intermediate value

C> occurs while calculating the (@) Ri (0)
MAC of , '
BIR(0), ()R] (0), ¢ 9
(ORI (1), (HIIR;I(T)-
Possible workaround: EK EK EK
Truncate MAC result to less than m bits, | |
such that adversary cannot easily spot col- 1) ‘ i
lisions in C, from Cj.

. . Cy Cs MACgk
Solution: big enough m.
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A one-time MAC (Carter—Wegman)
The following MAC scheme is very fast and unconditionally secure, but
only if the key is used to secure only a single message.
Let F be a large finite field (e.g. Zows 51 or GF(21%8)).
» Pick a random key pair K = (K1, K>) € F?
» Split padded message M into blocks M;,..., M, € F

» Evaluate the following polynomial over F to obtain the MAC:

OT-MACy, k,(M) = KM 4 M, K} 4 - + MyK? + My Ky + K

Converted into a computationally secure many-time MAC:
» Pseudo-random function/permutation Ex : F = F
» Pick per-message random value R € F

> CW-MACk, ,(M) =
(R,K{L+1 + M,KP+ -+ MoyK? + MKy + Eg,(R))

M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265279, 1981.
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@ Authenticated encryption
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Ciphertext integrity

Private-key encryption scheme I = (Gen, Enc, Dec), Dec can output error: L

Experiment/game Cl 4 n(¢):

1t —=

b <=

K + Gen(1%)
C* < Encg (M?)

. J0, Decg(C) =L
|1, Decg(C)# L

MY M2 ... M?

Ct,...,C?,Ct

C
cg{c1,c?,...,ct}

A

adversary

@ challenger generates random key K < Gen(1%)

= 1¢

@ adversary A is given oracle access to Enck(+); let @ = {Ct,...,C?}
denote the set of query answers that A got from the oracle

© adversary outputs C

@ the experiment outputs 1 if Decx(C) # L and C' ¢ Q

Definition: An encryption scheme I = (Gen, Enc, Dec) provides
ciphertext integrity if for all probabilistic polynomial-time adversaries A

there exists a negligible function negl such that

B(Clan(f) = 1) < negl(¢)
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Authenticated encryption

Definition: An encryption scheme N = (Gen, Enc, Dec) provides
authenticated encryption if it provides both CPA security and ciphertext
integrity.

Such an encryption scheme will then also be CCA secure.

Example:

Private-key encryption scheme Mg = (Geng, Enc, Dec)
Message authentication code My = (Genm, Mac, Vrfy)

Encryption scheme M’ = (Gen’, Enc’, Dec’):
© Gen'(1%) := (Kg, Ku) with Kg + Geng(1%) and Ky < Geny (1)
@ Enc(g, k(M) = (C,T) with C + Encg, (M) and
T < Macg,, (C)
® Dec’ on input of (Kg, Ky) and (C, T) first check if
Vrfy g, (C,T) = 1. If yes, output Decg, (C), if no output L.

If Mg is a CPA-secure private-key encryption scheme and Iy is a secure
message authentication code with unique tags, then " is a CCA-secure
private-key encryption scheme.

A message authentication code has unique tags, if for every K and every M there exists a unique
value T, such that Vrfy (M, T) = 1.



Combining encryption and message authentication

Warning: Not every way of combining a CPA-secure encryption scheme
(to achieve privacy) and a secure message authentication code (to
prevent forgery) will necessarily provide CPA security:

Encrypt-and-authenticate: (Encg,. (M), Mack,,(M))
Unlikely to be CPA secure: MAC may leak information about M.

Authenticate-then-encrypt: Encg, (M ||Mack,,(M))

May not be CPA secure: the recipient first decrypts the received
message with Decg,, then parses the result into M and Mack,, (M) and
finally tries to verify the latter. A malleable encryption scheme, combined
with a parser that reports syntax errors, may reveal information about M.

Encrypt-then-authenticate: (Encg, (M), Mack,, (Encg.(M)))
Secure: provides both CCA security and existential unforgeability.

If the recipient does not even attempt to decrypt M unless the MAC has been verified successfully,

this method can also prevent some side-channel attacks.

Note: CCA security alone does not imply existential unforgeability.
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Padding oracle

TLS record protocol:

Recipient steps: CBC decryption, then checks and removes padding,
finally checks MAC.

Padding: append n times byte n (1 < n < 16)

Padding syntax error and MAC failure (used to be) distinguished in error
messages.

Co =1V Cl CQ C’3

| |
i l

Dk Dk Dk
¥ M ¥
D D D
! l }

]Vfl M2 M3||pad




Padding oracle (cont’d)

Attacker has Cy,...,C3 and tries to get Mo:

» truncate ciphertext after C»

» a = actual last byte of M>,
g = attacker’s guess of a
(try all g € {0, ...,255})

» XOR the last byte of C; with
g @ 0x01

» last byte of M> is now
a® g ox01

» ¢ = a: padding correct = MAC failed error

Co=1V 4 Cy
Dy Dx
¥ v
T
M, M,

g # a: padding syntax error (high prob.)

Then try 0x02 0x02 and so on.

Serge Vaudenay: Security flaws induced by CBC padding, EUROCRYPT 2002
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Galois Counter Mode (GCM)

CBC and CBC-MAC used together require different keys, resulting in two
encryptions per block of data.

Galois Counter Mode is a more efficient authenticated encryption
technique that requires only a single encryption, plus one XOR @ and
one multiplication ®, per block of data:

Ci = M;®Eg(O+1)
G, = (Gi_l@ci)(@H, Go=AQ®H, H:EK(O)
GMACg, (4,C) = ((Gn ® (len(A)||len(C))) ® H) ® Ek(O)

A is associated data: authenticated, but not encrypted (e.g., header).

The multiplication ® is over the Galois field Fouws: block bits are
interpreted as coefficients of binary polynomials of degree 127, and the
result is reduced modulo #128 + 27 + 22 + 2 + 1.

This is like 128-bit modular integer multiplication, but without carry bits,
and therefore faster in hardware.

https://csrc.nist.gov/pubs/sp/800/38/d/final
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=
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GMACg, (A, C)
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Duplex mode

Another way of implementing authenticated encryption with associated
data (AEAD) uses a fixed (r + ¢)-bit permutation p in duplex mode.

Plain-text blocks are XOR-ed into the top r bits (“rate”) of the

(r + ¢)-bit internal state of the construct, the result of which forms the
next ciphertext block. The remaining ¢ bits (“capacity”) of the state
remain inaccessible to the adversary. After each block is processed, a
fixed permutation p is applied to mix the entire internal state.

ASCON is an AEAD cipher, selected in 2023 by the NIST Lightweight
Cryptography competition, based on a 5 x 64 = 320-bit permutation p
used in duplex mode. Encryption:

VA As \ MyCy M 1Cry M,Cy T
: u% - u% : u%T »éi» u%T : -
p° . pb pb . pb pb . e
? L .. ¢ ? M .. ¢ ¢ . %\
VKN 0K 0L Ko K
Initialization Associated Data Plaintext Finalization

https://ascon.isec.tugraz.at/

105


https://ascon.isec.tugraz.at/

@ Secure hash functions
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Hash functions

A hash function h : {0,1}* — {0, 1}* efficiently maps arbitrary-length
input strings onto fixed-length “hash values” such that the output is
uniformly distributed in practice.

Typical applications of hash functions:

» hash table: data structure for fast ¢ = O(1) table lookup; storage
address of a record containing value x is determined by h(x).

» Bloom filter: data structure for fast probabilistic set membership test
> fast probabilistic string comparison (record deduplication, diff, rsync)
» Rabin—Karp algorithm: substring search with rolling hash

Closely related: checksums (CRC, Fletcher, Adler-32, etc.)

A good hash function h is one that minimizes the chances of a collision

of the form h(x) = h(y) with = # y.

But constructing collisions is not difficult for normal hash functions and
checksums, e.g. to modify a file without affecting its checksum.

Algorithmic complexity attack: craft program input to deliberately trigger worst-case runtime
(denial of service). Example: deliberately fill a server's hash table with colliding entries.
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Secure hash functions

A secure, collision-resistant {-bit hash function h : {0,1}* — {0,1}* is
designed to make it infeasible for an adversary who knows the
implementation of A to find any collision

hz)=h(y) with z#y

Examples for applications of secure hash functions:
» message digest for efficient calculation of digital signatures
> fast message-authentication codes (HMAC)
» tamper-resistant checksum of files

$ shalsum security?-slides.tex
2¢1331909a8b457df5c65216d6ee1efb2893903f securityl-slides.tex
50878bcf67115e5b6dcc866aa0282c570786babb security2-slides.tex

git commit identifiers
P2P file sharing identifiers
key derivation functions
password verification

hash chains (e.g., Bitcoin, timestamping services)

vyvyVvyVvYyyvVyy

commitment protocols



Secure hash functions: standards

» MD5: /=128 (Rivest, 1991)
insecure, collisions were found in 1996/2004, collisions used in
real-world attacks (Flame, 2012) — avoid (still ok for HMAC)

https://www.ietf.org/rfc/rfc1321.txt

> SHA-1: £=160  (NSA, 1995)
widely used today (e.g., git), but 25%-step algorithm to find collisions
found in 2005 — being phased out (still ok for HMAC)

> SHA-2: ¢ =224, 256, 384, or 512
close relative of SHA-1, therefore long-term collision-resistance
questionable, very widely used standard
FIPS 180-4 US government secure hash standard,
https://csrc.nist.gov/publications/fips/

» SHA-3: KECCAK won 5-year NIST contest in 2012
no length-extension attack, arbitrary-length output,
can also operate as PRNG, very different from SHA-1/2.
(other finalists: BLAKE, Grgstl, JH, Skein)

https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://keccak.team/keccak.html
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https://csrc.nist.gov/publications/fips/
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://keccak.team/keccak.html

Collision resistance — a formal definition

A hash function is a pair of probabilistic polynomial-time (PPT)
algorithms (Gen, H) where

» Gen reads a security parameter 1™ and outputs a key s.

> H reads key s and input string = € {0,1}* and outputs
H,(z) € {0,1}*™) (where n is a security parameter implied by s)

Formally define collision resistance using the following game:

@ Challenger generates a key s = Gen(1™)

® Challenger passes s to adversary A

© A replies with z, 2’

@ A has found a collision iff Hs(x) = Hs(z') and x # 2
A hash function (Gen, H) is collision resistant if for all PPT adversaries
A there is a negligible function negl such that

P(\A found a collision) < negl(n)

A fixed-length compression function is only defined on = € {0, 1}['/(") with £'(n) > £(n).
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Unkeyed hash functions

Commonly used collision-resistant hash functions (SHA-256, etc.) do not
use a key s. They are fixed functions of the form h: {0,1}* — {0,1}".

Why do we need s in the security definition?

Any fixed function h where the size of the domain (set of possible input
values) is greater than the range (set of possible output values) will have
collisions x, z’. There always exists a constant-time adversary A that just
outputs these hard-wired values z, z’.

Therefore, a complexity-theoretic security definition must depend on a
key s (and associated security parameter 1™). Then H becomes a recipe
for defining ever new collision-resistant fixed functions Hj.

So in practice, s is a publicly known fixed constant, embedded in the
secure hash function h.

Also, without any security parameter n, we could not use the notion of a negligible function.
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Weaker properties implied by collision resistance

Second-preimage resistance

For a given s and input value z, it is infeasible for any polynomial-time
adversary to find " with Hy(z") = H,(x) (except with negligible
probability).

If there existed a PPT adversary A that can break the second-preimage
resistance of H,, then A can also break its collision resistance.
Therefore, collision resistance implies second-preimage resistance.

Preimage resistance

For a given s and output value y, it is infeasible for any polynomial-time
adversary to find =’ with H,(2") = y (except with negligible probability).

If there existed a PPT adversary A that can break the pre-image
resistance of Hy, then A can also break its second-preimage resistance
(with high probability). Therefore, either collision resistance or
second-preimage resistance imply preimage resistance.

How?

Note: collision resistance does not prevent H from leaking information about z (— CPA).
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Merkle—Damgard construction

Wanted: variable-length hash function (Gen, H).

Given:  (Gen, C), a fixed-length hash function with
C :{0,1}?" — {0,1}" (“compression function”)

Input of H: key s, string z € {0,1}" with length L < 2"
@ Pad z to length divisible by n by appending “0" bits, then split the
result into B = [£] blocks of length n each:

L]_
2|0 F1-F = 1 ||za||s) . .. |wp—1=s

® Append a final block g1 = (L), which contains the n-bit binary
representation of input length L = |z|.

® Set zp:=0"  (initial vector, IV)
O compute z; ;= Cs(zi—1]jz;) fori=1,...,B+1
@ Output Hy(x) := 241
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Merkle-Damgard construction — security proof

If the fixed-length compression function C' is collision resistant, so will be

the variable-length hash function H resulting from the Merkle-Damgard

construction.

Proof outline:

Assume C is collision resistant, but H is not, because some PPT

adversary A outputs x # z’ with Hy(z) = Hy(2').

Let x1,...,zp be the n-bit blocks of padded L-bit input z, and

xh,..., 2’ those of L'-bit input 2/, and xp11 = (L)n, 25 = (L' )n.

Case L # L': Then xpy1 # 2’5, but Hy(z) = 2p41 =
Cs(zBllzps1) = Cs(2p/ |23 1) = 241 = Hs(2'), which
is a collision in C.

Case L=1L": Now B=B’. Leti € {1,...,B+ 1} be the largest index
where z;_1]|z; # z;_;||z}. (Such 7 exists as due to
|x| = |2'| and x # 2’ there will be at least one 1 < j < B
with z; # 27.) Then z, = 2 for all k € {i,..., B + 1}
and z; = Cs(zi—1||x;) = Cs(2]_4||x}) = 2} is a collision in
Cs.

So Cy was not collision resistant, invalidating the assumption.
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Compression function from block ciphers

Davies—Meyer construction

One possible technique for obtaining a collision-resistant compression
function C' is to use a block cipher E : {0,1}¢ x {0,1}" — {0,1}" in the
following way:

C(K,M)=Ex(M)® M

M —L—| Fx |>&—| C(K,M)

or in the notation of slide 113 (with K = z; and M = z;_1):
C(zi—1||zi) = By, (2i-1) ® 2zi—1

However, the security proof for this construction requires E to be an
ideal cipher, a keyed random permutation. It is not sufficient for E to
merely be a strong pseudo-random permutation.

Warning: use only block ciphers that have specifically been designed to be used this way. Other
block ciphers (e.g., DES) may have properties that can make them unsuitable here (e.g., related
key attacks, block size too small).



SHA-1 structure

Merkle-Damgard construction, block length n = 512 bits.

Compression function:

>

>

Input = 160 bits =

five 32-bit registers A-E

each block = 16 32-bit words

WO7 ey W15

LFSR extends that sequence to

80 words: Wig, ..., Wrg

80 rounds, each fed one W;
Round constant K; and non-linear

function F; change every 20 rounds.

four 32-bit additions HH and two
32-bit rotations per round, 2-5
32-bit Boolean operations for F'.
finally: 32-bit add round 0 input to
round 79 output (Davies—Meyer)

One round:

A ]

Jelo]e]

K

cfo e}

commons.wikimedia.org, CC SA-BY

117



Random oracle model

Many applications of secure hash functions have no security proof that
relies only on the collision resistance of the function used.

The known security proofs require instead a much stronger assumption,
the strongest possible assumption one can make about a hash function:

Random oracle

» A random oracle H is a device that accepts arbitrary length strings
X € {0,1}* and consistently outputs for each a value
H(X) € {0,1}* which it chooses uniformly at random.

» Once it has chosen an H(X) for X, it will always output that same
answer for X consistently.

» Parties can privately query the random oracle (nobody else learns
what anyone queries), but everyone gets the same answer if they
query the same value.

» No party can infer anything about H(X) other than by querying X.
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|deal cipher model

A random-oracle equivalent can be defined for block ciphers:

Ideal cipher

Each key K € {0,1}" defines a random permutation Ey, chosen
uniformly at random out of all (2™)! permutations. All parties have oracle
access to both Ex(X) and Ex'(X) for any (K, X). No party can infer
any information about Ex(X) (or Ex'(X)) without querying its value
for (K, X).

We have encountered random functions and random permutations
before, as a tool for defining pseudo-random functions/permutations.
Random oracles and ideal ciphers are different:

If a security proof is made “in the random oracle model”, then a hash
function is replaced by a random oracle or a block cipher is replaced by
an ideal cipher.

In other words, the security proof makes much stronger assumptions
about these components: they are not just indistinguishable from random
functions/permutations by any polynomial-time distinguisher, they are
actually assumed to be random functions/permutations.
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Davies—Meyer construction — security proof

C(K,X) = Ex(X)® X

If £ is modeled as an ideal cipher, then C' is a collision-resistant
compression function. Any attacker A making ¢ < 2¢/2 oracle queries to
FE finds a collision with probability not higher than ¢2/2¢. (negligible)

Proof: Attacker A tries to find (K, X), (K’, X') with

Ex(X)® X = Ex/(X') ® X’. We assume that, before outputting
(K,X),(K',X"), A has previously made queries to learn Ex(X) and
Ex/(X'). We also assume (wlog) A never makes redundant queries, so
having learnt Y = Ex(X), A will not query E;*(Y) and vice versa.

The i-th query (K, X;) to E only reveals
¢; = Ci(Ki, X;) = Ex,(X3) ® X,

A query to E~! instead would only reveal El}l(YZ) = X; and therefore
¢ =Ci(Ki, X;) =Y, ® E}}(Yz)

A needs to find ¢; = ¢; with i > j.
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For some fixed pair 4, j with ¢ > j, what is the probability of ¢; = ¢;?
A collision at query i can only occur as one of these two query results:
> Er,(Xi)=¢®X;
> El(Y)=c 0

Each query will reveal a new uniformly distributed ¢-bit value, except that
it may be constrained by (at most) ¢ — 1 previous query results (since
Ek, must remain a permutation).

Therefore, the ideal cipher E will answer query i by uniformly choosing a
value out of at least 2¢ — (i — 1) possible values.

Therefore, each of the above two possibilities for reaching ¢; = ¢; can
happen with probability no higher than 1/(2¢ — (i — 1)).

With ¢t < ¢ < 2¢/2 and ¢ > 1, we have

1 __ 1 _2
i—1) ~ 202tz = 2t

]P)(Ci = Cj) < 5 _

—~

There are (%) < ¢?/2 pairs j <'i §2 6. s0 the collision probability after ¢
queries cannot be more than 2% L =14. OJ
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Random oracle model — controversy

Security proofs that replace the use of a hash function with a query to a
random oracle (or a block cipher with an ideal cipher) remain controversial.

Cons
» Real hash algorithms are publicly known. Anyone can query them
privately as often as they want, and look for shortcuts.

» No good justification to believe that proofs in the random oracle model
say anything about the security of a scheme when implemented with
practical hash functions (or pseudo-random functions/permutations).

» No good criteria known to decide whether a practical hash function is
“good enough” to instantiate a random oracle.

Pros

» A random-oracle model proof is better than no proof at all.

> Many efficient schemes (especially for public-key crypto) only have
random-oracle proofs.

» No history of successful real-world attacks against schemes with
random-oracle security proofs.

» If such a scheme were attacked successfully, it should still be fixable by
using a better hash function.
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Sponge functions

Another way to construct a secure hash function H(M) = Z:

M Z
pa? | . [-] ¢
] M M M I : I )
Y Y Y Y| |
|0} —&> D> o> &> T > >
i i i
|
c||0 > > > > : > >
/ / / Y /
absorbing : squeezing
Sponge https://keccak.team/sponge_duplex.html

(r + ¢)-bit internal state, XOR r-bit input blocks at a time, stir with
fixed permutation f, output 7-bit output blocks at a time.

Versatile: secure hash function (variable input length) and stream cipher
(variable output length)

Advantage over Merkle-Damgard: internal state > output, flexibility.


https://keccak.team/sponge_duplex.html

SHA-3

Latest NIST secure hash algorithm
» Sponge function with b =7 + ¢ = 1600 =5 x 5 x 64 bits of state

» Standardized (SHA-2 compatible) output sizes:
0 € {224, 256,384,512} bits

» Internal capacity: ¢ = 2/
» Input block size: » = b — 2¢ € {1152,1088, 832,576} bits
» Padding: append 10*1 to extend input to next multiple of r

NIST also defined two related extendable-output functions (XOFs),
SHAKE128 and SHAKE256, which accept arbitrary-length input and can
produce arbitrary-length output. PRBG with 128 or 256-bit security.

SHA-3 standard: permutation-based hash and extendable-output functions. August 2015.
https://doi.org/10.6028/NIST.FIPS.202
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“Birthday attacks”

If a hash function outputs /-bit words, an attacker needs to try only

different input values, before there is a better than 50% chance of
finding a collision.

Computational security

Attacks requiring 2128 steps considered infeasible = use hash function
that outputs ¢ = 256 bits (e.g., SHA-256). If only second pre-image
resistance is a concern, shorter ¢ = 128-bit may be acceptable.

Finding useful collisions

An attacker needs to generate a large number of plausible input
plaintexts to find a practically useful collision. For English plain text,
synonym substitution is one possibility for generating these:

A: Mallory is a {good,hardworking} and {honest,loyal} {employee,worker}
B: Mallory is a {lazy,difficult} and {lying,malicious} {employee,worker}

Both A and B can be phrased in 23 variants each = 2° pairs of phrases.

With a 64-bit hash over an entire letter, we need only such

sentences for a good chance to find a collision in steps.
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Low-memory collision search

A normal search for an /-bit collision uses O(2¢/2) memory and time.

Algorithm for finding a .
collision with O(1) memory ;O—>0—>._>._7. \v
and O(2£/2) time:

Input: H : {0,1}* — {0,1}*
Output: = # 2’ with H(z) = H'(z)

zo + {0,1}¢?
/

' =x = xo
1:=0
loop

=1+ 1

z = H(z) /] © = H*(x0)

v = H(H(@)) /] @ = H(zo)
until z = 2’
for j=1,2,...,4
if H(z) = H(z') return (z,2")
x = H(z) /) & = H(x0)
x = H(z")

Basic idea:

/) &' = H"™ (o)

[ ] [ ]
\ Y /
» Tortoise x goes at most once

round the cycle, hare x’ at
least once

» loop 1: ends when z’
overtakes z for the first time
= 2’ now i steps ahead of z
= 4 is now an integer
multiple of the cycle length

> loop 2: x back at start, ' is i
steps ahead, same speed
= meet at cycle entry point

Wikipedia: Cycle detection
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Constructing meaningful collisions

Tortoise-hare algorithm gives no direct control over content of z, z’.
Solution:

Define a text generator function g : {0,1}¢ — {0,1}*, e.g.

¢(0000) = Mallory is a good and honest employee

¢(0001) = Mallory is a lazy and lying employee
9(0010) = Mallory is a good and honest worker
9(0011) = Mallory is a lazy and lying worker
¢(0100) = Mallory is a good and loyal employee
¢(0101) = Mallory is a lazy and malicious employee

g(1111) = Mallory is a difficult and malicious worker

Then apply the tortoise-hare algorithm to H(z) = h(g(z)), if h is the
hash function for which a meaningful collision is required.

With probability 1 the resulting z, 2’ (h(g(z)) = h(g(z'))) will differ in
the last bit = collision between two texts with different meanings.
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O Secure hash applications
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Hash and MAC

A secure hash function can be combined with a fixed-length MAC to
provide a variable-length MAC Macy(H (m)). More formally:

Let MM = (Mac, Vrfy) be a MAC for messages of length ¢(n) and let
Mg = (Geng, H) be a hash function with output length ¢(n). Then
define variable-length MAC " = (Gen’, Mac’, Vrfy’) as:
» Gen’: Read security parameter 1", choose uniform k € {0,1}", run
s := Geng(1™) and return (k, s).
» Mac: read key (k,s) and message m € {0,1}*, return tag
Macy (Hs(m)).
> Vrfy' : read key (k, s), message m € {0,1}*, tag t, return
Vrfy, (Hs(m), t).
If I offers existential unforgeability and My is collision resistant, then M’
will offer existential unforgeability.
Proof outline: If an adversary used Mac’ to get tags on a set Q of messages,
and then can produce a valid tag for m* & Q, then there are two cases:
» Jm € Q with Hi(m) = Hs(m™) = H, not collision resistant
> VYm € Q : Hs(m) # Hs(m") = Mac failed existential unforgeability
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Hash-based message authentication code

Initial idea: hash a message M prefixed with a key K to get
MACk (M) = h(K||M)

This construct is secure in the random oracle model (where h is a
random function). Is is also generally considered secure with fixed-length
m-bit messages M € {0,1}™ or with sponge-function based hash
algorithm h, such as SHA-3.

Danger: If i uses the Merkle-Damgard construction, an adversary can
call the compression function again on the MAC to add more blocks to
M, and obtain the MAC of a longer M’ without knowing the key!

To prevent such a message-extension attack, variants like
MACk (M) = h(h(K | M))

or
MAC (M) = h(K|h(M))

could be used to terminate the iteration of the compression function in a
way that the adversary cannot continue. = HMAC
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HMAC

HMAC is a standard technique widely used to form a
message-authentication code using a Merkle-Damgard-style secure hash
function h, such as MD5, SHA-1 or SHA-256:

HMACKk (z) = h(K @ opad|/h(K @ ipad|z))

Fixed padding values ipad, opad extend the key to the input size of the
compression function, to permit precomputation of its first iteration.

z|lpadding = 1 |22[|z3| . .. [[xp-1llzB
K @ ipad 1 Tp
Or\i:csics...ics
T
K@ﬂ L |[padding
0 — O || @5 | HMACK(2)

https://www.ietf.org/rfc/rfc2104.txt
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Secure commitment

Proof of prior knowledge

You have today an idea that you write down in message M. You do not
want to publish M yet, but you want to be able to prove later that you
knew M already today. Initial idea: you publish h(M) today.

Danger: if the entropy of M is small (e.g., M is a simple choice, a PIN,
etc.), there is a high risk that your adversary can invert the
collision-resistant function h successfully via brute-force search.

Solution:

> Pick (initially) secret N € {0,1}?® uniformly at random.

» Publish h(N, M) (as well as h and |N]).

» When the time comes to reveal M, also reveal V.
You can also commit yourself to message M, without yet revealing it's
content, by publishing h(N, M).

Applications: online auctions with sealed bids, online games where
several parties need to move simultaneously, etc.

Tuple (N, M) means any form of unambiguous concatenation, e.g. N||M if length | N| is agreed.
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Merkle tree

Problem: Untrusted file store, small trusted memory. Solution: hash tree.

Leaves contain hash values of files Fy,..., Fi_1. Each inner node
contains the hash of its children. Only root kg (and number k of files)
needs to be stored securely.
Advantages of tree (over naive alternative hg = h(Fp,. .., Fx—1)):
» Update of a file F; requires only O(log k) recalculations of hash
values along path from h(F;) to root (not rereading every file).

» Verification of a file requires only reading O(log k) values in all
direct children of nodes in path to root (not rereading every node).

ho = h(hi1, h2)
hy = h(hs, h4)/ \h2 = h(hs, he)
h3 = h(h7, hg) } h(hg, h1o) hs = h(hnﬁ }fl(hn7 hia)
h7 = hg = hg = hio = hi1 = hix = hiz = hig =

h(F) h(F1) h(F2) h(Fs) h(F4) h(Fs) h(Fs) h(Fy)
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One-time passwords from a hash chain

Generate hash chain:  (h is preimage resistant, with ASCII output)

Ry < random

Rl = h(Ro)
R,1 = h(Rn—2)
Rn = h(Rn_l)

Equivalently: R; := h(h(h(...h(Ro)...))) = h*(Ro) (0<i < n)
————
i times
Store last chain value H := R,, on the host server. Give the remaining
list R,—1, Rn—2,..., Ry as one-time passwords to the user.

When user enters password R;, compare h(R;) L H they match:
» Update H := R; on host

» grant access to user

Leslie Lamport: Password authentication with insecure communication. CACM 24(11)770-772,
1981. https://doi.acm.org/10.1145/358790.358797
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Broadcast stream authentication

Alice sends to a group of recipients a long stream of messages
My, M, ..., M,. They want to verify Alice's signature on each packet
immediately upon arrival, but it is too expensive to sign each message.

Alice calculates
C1
Cs
Cs

Cn72
Cn—l
Cn

and then broadcasts the stream
Cl, Sign(C’l), (Cz, Ml), (03, Mg), ey (07 Mn)

Only the first check value is signed, all other packets are bound together
in a hash chain that is linked to that single signature.
Problem: Alice needs to know M,, before she can start to broadcast C;. Solution: TESLA

h(Ca, My)
h(C3, M>)
h(Cia, M3)

h(Cnfla Mn72)

h(Cnv Mn—l)
h(0, M,,)
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Timed Efficient Stream Loss-tolerant Authentication

TESLA uses a hash chain to authenticate broadcast data, without any
need for a digital signature for each message.

Timed broadcast of data sequence My, Mo, ..., M,:
> ¢t : Sign(Rp), Ry where Ry = h(R;)
» t;: (Macg,(My), My, Ry) where Ry = h(R;
. (Macg,(Ma), My, Ry) where Ry = h(R3
» t3: (Macg,(Ms), M3, R3) where R3 = h(R4
> t,: (Macg,(My), My, Ry) where Ry = h(Rs
>

(R2)
>t (Rs3)
(Ra)
(Rs)

Each R; is revealed at a pre-agreed time ¢;. The MAC for M; can only
be verified after ¢, 1 when key R; 1 is revealed.

By the time the MAC key is revealed, everyone has already received the
MAC, therefore the key can no longer be used to spoof the message.
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Hash chains, block chains, time-stamping services

Clients continuously produce transactions M; (e.g., money transfers).

Block-chain time-stamping service: receives client transactions M;,
may order them by dependency, validates them (payment covered by
funds?), batches them into groups

Gy = (My, My, M3)
GZ - (M47M5aM67M7)
G3 = (Mg, My)

and then publishes the hash chain (with timestamps t;)

Bo = ("origin block", tg, 0)

(G1>t17 ( ))
= (G2,12,h(B1))
= (G313, M(By))

B; : (Gi7 ti, h(B;i-1))
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New blocks are broadcast to and archived by clients. Clients can

>
>
>

verify that ¢;_1 < t; < now
verify h(Bi_l)
frequently compare latest h(B;) with other clients

to ensure consensus that

>

each client sees the same serialization order of the same set of
validated transactions

every client receives the exact same block-chain data

nobody can later rewrite the transaction history

Bitcoin crypto currency is based on a decentralized block-chain:
accounts identified by single-use public keys

each transaction signed with the payer’'s private key

new blocks broadcast by “miners”, who are allowed to mint
themselves new currency as incentive for operating the service

issuing rate of new currency is limited by requirement for miners to
solve cryptographic puzzle: adjust a field in each block such that
h(B;) has a required number of leading zeros, in 2025-12 =~ 79 bits

h(Bp) = 0x000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f
h(Bog139) = 0x000000000000000000016d4dedce63ddd6£f4c8c859¢91c298¢12d401£6779d2

https://bitcoin.sipa.be/ https://mempool.space/ https://en.bitcoin.it/
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Key derivation functions

A secret key K should only ever be used for one single purpose, to prevent one
application of K being abused as an oracle for compromising another one.

Any cryptographic system may involve numerous applications for keys (for encryption
systems, message integrity schemes, etc.)

A key derivation function (KDF) extends a single multi-purpose key K (which may
have been manually configured by a user, or may have been the result of a
key-agreement protocol) into k single-purpose keys K1, K>, ..., K.

Requirements:
» Use a one-way function, such that compromise of one derived key K; does not
also compromise the master key K or any other derived keys K (j # ).
»> Use an entropy-preserving function, i.e. H(K;) ~ min{H(K), |K;|}
» Include a unique application identifier A (e.g., descriptive text string, product

name, domain name, serial number), to minimize the risk that someone else
accidentally uses the same derived keys for another purpose.

Secure hash functions work well for this purpose, especially those with arbitrary-length
output (e.g., SHA-3). Split their output bit sequence into the keys needed:

Ki||Kz|| ... |Kkx = h(A, K)
Hash functions with fixed output-length (e.g., SHA-256) may have to be called
multiple times, with an integer counter:

K1||K2 :h(A7K7<1>)’ K3HK4 :h(A,K, <2>)7
ISO/IEC 11770-6
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Password-based key derivation

Human-selected secrets (PINs, passwords, pass-phrases) usually have much
lower entropy than the > 80 bits desired for cryptographic keys.

Typical password search list: “dictionary of 64k words, 4k suffixes, 64 prefixes and 4 alteration
rules for a total of 2% passwords’  https://ophcrack.sourceforge.io/tables.php

Machine-generated random strings encoded for keyboard entry (hexadecimal,
base64, etc.) still lack the full 8 bits per byte entropy of a random binary string

(e-g.

only < 96 graphical characters per byte from keyboard).

Workarounds:

>

vyvyvyyVvVyy

Preferably generate keys with a true random bit generator.

Ask user to enter a text string longer than the key size.

Avoid or normalize visually similar characters: 00Q/1Il/A4/Z2/S5/VU/nu
Use a secure hash function to condense the passphrase to key length.

Use a deliberately slow hash function, e.g. iterate C' times.

Use a per-user random salt value S to personalize the hash function

against pre-computed dictionary attacks.
Stored random string where practical, otherwise e.g. user name.

PBKDF2 iterates HMAC C times for each output bit.

Typical values: S € {0,1}'%, 10° < C < 10’
Recommendation for password-based key derivation. NIST SP 800-132, December 2010.
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Password storage

Servers that authenticate users by password need to store some
information to verify that password.

Avoid saving a user's password P as plaintext. Save the output of a
secure hash function h(P) instead, to help protect the passwords after
theft of the database. Verify a password by comparing it's hash against
that in the database record.

Better: hinder dictionary attacks by adding a random salt value S and by
iterating the hash function C' times to make it computationally more
expensive. The database record then stores

(S,hC(P,S))

or similar.

Standard password-based key derivation functions, such as PBKDF2 or
Argon2, can also be used to verify passwords.

Argon2 is deliberately designed to be memory intensive to discourage fast ASIC implementations.
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Target: invert h(p), where p € P is a password from an assumed finite set
P of passwords (e.g., h = MD5, |P| = 958 ~ 253 8-char ASCII strings)
Idea: define “reduction” function r : {0,1}}?® — P, then iterate h(r(-))

For example: convert input from base-2 to base-96 number, output first 8 “digits” as printable
ASCII characters, interpret DEL as string terminator.

T h T h, h, T h
[ To—=PL—= XL P2 = Tyl = Dn — Ty = Llz,] =m0
m .

PRECOMPUTE(h,7,m,n):  INVERT(h,7, L,z) : Trade-off
for j:=1tom Yy =z time:
zo €r {0,1}'% while L[y] = not found  p & |p|1/2
for ¢ = lton i; = h(r(y)) memory:
pi = (i) p=r(Lly))
2 = h(p;) while h(p) # x m =~ |P|'/?
store L[z,] := o p = r(h(p))
return L return p

Problem: Once mn > \/|P| there are many collisions, the g — z,,
chains merge, loop and overlap, covering P very inefficiently.

M.E. Hellman: A cryptanalytic time—memory trade-off. IEEE Trans. Information Theory,
July 1980. https://doi.org/10.1109/TIT.1980.1056220

Inverting unsalted password hashes: time—memory trade-off
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Quick demonstration of the problem:
#!/usr/bin/env julia
function reach(P, n, m)
h = [ rand(1:P) for i = 1:P ] # define hash function as mapping table

b = zeros(Bool, P) # bitmap of reached passwords
for j = 1:m
P=1] # start a new hash chain
for i = 1:n
blpl =1 # been there
p = hipl # continue a hash chain
end
end
return sum(b)/P
end
P = 1_000_000 # number of possible passwords
n = 10_000 # length of each chain
m = 10_000 # number of chains
println("Overrun factor: ", n*m/P);
println("Reach: $(100*reach(P,n,m))%")
Output:

Overrun factor: 100.0
Reach: 13.5356%

Even if we hash 100x more often than the number of possible passwords:
the hash chains still reach merely < 14% of all 10° possible passwords.
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Inverting unsalted password hashes: “rainbow tables”

Target: invert h(p), where p € P is a password from an assumed finite set
P of passwords (e.g., h = MD5, |P| = 958 ~ 253 8-char ASCII strings)
Idea: define a “rainbow” of n reduction functions r; : {0,1}1% — P,
then iterate h(r;(+)) to avoid loops. (For example: r;(z) := r(h(z]|(i))).)

! h U2 h h ! h
o P1L—= %1 — P2 Tp-1 Pn— T, = Llzy] =

m
PRECOMPUTE(h, 7, m,n) :  INVERT(h,r,n,L,z): Trade-off
for j:=1tom for k := n downto 1 time:
zo €r {0,1}* Bpp—il 0= 0 n =~ \P\1/3
fori:=1ton fori:=k ton
o o memory:
pi == Ti(Ti—1) pi = ri(Ti-1)
x; = h(p;) x; = h(p;) m ~ |PP3
store L[z,] := xo if L[z,] exists
return L p1 = r1i(L[xn])
for j:=1ton
Philippe Oechslin: Making a faster if h(p;) ==
copanayic e ey return 1
https://doi.org/10.1007/ pj+1 = rj+1(h(p;))

978-3-540-45146-4_36
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Other

applications of secure hash functions

deduplication — quickly identify in a large collection of files
duplicates, without having to compare all pairs of files, just compare
the hash of each files content.

file identification — in a peer-to-peer filesharing network or cluster
file system, identify each file by the hash of its content.

distributed version control systems (git, mercurial, etc.) — name each
revision via a hash tree of all files in that revision, along with the
hash of the parent revision(s). This way, each revision name securely
identifies not only the full content, but its full revision history.
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@ Key distribution problem
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Key distribution problem

In a group of n participants, there are n(n — 1)/2 pairs who might want
to communicate at some point, requiring O(n?) private keys to be
exchanged securely in advance.

This gets quickly unpractical if n > 2 and if participants regularly join
and leave the group.

o —
[P P o] P2 | 7] 2] [P
A A A

7] 7] [T 7]
A A

(AP Fr] 7 [ 7]
\_/'

Alternative 1: introduce an intermediary “trusted third party”

147



Trusted third party — key distribution centre

Needham—-Schroeder protocol

Communal trusted server S shares key Kpg with each participant P.

® A informs S that it wants to communicate with B.

® S generates K 45 and replies to A with
EncKAS(B, KAB, EncKBS(A, KAB))

Enc is a symmetric authenticated-encryption scheme

©® A checks name of B, stores K 4p, and forwards the “ticket”
EnCKBs(A7 KAB) to B

O B also checks name of A and stores K zp.

@ A and B now share K 45 and communicate via Encg, , /Deck , -
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Kerberos

An extension of the Needham—Schroeder protocol is now widely used in
corporate computer networks between desktop computers and servers, in
the form of Kerberos and Microsoft’s Active Directory. K g is generated
from A's password (hash function).

Extensions include:
» timestamps and nonces to prevent replay attacks

> a “ticket-granting ticket" is issued and cached at the start of a
session, replacing the password for a limited time, allowing the
password to be instantly wiped from memory again.

» a pre-authentication step ensures that S does not reply with
anything encrypted under K 45 unless the sender has demonstrated
knowledge of K 45, to hinder offline password guessing.

» mechanisms for forwarding and renewing tickets
> support for a federation of administrative domains ( “realms”)

Problem: ticket message enables eavesdropper off-line dictionary attack.
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Key distribution problem: other options

Alternative 2: hardware security modules + conditional access

@ A trusted third party generates a global key K and embeds it
securely in tamper-resistant hardware tokens (e.g., smartcard)

® Every participant receives such a token, which also knows the
identity of its owner and that of any groups they might belong to.
© Each token offers its holder authenticated encryption operations
Enck(-) and Deck (4, -).
O Each encrypted message Encyi (A, M) contains the name of the
intended recipient A (or the name of a group to which A belongs).
O A's smartcard will only decrypt messages addressed this way to A.
Commonly used for “broadcast encryption”, e.g. pay-TV, navigation satellites.
Alternative 3: Public-key cryptography
» Find an encryption scheme where separate keys can be used for
encryption and decryption.
» Publish the encryption key: the “public key”
> Keep the decryption key: the “secret key”

Some form of trusted third party is usually still required to certify the correctness of the published
public keys, but it is no longer directly involved in establishing a secure connection.
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Public-key encryption

A public-key encryption scheme is a tuple of PPT algorithms
(Gen, Enc, Dec) such that

> the key generation algorithm Gen receives a security parameter /
and outputs a pair of keys (PK, SK) + Gen(1?), with key lengths
|PK| > ¢, |SK| > ¢;

> the encryption algorithm Enc maps a public key PK and a
plaintext message M € M to a ciphertext message
C < Encpg(M);

» the decryption algorithm Dec maps a secret key SK and a
ciphertext C to a plaintext message M := Decgk (C), or outputs L;

» for all £, (PK, SK) « Gen(1Y): Decsk(Encpg(M)) = M.

In practice, the message space M may depend on PK.

In some practical schemes, the condition Decgx (Encpi (M)) = M may fail with negligible
probability.
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Security against chosen-plaintext attacks (CPA)

Public-key encryption scheme N = (Gen, Enc, Dec)
. cpa .
Experiment/game PubK'P"(¢):

1 —= (PK, SK) + Gen(1¢) PK = 1
ber {0,1
R {01 Mo, My A
C + EncPK(Mb)
b = challenger C adversary =
Setup:

@ The challenger generates a bit b €g {0,1} and a key pair
(PK, SK) + Gen(1%).

@® The adversary A is given input 1°
Rules for the interaction:

@ The adversary A is given the public key PK

® The adversary A outputs a pair of messages: My, My € {0,1}™.

® The challenger computes C' <+ Encpg (M;) and returns C to A
Finally, A outputs V. If b" = b then A has succeeded = PubKZ7,(¢) = 1

Note that unlike in PrivK®® we do not need to provide .A with any oracle access:

here A has access to the encryption key PK and can evaluate Encpk (-) itself.
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Security against chosen-ciphertext attacks (CCA)

Public-key encryption scheme N = (Gen, Enc, Dec)

Experiment/game PubK%n(¢):

PK
1Y —=|(PK, SK) « Gen(1%) == 1¢

ct,c?,....Ct
b 1 ) 3 7
, cr {0.1) | Mt M2 T A
M «— DECSK(CZ) M07M1
C(—EnCpK(Mb)

C adversary
CtHl £, ...

b = Mt ppttT

Setup:
» handling of ¢, b, PK, SK as before
Rules for the interaction:

@ The adversary A is given PK and oracle access to Decgk:

A outputs C?, gets Decgx (C'), outputs C2, gets Decgx (C?), ...
® The adversary A outputs a pair of messages: My, M7 € {0,1}™.
® The challenger computes C' < Encpg(M;) and returns C to A

O The adversary A continues to have oracle access to Decgk
but is not allowed to ask for Decgk (C).

Finally, A outputs b'. If o = b then A has succeeded = PubK’(¢) =1
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Security against chosen-plaintext attacks (cont'd)

Definition: A public-key encryption scheme [1 has indistinguishable
encryptions under a chosen-plaintext attack ("“is CPA-secure") if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PubK,(¢) = 1) < % + negl()

Definition: A public-key encryption scheme [1 has indistinguishable
encryptions under a chosen-ciphertext attack ("is CCA-secure") if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PUBKST (1) = 1) < 3 +negl(!)

What about ciphertext integrity / authenticated encryption?

Since the adversary has access to the public encryption key PK, there is
no useful equivalent notion of authenticated encryption for a public-key

encryption scheme.
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® Number theory and group theory
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Number theory: integers, divisibility, primes, gcd

Set of integers: Z:={...,—-2,-1,0,1,2,...} a,beZ

If there exists ¢ € Z such that ac = b, we say “a divides b" or “a
» if 0 < a then a is a “divisor” of b
» if 1 <a < bthen aisa “factor” of b

b".

» if a does not divide b, we write “a {b"

If integer p > 1 has no factors (only 1 and p as divisors), it is “prime”,

otherwise it is “composite”. Primes: 2,3,5,7,11,13,17,19,23,29,31, ...

> every integer n > 1 has a unique prime factorization n = [[, p;*,
with primes p; and positive integers e;

The greatest common divisor gcd(a, b) is the largest ¢ with ¢ | a and ¢ | b.

> examples: gcd(18,12) = 6, ged(15,9) = 3, ged(15,8) =1
» if gcd(a,b) = 1 we say a and b are “relatively prime”

> gcd(a,b) = ged(b,a), ged(a,0) =a

» gcd(a,b) = ged(a, b — a)

» if clab and gcd(a,c) =1 then ¢|b

» if a|n and b|n and gcd(a,b) = 1 then abln
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Integer division with remainder
For every integer a and positive integer b there exist unique integers g
and r with a =qb+7r and 0 <7 < b.

The modulo operator performs integer division and outputs the
remainder:

amodb=r = 0<r<b A Jg€eZ:a—qgb=r

Examples: 7 mod 5 =2, —1 mod 10 =9

If
amodn=>bmodn

we say that “a and b are congruent modulo n", and also write

a=b (modn)
This implies n|(a — b). Being congruent modulo n is an equivalence
relationship:
> reflexive: mod n)

P> symmetric:

(
(mod n) = b=a (mod n)
> transitive: (

mod n) Ab =c (mod n) = a = ¢ (mod n)

SIS
1

S Q
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Modular arithmetic

Addition, subtraction, and multiplication work the same under
congruence modulo n:

If a =d’ (mod n) and b=1b" (mod n) then
a+b=ad +b (modn)
a—b=a —b (modn)
ab=d't!  (mod n)
Associative, commutative and distributive laws also work the same:
a(b+c)=ab+ac=ca+ba (modn)

When evaluating an expression that is reduced modulo n in the end, we
can also reduce any intermediate results. Example:

(a —bc) modn = ((a mod n) — ((b mod n)(c mod n)) mod n) mod n

Reduction modulo n limits intermediate values to
Zn ={0,1,2,...,n— 1},

the “set of integers modulo n".
Staying within Z,, helps to limit register sizes and can speed up computation.
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Euclid’s algorithm

ged(21,15) = ged(15,21 mod 15) = ged(15,6) = ged(6, 15 mod 6) =
ged(6,3) =3=-2x21+3x15
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Euclid’s algorithm

Euclidean algorithm: ~ (WLOG a > b > 0, since gcd(a, b) = ged(b, a))

ged(a,b) =< 7 ol “
gecd(b,a mod b), otherwise

For all positive integers a, b, there exist integers x and y such that
ged(a, b) = ax + by.
Euclid’'s extended algorithm also provides z and y:  (WLOG a > b > 0)

(ng(a7 b), z, y) =

(b,0,1), ifb|a

(d,y,x —yq), otherwise,
with (d, z,y) := eged(b, ),
where a = gb+7,0 <7 <b

eged(a,b) =
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Groups

A group (G, e) is a set G and an operator e : G x G — G that have

closure: aeb e G for all a,b € G
associativity: ae(bec) = (aeb)ecforall a,b,ce G
neutral element: there exists an e € G such that for all @ € G:
aee=cea=a
inverse element: for each a € G there exists some b € G such that
aeb=bea=ce
Ifaeb=0>bea for all a,b € G, the group is called commutative (or abelian).
Examples of abelian groups:
> (Z7 +)' (R7 +)' (R\ {O}a )
» (Zn,+) — set of integers modulo n with addition a + b := (a + b) mod n
> ({0,1}",®) where a1az2...an ®bibz...bn = c1c2...cn with
(a; +bi) mod 2 =¢; (forall1 <i<m, a;,bi,c; € {0,1}) “bit-wise XOR"
If there is no inverse element for each element, (G, ) is a monoid instead.
Examples of monoids:
» (Z,-) — set of integers under multiplication
» ({0,1}",||) — set of variable-length bit strings under concatenation
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Permutations and groups

Permutation groups

A set P of permutations over a finite set S forms a group under
concatenation if

» closure: for any pair of permutations g,h : S <+ S in P their
concatenation g o h : x — g(h(x)) is also in P.

> neutral element: the identity function  — z is in P

> inverse element: for each permutation g € P, the inverse
permutation g~ is also in P.

Note that function composition is associative: fo(goh)=(fog)oh

The set of all permutations of a set S forms a permutation group called the “symmetric group” on
S. Non-trivial symmetric groups (|S| > 1) are not abelian.

Each group is isomorphic to a permutation group

Given a group (G, e), map each g € G to a function f, : x +—> g e x.
Since g~ € G, f, is a permutation, and the set of all f, for g € G forms
a permutation group isomorphic to G. (“Cayley's theorem™)

Encryption schemes are permutations.
Which groups can be used to form encryption schemes?
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Subgroups

(H, @) is a subgroup of (G, e) if
> H is a subset of G (H C G)
» the operator e on H is the same as on G
> (H,e) is a group, that is
® for all a,b € H we have aeb € H
® cach element of H has an inverse element in H
® the neutral element of (G, e) is also in H.
Examples of subgroups

» (nZ,+) with nZ := {nili€ Z} ={...,-2n,-n,0,n,2n,...}
— the set of integer multiples of n is a subgroup of (Z,+)

> (RT,-) — the set of positive real numbers is a subgroup of (R \ {0}, ")
> (Q,+) is a subgroup of (R,+), which is a subgroup of (C,+)

> (Q\ {0},) is a subgroup of (R\ {0}, "), etc.

> ({0,2,4,6},+) is a subgroup of (Zg,+)
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Notations used with groups

When the definition of the group operator is clear from the context, it is
often customary to use the symbols of the normal arithmetic addition or
multiplication operators (“+", “x", ", “gh") for the group operation.

There are two commonly used alternative notations:

“Additive” group: think of group operator as a kind of “+"
» write O for the neutral element and —g for the inverse of g € G.
> writeg-i:=gege---eg(g€G,icZ)

T

“Multiplicative” group: think of group operator as a kind of “x"
» write 1 for the neutral element and ¢! for the inverse of g € G.
» write the group operation as a dot “g- h" or juxtaposition “gh"
> write g’ :==gege---eg (g€ G,icZ)

T

Some of these notations may similarly also be used for monoids or other algebraic structures where
the behaviour of the operator in some way resembles that of addition or multiplication.
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Rings
A ring (R,H,X) is a set R and two operators H: R x R — R and
X : R x R — R such that
» (R,H) is an abelian group
» (R,X) is a monoid

> aX(bBc)=(aXb)HBH(a®c)and (B Kc=(aXc)H(BXc)
(distributive law)

If also a X b = bX a, then we have a commutative ring.
Examples for rings:
> (Z[x],+,), where

Zlz] = { Z a;z’

i=0

aiEZ,nEO}

is the set of polynomials with variable z and coefficients from Z
— commutative

» Z,[x] — the set of polynomials with coefficients from Z,

» (R™*™ 4, -) — n X n matrices over R — not commutative
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Fields

A field (F,H,X) is a set F and two associative and commutative
operators H: F xF — F and X : F x F — F such that

» (IF,H) is an abelian group with neutral element Op

> (F,X) is a commutative monoid with neutral element 1r # Op

» (F\ {Op},X) is also an abelian group (with neutral element 1)

> aX(bBc)=(aXb)B(a®c)and (aBI)Ke=(aXc)H(BXc)
(distributive law)

In other words: a field is a commutative ring where each element except
for the neutral element of the addition has a multiplicative inverse.

Field means: division works, linear algebra works, solving equations, etc.
Examples for (infinitely large) fields: (Q,+,), (R,+,-), (C,+,")

For cryptographic applications, we are interested in finite fields, where we
can pick elements uniformly at random. The order of a field is the
number of elements it contains.

If we have 1+ 1+ ---4+ 1 =0 in a ring or field, then we call the smallest such ¢ its characteristic.
R Y
7 times
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Ring Z,

Set of integers modulo n is Z,, := {0,1,...,n — 1}

When we refer to (Zy,,+) or (Zy,-), we apply after each addition or
multiplication a reduction modulo n. (No need to write out “mod n"
each time.)

We add/subtract the integer multiple of n needed to get the result back into Z,,.
(Z,,+) is an abelian group:

» neutral element of addition is 0

» the inverse element of a € Z,, is n —a = —a (mod n)
(Zy,-) is a monoid:

» neutral element of multiplication is 1

(Zy,,+,-), with its “mod n" operators, is a ring, which means
commutative, associative and distributive law works just like over Z.

From now on, when we refer to Z,,, we usually imply that we work with
the commutative ring (Z,,,+, ).

Examples in Zs: 4+3=24.-2=3,42=1
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Division in Z,,
In ring Z,,, element a has a multiplicative inverse a=! (with aa~! = 1) if
and only if ged(n,a) = 1.
In this case, the extended Euclidian algorithm gives us
nr+ay=1

and since nx = 0 in Z,, for all x, we have ay = 1.
Therefore y = a™! is the inverse needed for dividing by a.

» We call the set of all elements in Z,, that have a multiplicative
inverse the “multiplicative group” of Z,,:

Z; ={a € Z,|gcd(n,a) =1}
> If p is prime, then (Zy, ) with
Zy=A{1,...,p—1}
is a group, and (Z,, +, ) is a (finite) field, that is every element

except 0 has a multiplicative inverse.

Example: Multiplicative inverses of Z5:
1-1=1,2-4=1,3-5=1,4-2=1,5-3=1,6-6=1
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Finite fields (Galois fields)

(Z,+,) is a finite field with p elements, where p is a prime number.
Also written as Fy,, or as GF(p), the “Galois field of order p".

We can also construct finite fields F,n (or GF(p™)) with p™ elements:

Let F, be a finite field with ¢ elements. Then we can create an extension
field Fyn with ¢" elements as follows:

» Elements: polynomials over variable x with degree less than n and
coefficients from the finite field I,

» Modulus: select an irreducible polynomial T'(z) € F,[x] of degree n
T(x) =cpz" 4+ + x? + a1z + ¢
where ¢; € Fy, for all 0 <4 < n. An irreducible polynomial cannot be
factored into two lower-degree polynomials from F[z] \ {0,1}.

> Addition: ¢ is normal polynomial addition (i.e., pairwise addition of
the coefficients in F,)

» Multiplication: ® is normal polynomial multiplication, then divide
by T'(x) and take the remainder (i.e., multiplication modulo T'(z)).
Theorem: any finite field has p” elements (for some prime p, n > 0)
Theorem: all finite fields of the same size are isomorphic
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Fyn» — binary fields (fields of characteristic 2)

F, is particularly easy to implement in hardware:
» addition = subtraction = XOR gate
» multiplication = AND gate
» division can only be by 1, which merely results in the first operand

Of particular practical interest in modern cryptography are larger finite
extension fields of the form Fa» (also written as GF(2")):

» Polynomials are represented as bit words, each coefficient = 1 bit.
> Addition/subtraction is implemented via bit-wise XOR instruction.

» Multiplication and division of binary polynomials is like binary
integer multiplication and division, but without carry-over bits. This
allows the circuit to be clocked much faster.

Recent Intel/AMD CPUs have added instruction PCLMULQDQ for
64 x 64-bit carry-less multiplication. This helps to implement arithmetic
in Fass or Foi2se more efficiently.
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[Fys example

The finite field Fys consists of the 256 polynomials of the form
72’ 4+ er? e+ co ¢; € {0,1}

each of which can be represented by the byte c7cgcscacscacicy.

As modulus we chose the irreducible polynomial

T(zx)=a®+a2*+2>+2+1 or 100011011

Example operations:

> (2T +25+z+ )o@’ +28+1) =28+ 25+ 2
or equivalently 10100011 ¢ 11000001 = 01100010
> (2% +2* + 1) @r (22 + 1) = [(2® + 2* + 1)(2® + 1)] mod T'(x) =
(B +a2*+ 22+ 1) mod (2B +a2* + 28 + 2 +1) =
(B4t +22+ )o@+ + 23+ + ) =23+ 22+ 2
or equivalently
01010001 ®7 00000101 = 100010101 ¢ 100011011 = 00001110
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Multiplication and modular reduction in Fpn

n—1

Let a(z) = Zalﬂc and b(z Zbaz with a;,b; € Z»

=0
be ponnomlaIs of degree less than n that represent elements of Fypn.

Let f(z) = 2™ + r(n) be the irreducible modulus.

Algorithm for calculating ¢(x) = [a(z) - b(x)] mod f(x ch

RIGHT_TO_LEFT_MULTIPLY (a, b): LEFT_TO_RIGHT_MULTIPLY(a, b):
if ap =1 then c:=belse c:=0 c:=0
fori:=1ton—1do for i :=n — 1 downto 0 do
if b,—1 = 1 then if a; = 1 then
b:=b<k1®r < shift ci=c®b < add
else if ¢ =0 then return ¢
b=bk1 if c,—1 =1 then
if a; = 1 then c:=cK1®r < shift
ci=c®b < add else
return ¢ c=cK1

The left-to-right method can be accelerated by precomputing B,, = [b - u] mod f for all 2%

polynomials u of degree less than w, and then adding the B,, selected by w bits of a at a time.
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Squaring in Fo»

In finite fields of characteristic 2, we have
2=0
-1=1
a?=a for all a € Z»
and as a result some expressions become much simpler.
For example: squaring of polynomials
(@12 + a9)? = (a1 + ao)(arz + ag) = a32® + 2a1a0x + a3 = a12® + ag

More generally: if

n—1
a(z) = Z ax’ € Fon
=0

then

[a(x)]? = z_: a;iz?,
=0
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Finite groups

Let (G, ®) be a group with a finite number of elements |G|.

Practical examples here: (Zp,+), (Z;,), (Forn, @), (Fon \ {0}, ®)

Terminology:

Related notion: the characteristic of

» The order of a group G is its size |G| a ring or field is the order of 1 in its
. i additive group, i.e. the smallest ¢
» order of group element g in G is withl+1+4---+1=0.
. . 5 D —
Ord([},(g) = mln{Z > 0 | gZ = 1} 4 times

Useful facts regarding any element g € G in a group of order m = |G/
O g =1, g°=grmedm
@ ¢ — gv mod ord(9)
® " =g x=y (mod ord(g))
O ord(g) | m “Lagrange's theorem”

@ if gcd(e,m) = 1 then g — ¢ is a permutation, and g — g% its
inverse (i.e., g° = g) if ed mod m =1
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Proofs
o

(1]

In any group (G, -) with a, b, c € G we have ac = bc = a = b.
Proof: ac = bc = (ac)e™ = (be)e™ = ace ™) =blcc ™) =a-1=b-1=>a=hb.
Let G be an abelian group of order m with elements g1, ..., gm. We have

g1-g2- - gm = (991) - (992) - - - (9gm)
for arbitrary fixed g € G, because gg; = gg; = g: = g; (see @), which implies that each
of the (gg;) is distinct, and since there are only m elements of G, the right-hand side of the
above equation is just a permutation of the left-hand side. Now pull out the g:

g1-927gm = (991) - (992) - (99m) = g™ -1 g2+ gm = g™ =1.

(Not shown here: g™ =1 also holds for non-commutative groups.)

Also: gm =1= gw — gur, . (gm,)n — gmfnm — gz mod m for any n € 7.

Likewise: ¢ = ord(g) = ¢' =1=> g% = g" - (¢")" = g"™" = ¢ ™" forany n € Z.
Let i = ord(g).

‘="z =y (mod i) < zmodi=ymodi=g®=g®mdl=gymedi_ gu

“=": Say g% = g¥, then 1 = g%~ ¥ = g(®=¥) md i Gince (z — y) mod i < i, but 7 is the
smallest positive integer with g* = 1, we must have (z —y) mod ¢ = 0. = = =y (mod 7).

g™ =1 = g° therefore m = 0 (mod ord(g)) from @), and so ord(g)|m.

(g°)? = g¢¢ = ge@md ™ — 41 — g means that g — g< is indeed the inverse of g — g° if
ed mod m = 1. And since G is finite, the existence of an inverse operation implies that
g — g€ is a permutation.

Katz/Lindell (2nd ed.), sections 8.1 and 8.3
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Cyclic groups
Let G be a finite (multiplicative) group of order m = |G|.
For g € G consider the set
(9) :=1{s" 9" 9%}
Note that |(g)| = ord(g) and (g) = {¢° ¢*, 4>, ..., god@—1}

Definitions:
> We call g a generator of G if (g) = G.
» We call G cyclic if it has a generator.
Useful facts:
© Every cyclic group of order m is isomorphic to (Z,, +). (g° < 1)
® (g) is a subgroup of G (subset, a group under the same operator)

® If |G| is prime, then G is cyclic and all g € G\ {1} are generators.

Recall that ord(g) | |G|. We have ord(g) € {1, |G|} if |G| is prime, which makes g either 1
or a generator.

Katz/Lindell (2nd ed.), section 8.3
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How to find a generator?

Let G be a cyclic (multiplicative) group of order m = |G|.
» If m is prime, any non-neutral element is a generator. Done.
But |Z5| = p — 1 is not prime (for p > 3)!
> Directly testing for |(g)| L m is infeasible for crypto-sized m.

» Fast test: if m =[], pi* is composite, then g € G is a generator if
and only if g™/Pi %1 for all i.

» Sampling a polynomial number of elements of G for the above test
will lead to a generator in polynomial time (of log, m) with all but
negligible probability.

= Make sure you pick a group of an order with known prime factors.

One possibility for Z; (commonly used):

» Chose a “strong prime" p = 2q + 1, where ¢ is also prime
= |Z;| = p— 1 = 2q has prime factors 2 and g.
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(Z,,+) is a cyclic group
For every prime p every element g € Z, \ {0} is a generator:
Zp={(9)={g-imodp|0<i<p-—1}

Note that this follows from fact 3 on slide 176: Z,, is of order p, which is prime.

Example in Z7:

(0-0,0-1,0-2,0-3,0-4,0-5,0-6,0-7,...)=(0,0,0,0,0,0,0,0, ...)
(1-0,1-1,1-2,1-3,1-4,1-5,1-6,0-7,...)=(0,1,2,3,4,56,0,...)
(2:0,2-1,2-2,2-3,2-4,2-5,2-6,0-7,...)=(0,2,4,6,1,3,5,0,...)
(3-0,3-1,3-2,3-3,3-4,3-5,3-6,0-7,...)=(0,3,6,2,51,4,0,...)
(4.0,4-1,4-2,4-3,4-4,4.54.6,0-7,...)=(0,4,1,5,2,6,3,0,...)
(5-0,5-1,5-2,5-3,5-4,5-5,5-6,0-7,...)=(0,5,3,1,6,4,20,...)
(6-0,6-1,6-2,6-3,6-4,6-56:6,0-7,...)=(0,6,5 4,32 1,0, ...)

» All the non-zero elements of group Z7 with addition mod 7 are generators
» ord(0) =1, ord(1) = ord(2) = ord(3) = ord(4) = ord(5) = ord(6) =7
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(Z;,-) is a cyclic group

For every prime p there exists a generator g € Z, such that
Zy={g' mod p|0 <i<p-—2}

Note that this does not follow from fact 3 on slide 176: Z; is of order p — 1, which is even (for
p > 3), not prime.

Example in Z7:

(1°,14,1%,1%,1%,1°,1°, .. ) = (1,1,1,1,1,1,1,..)
(2°,21,2%,23,2% 2% 2% . ) =(1,2,4,1,2,4,1,...)
(3°,3,3%,3%,3%,3°,3°, ...) = (1,3,2,6,4,5,1,...)
(4°,41,4% 4% 4" 45 4° . ) =(1,4,2,1,4,2,1,...)
(5°,5',5%,5% 5, 5°,5° ...) = (1,5,4,6,2,3,1,...)
(6°,6,6%,6%6%6°,6°..)=(1,6,1,6,1,6,1,...)

» 3 and 5 are generators of Z7

=6, ord(4) = 3,
=6, ord(6) =2

Fast generator test (p. 177), using |Z7 | = 6 = 2-3:
30/2 = 6,30/3 = 2,5/2 = 6,5%% = 4 all #1.

> 1, 2, 4, 6 generate subgroups of Z7: {1}, {1,2,4}, {1,2,4}, {1,6}

» ord(1) =1, ord(2) =3, The orderof g in Z is the size of the subgroup (g).
Lagrange’s theorem ordzx( ) p—1forallgeZy
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Fermat's and Euler's theorem

Fermat’s little theorem: (1640)
p prime and ged(a,p) =1 = a” 'modp=1
Recall from Lagrange’s theorem: for a € Z7, ord(a)|(p — 1) since |Z}| = p — 1.
Euler’s phi function:
p(n) = |Z,| = {a € Zy | ged(n, a) = 1}
» Example: ¢(12) = |{1,5,7,11}| =4

> primes p, q: o(p) =p—1

p(") =P p - 1)
p(pg) = (p—1)(q—1)
> ged(a,0) =1 = p(ab) = p(a)p(b)
Euler’'s theorem: (1763)
gcd(a,n) =1 < a?™ modn =1

> this implies that in Z,,: a® = a® ™9™ for any a € 7, x €l
Recall from Lagrange's theorem: for a € Z) , ord(a)|¢(n) since |Z) | = ¢(n).
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Chinese remainder theorem

Definition: Let (G, e) and (H, o) be two groups. A function f: G — H
is an isomorphism from G to H if

» fis a l-to-1 mapping (bijection)
> f(g1092) = f(g1) 0 f(g2) forall g1,92 € G

Chinese remainder theorem:
For any p, ¢ with gcd(p, ¢) = 1 and n = pq, the mapping

fiZy < Zy xZy f(z) = (x mod p,z mod q)

is an isomorphism, both from Z,, to Z,, x Z, and from Z}, to Z, X Z.
Inverse: To get back from x;, =  mod p and z, = x mod ¢ to x, we first use Euclid’s extended

algorithm to find a, b such that ap + bg = 1, and then = = (2,bq + z4ap) mod n.

Application: arithmetic operations on Z,, can instead be done on both
Z,, and Z, after this mapping, which may be faster.
Example: n =pg=3x5=15

T o|1|2|3|4|5]|6|]7|8]9|10]11]12]13] 14

zmod3 | 0 | 1 0|1]2 1 2 0 1 2

o
—
N
o

2
zmod5 | 0| 1|2 |3 |4|0|1|2)|3]|4 0 1 2 3 4
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Quadratic residues in (Z;, )

2

In Z;, the squaring of an element, x — x* is a 2-to-1 function:

y=2=(-z)’

Example in Z3: J/%%&
(12,2232, 4% 5% 6%) = (1,4,2,2,4,1) @@@

If y is the square of a number in x € Z;, that is if y has a square root in

Z;, we call y a “quadratic residue”.

Example: Z3 has 3 quadratic residues: {1,2,4}.

If p is an odd prime: Z; has (p — 1)/2 quadratic residues.

Zyp would have one more: 0

Euler’s criterion:
AP=1/2 mod p=1 <& cis a quadratic residue in Z;

Example in Z;: (7—1)/2=3, (13,23,33%,43,5%36%) =(1,1,6,1,6,6)

cP=1/2 is also called the Legendre symbol
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Taking roots in Z;,

If 2 = c in Z,, then z is the “et" root of ¢", or x = c'/°.

Method 1: if gcd(e,p—1) =1
Find d with de = 1 in Z,_; (Euclid's extended), then c*/¢ = ¢ in Zy.

Proof: (c?)¢ = cde = cde mod @(p) — pdemod (p—1) _ 1 _ .

Method 2: if e = 2 (taking square roots)
ged(2,p — 1) # 1 if p odd prime = Euclid’s extended alg. no help here.

> If pmod 4 =3 and ¢ € Z} is a quadratic residue: \/c = ¢(PT1)/4

Proof: [Cwn/ﬂ2 _ or/2 _ -1/2
N——
=1

> If p mod 4 = 1 this can also be done efficiently (details omitted).

Application: solve quadratic equations az? + bz + ¢ =0 in Ly,

—b+ Vb? — dac
2a
Algorithms: /b2 — 4ac as above, (2a)~! using Euclid’s extended

Taking roots in ZX: If n is composite, then we know how to test whether ¢!/¢ exists, and how to
compute it efficiently, only if we know the prime factors of n. Basic Idea: apply Chinese
Remainder Theorem, then apply above techniques for Z;.

Solution: z =
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Working in subgroups of Z;

How can we construct a cyclic finite group G where all non-neutral
elements are generators?

Recall that Z; has ¢ = (p — 1)/2 quadratic residues, exactly half of its
elements.
Quadratic residue: an element that is the square of some other element.

Choose p to be a strong prime, that is where g is also prime.

Let G = {g? | g € Z};} be the set of quadratic residues of Z3. G with
operator “multiplication mod p" is a subgroup of Z*, with order |G| = q.

G has prime order |G| = g and ord(g)|q for all g € G (Lagrange's theorem):
= ord(g) € {1,q} = ord(g) =g forallg >1 = forall g € G\ {1} (g) =G.

If p is a strong prime, then each quadratic residue in Z; other than 1 is a
generator of the subgroup of quadratic residues of Z.

GENERATE_GROUP(1%): Example: p=11,¢=5
p €r {(£+ 1)-bit strong primes} g € {22,3%,4% 5?} = {4,9,5,3}
q:=(p—1)/2 (4) = {4°,47,42,4° 4"} = {1,4,5,9,3}

z €r Zy \ {-1,1} ({
g := 2 mod p (
return p, ¢, g (

9> = {90791792793794} = {17974737 5}
5) = {5°,5',5%,5°,5'} = {1,5,3,4,9}
3> = {30731332733734} = {173795574}
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Modular exponentiation

In cyclic group (G, o) (e.g., G = Zy):

How do we calculate g efficiently? (g € G, e € N)

Naive algorithm: ¢°=gege...eg
—_—

e times
Far too slow for crypto-size e
(e.g., e~ 2%9)!

Square-and-multiply algorithm:
n

Binary representation: ¢ = Z e - 20
i=0

e

with n = [log, e] and ¢; = | & | mod 2

Computation:

0 i i-1\ 2
=g 7 =(")

RTOL_SQUARE_AND_MULT(g, €):
a:=g
b:=1
for ¢ :== 0 to n do
if /2] mod 2 = 1 then
b:=bea <+ multiply
a:=aeaq < square
return b

LTOR_SQUARE_AND_MULT(g, €):
a:=1
for i := n downto 0 do
a:=a?
if e, =1 then
a:=aeg
return a



Safer square-and-multiply algorithms

Basic square-and-multiply algorithms are vulnerable to side-channel
attacks (e.g., analysis of unintended power-line or electromagnetic signal
emissions by microcontrollers). If an eavesdropper can recognize the
function-call sequence

square, multiply, square, square, square, multiply, square, multiply, ...

then that suggests for LTOR_SQUARE_AND_MULT: e = 10011.. ..

There are often faster algorithms for squaring than just multiplying a group element with itself.

These variants are slower (more multiplications), but branch free:

SQUARE_AND_MULT_ALWAYS(g, €): MONTGOMERY_LADDER(g, €):
al0] ;=1 al0] :== g ; assuming e, =1
for i := n downto 0 do a[l] :=¢°
a[0] := a[0]? for i := n — 1 downto 0 do
a[l] :==al0] e g al—e;] := al0] e a[1]
a[0] := ale;] a[ e := alei]?

return a[0] return a[0]

Dummy write operations like a[0] := a[0] may still be recognizeable.
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® Discrete logarithm problem
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Discrete logarithm problem

Let (G, o) be a given cyclic group of order ¢ = |G| with given generator g
(G ={g¢%g",...,9971}). The “discrete logarithm problem (DLP)" is
finding for a given y € G the number x € Z, such that

g =gege---eg=y
—_—

 times

Squaring allows use of faster algorithms than multiplication.

If (G, @) is clear from context, we can write z = log, y. For any z’ with g“l =y, we have
x =z’ mod q. Discrete logarithms behave similar to normal logarithms: log,1 =0 (if 1 is the
neutral element of G), log, h" = (r - logy h) mod g, and log,, hiha = (log, h1 + log, h2) mod q.

For cryptographic applications, we require groups with
> a probabilistic polynomial-time group-generation algorithm G(1¢)
that outputs a description of G with [log, |G|] = ¢;

» a description that defines how each element of G is represented
uniquely as a bit pattern;

> efficient (polynomial time) algorithms for e, for picking an element
of G uniformly at random, and for testing whether a bit pattern
represents an element of G;
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Hard discrete logarithm problems

The discrete logarithm experiment DLogg 4(¢):

® Run G(1%) to obtain (G, g, g), where G is a cyclic group of order ¢
(2! < ¢ < 2% and g is a generator of G

® Choose uniform h € G.
© Give (G, ¢,g,h) to A, which outputs z € Z,

O Return 1 if g* = h, otherwise return 0

We say “the discrete-logarithm problem is hard relative to G" if for all
probabilistic polynomial-time algorithms A there exists a negligible
function negl, such that P(DLogg 4(¢) = 1) < negl(¢).
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Diffie—Hellman problems

Let (G, o) be a cyclic group of order ¢ = |G| with generator g
(G ={g%g",...,9771}). Given elements hy,hy € G, define

DH(f1, ho) := g'°8s 1084 2
that is if g™ = hy and g™ = ha, then DH(hy, ha) = g™ = h2 = 21,

These two problems are related to the discrete logarithm problem:

» Computational Diffie—-Hellman (CDH) problem: the adversary is
given uniformly chosen hy, hy € G and has to output DH(hq, hy).
The problem is hard if for all PPT A we have P(A(G, q, g,9%, 9") = g”¥) < negl(¥).

> Decision Diffie—-Hellman (DDH) problem: the adversary is given
hi1,hy € G chosen uniformly at random, plus another value I/ € G,
which is either equal to DH(hy, h2), or was chosen uniformly at
random, and has to decide which of the two cases applies.
The problem is hard if for all PPT A and uniform z, vy, z € G we have
[P(A(G, q,9,9%,9",97) =1) — P(A(G, ¢, 9,9%, 9%, 9"¥) = 1)| < negl(£).
If the discrete-logarithm problem is not hard for G, then neither will be
the CDH problem, and if the latter is not hard, neither will be the DDH
problem.
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Diffie—-Hellman key exchange

How can two parties achieve message confidentiality who have no prior
shared secret and no secure channel to exchange one?

Select a cyclic group G of order ¢ and a generator g € G, which can be
made public and fixed system wide. A generates x and B generates y,
both chosen uniformly at random out of {1,...,q — 1}. Then they
exchange two messages:

A— B: g*
B— A: gY

Now both can form (g%)¥ = (¢¥)* = ¢g*Y and use a hash h(g*¥) as a
shared private key (e.g. with an authenticated encryption scheme).

The eavesdropper faces the computational Diffie—-Hellman problem of
determining ¢g®¥ from g%, ¢¥ and g.

The DH key exchange is secure against a passive eavesdropper, but not against middleperson
attacks, where g” and g¥ are replaced by the attacker with other values.

W. Diffie, M.E. Hellman: New Directions in Cryptography. |IEEE IT-22(6), 1976-11, pp 644—-654.
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Discrete logarithm algorithms

Several generic algorithms are known for solving the discrete logarithm
problem for any cyclic group G of order g:

>

>

Trivial brute-force algorithm: try all g%, time |(g)| = ord(g) < q.

Pohlig—Hellman algorithm: if ¢ is not prime, and has a known (or
easy to determine) factorization, then this algorithm reduces the
discrete-logarithm problem for G to discrete-logarithm problems for
prime-order subgroups of G.

= the difficulty of finding the discrete logarithm in a group of order
q is no greater than that of finding it in a group of order ¢’, where ¢’
is the largest prime factor dividing q.

Shank’s baby-step/giant-step algorithm: requires
O(,/q - polylog(g)) time and O(,/q) memory.

Pollard’s rho algorithm: requires O(,/q - polylog(q)) time and
O(1) memory.

= choose G to have a prime order ¢, and make ¢ large enough such
that no adversary can be expected to execute ,/q steps (e.g. ¢ > 2200y,
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Baby-step/giant-step algorithm

Given generator g € G (|G| = ¢) and y € G, find z € Z; with ¢* = y.

» Powers of g form a cycle 1 =¢% ¢, ¢%,...,9272,g7 1, g2 =1, and
y = g* sits on this cycle.

» Go around cycle in “giant steps” of n = |,/q]:
99" g gl

Store all values encountered in a lookup table L[g*"] := k.
Memory: /g, runtime: /g,  (times log. lookup table insertion)

» Go around cycle in “baby steps”, starting at y
y-ghy-9% .y g"

until we find one of these values in the table L: L[y - g'] = k.
Runtime: /g  (times log. table lookup)

» Now we know y - g* = ¢gF", therefore y = ¢*”~* and can return
x:= (kn — i) mod ¢ = log, y.
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Discrete logarithm algorithms for Z;

The “Index Calculus Algorithm” computes discrete logarithms in the
cyclic group Z,. Unlike the generic algorithms, it has sub-exponential

runtime

Therefore, prime p bit-length in cyclic group Z;, has to be much longer

20(\/|ogp log log p)

than a symmetric key of equivalent attack cost. In contrast, the

bit-length of the order ¢ of the subgroup used merely has to be doubled.

There are groups believed to be not vulnerable to the Index Calculus Algorithm, obtained by
defining a group operator over points of an elliptic curve (EC) with coordinates in Z,, or Fn.

Equivalent key lengths: (NIST)

RSA Discrete logarithm problem

private key | factoring n = pq in Zy, in EC
length modulus n | modulus p ‘ order ¢ order ¢

80 bits 1024 bits 1024 bits | 160 bits | 160 bits
112 bits 2048 bits 2048 bits | 224 bits | 224 bits
128 bits 3072 bits 3072 bits | 256 bits | 256 bits
192 bits 7680 bits 7680 bits | 384 bits | 384 bits
256 bits 15360 bits | 15360 bits | 512 bits | 512 bits
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Schnorr groups — working in subgroups of Z;

Schnorr group: cyclic subgroup G = C Z with prime order
q = |G| :g(p —pl);/r, whereg(p,z,g) arfag;enerapted wi?h:

@ Choose primes p > q withp=¢qr +1forr e N

® Choose 1 < h < p with h" mod p # 1

® Use g := h" mod p as generator for G = (g) = {h" mod p|h € Zy}
Advantages:

> Select bit-length of p and ¢ independently, based on respective
security requirements (e.g. 128-bit security: 3072-bit p, 256-bit ¢)
Difficulty of Discrete Logarithm problem over G C Z; with order ¢ = |G| depends on both
p (subexponentially) and g (exponentially).
» Some operations faster than if log, ¢ ~ log, p.
Square-and-multiply exponentiation g© mod p (with < ¢) run-time ~ log, z < log, q.
» Prime order g has several advantages:
® simple choice of generator (pick any element # 1)
® G has no (non-trivial) subgroups = no small subgroup confinement
attacks
® ¢ with small prime factors can make Decision Diffie-Hellman

problem easy to solve (Exercise 28)
Compare with slide 184 where r = 2.
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Schnorr groups (proofs)

Let p = rq + 1 with p,q prime and G = {h" mod p|h € Z;}. Then
© G is a subgroup of Zy.

Proof: G is closed under multiplication, as for all z,y € G we have

z"y" mod p = (zy)" mod p = (zy mod p)” mod p € G as (zy mod p) € Z.
In addition, G includes the neutral element 1”7 = 1

For each A", it also includes the inverse element (h~1)” mod p.

® G has ¢ = (p— 1)/r elements.
Proof: The idea is to show that the function f, : Zy; — G with f,.() = 2" mod p is an
r-to-1 function, and then since |Z}| = p — 1 this will show that |G| = ¢ = (p — 1)/7.
Let g be a generator of Zj such that {¢% g ..., 9P 7%} = Zy. Under what condition for
4,4 is (¢')" = (¢7)" (mod p)? (¢°)" = (¢7)" (mod p) & ir = jr (mod p — 1) &
(p = DI(ir — jr) & rql(ir — jr) < q|(@i - j).
For any fixed j € {0,...,p — 2} = Zp_1, what values of i € Z,_ fulfill the condition
g|(% — 7)., and how many such values 7 are there? For each j, there are exactly the r
different values i € {j,j +q,5+2q,...,j+(r—1)g} inZp_1,as j+rq =3
(mod p — 1). This makes f,- an r-to-1 function.

© For any h € Z%, h" is either 1 or a generator of G.
Proof: h" € G (by definition) and |G| prime = ordg(h") € {1, |G|} (Lagrange).
O hecGsheZyANh?modp=1. (Useful security check!)

Proof: Let h = g with (g) = Zyand 0 < i < p—1 Then
himodp=1<g'9modp=1<igmod (p—1) =0 & rqlig < rli.
Katz/Lindell (2nd ed.), section 8.3.3



Elliptic curves — the Weierstrass equation

An elliptic curve E over a field K is defined by the Weierstrass equation
Y2 + a1y + asy = = + axa” + asw + ag

with coefficients aq, ay, a3, as, as € K such that A(ay, az, as, as, ae) # 0.
The discriminant A of E is defined as A = —d3ds — 8d3 — 27d2 4 9dadads with dp = a? + 4as,

dy = 2a4 + aras, dg = a§ + 4ae, and dg = afae + 4azas — arazas + a2a§ — ai.
If A # 0 then the curve is smooth, i.e. it has no points with more than one tangent.

If L is any extension field of K, then the set of (“L-rational”) points on
curve E is defined as

E(L) = {(z,y) € LxL: y* + a1zy + azy = 2° + aa® + agx + ag} U{O}
The additional element O is called the “point at infinity”.

It will act as the neutral element when we define a group structure over E(L).

Elliptic curves were originally studied over the fields C, R, and Q, in the
context of elliptic integrals. In cryptography, they are used instead over
finite fields, in particular K=1L =Z, as well as K =L = Fx.
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Elliptic curves — simplified Weierstrass equations

An elliptic curve defined over a field K by the Weierstrass equation

y2 + a1xry + aszy = 1'3 + a2x2 + aqx + ag

can be turned into an equivalent (isomorphic) one by changing variables:

T — 3a% —12a; y —3a1x a% + 4arar, — 12a3
(z,y) = ( 36 216 24

This simplifies the curve equation significantly:
v =234ax+b

where a,b € K and A = —16(4a> + 27b%) # 0.

However, due to the divisions by 36 = 2233, 216 = 2333 and 24 = 233 in
the above change of variables, this trick does not work (would lead to
division by zero) if the characteristic of Kis 2 or 3 (i.e., if 14+1 =0 or
1+1+1=0).
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Simplified Weierstrass equations if 1 +1 =10

If K has characteristic 2, two other changes of variable can be used to
simplify the Weierstrass equation:

» If a; # 0 then

2 2

a ajas + a

(w,y)H(a§x+a3,a?y+1 - 3)
1 aj

leads to the “non-supersingular” curve
v +aoy=a3+ar’>+0b
with discriminant A = b # 0.
» If a; = 0 then
(,y) = (z + az,y)
leads to the “supersingular” curve

vH+ey=a23+ar+b

with a,b,c € K and A = ¢* # 0.

Similar tricks exist for K with characteristic 3, but such K are not commonly used in cryptography.
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Elliptic-curve group operation

-2
-2

elliptic curve over R (a = —1, b =1)

100 ®P,
9
8
7
6 O,
5 @P1

.

O ®P;+P,=—P,

0 ®P,

(0]

0 1 2 3 4 5 6

7 8 9 10

elliptic curve over Zy; (a = —1, b =1)

Elliptic curves over R or Z, (p > 3) are sets of 2-D coordinates (z,y) with

y2:x3+am+b

plus one additional “point at infinity” O.

where 4a” + 27b° # 0

Group operation P; 4+ P»: draw line through curve points Py, P», intersect with

curve to get third point P, then negate the y coordinate of P; to get P1 + P».

Neutral element: O — intersects any vertical line. Inverse: —(z,y) = (z, —y)
Curve compression: for any given x, encoding y requires only one bit
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Elliptic-curve group operation over E(Z,)

B(Zy) = {(2.9) | 2,5 € Z and 7 = 2* + az + b (mod p)} U{O}
where p > 3 prime, parameters a, b € Z, with 4a® 4 276> Z 0 (mod p).
» Neutral element: P+ O = 0O+ P = P for all P € E(Z,)
» Negation: if P = (x,y) then —P = (z,—y) since P— P=0; -0 =0
» Addition: for P, = (5517y1), P = (mz,yz), P, P 75 O, x1 ;é T2

m=2"4n line slope
X2 — 1
y=m-(z—z1)+y line equation
(m-(z—a1)+p)’ =a*+az+b intersections
T3 = m? — €r1 — T third-point solution

ys=m- (23 —21) + 11
(z1,91) + (22,92) = (m® — 21 — 22,m - (x1 — x3) — 1)  (all of this mod p)
If 1 = x2 but y1 # y2 then P, = —P> and P, + P, = O.

» Doubling:
If P, =P, and Y1 =0then P+ P, =2P = O.
If P, = P and y1 # 0 then add using tangent m = (322 + a)/2y:.
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Non-supersingular curve group operation over E(IFa»)

E(Fan) = {(z,v) | 2,y € Fan and ¥* + zy = 2° + az® + b} U {O}
where parameters a,b € Faon with b # 0.

» Neutral element: P+ O = O + P = P for all P € E(F2»)
» Negation: if P = (x,y) then —P = (2,2 +y); - O =0
» Addition: for P, = (:r1,y1), P = (l‘z,y2), P1,P2 7& O, 1 7é T2
m= N + 42
1+ x2
z3=m’+m+z1+12+a
ys=m-(z1+23) + 23+ Wy
(z1,91) + (22,92) = (3, ¥3)
If £1 = x> but U1 ;é Y2 then P = —Pand A+ P, = O.
» Doubling (i.e. P = P, = P):
If yy =0then P=—P,ie. P+ P =2P=0.
If y1 # 0 then P # —P and add using tangent m = x1 + y1/x1:

b

2 2 2
T3 =m +m+a:x1+? and Y3 = T + ma3 + T3
1
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Projective coordinates for points on E(IFan)

When points Py and P; are represented as “affine” coordinates (x,y) in
curve equation y? + xy = 23 + ax?® + b, the point addition and doubling
operations involve expensive field divisions.

Several other “projective” 3D coordinate systems (X, Y, Z) have been
proposed that make the group operation cheaper, by avoiding division:
» Standard projective coordinates: (x,y) = (X/Z,Y/Z)
Curve: Y2Z + XY Z = X® + aX?Z +bZ3,
0 =(0,1,0) and —(X,Y, Z) = (X, X 4+ Y, Z).
> Jacobian projective coordinates: (x,y) = (X/Z2,Y/Z3)
Curve: Y? +XYZ = X3 + aX?7? + bZ(’,
0 =(1,1,0) and —(X,Y, Z) = (X, X 4+ Y, Z).
» Lépez-Dahab (LD) projective coordinates: (z,y) = (X/Z,Y/Z?)
Curve: Y2+ XYZ = X3Z + aX?Z% + b2*,
O =(1,0,0) and —(X,Y, Z) = (X, X + Y, Z).
For Z =1 projective and affine coordinates are identical, i.e. (z,y) = (X,Y,1).

Equivalent projective coordinate systems also exist for E(Z;): standard (z,y) = (X/Z,Y/Z),
Jacobian (z,y) = (X/Z2%,Y/Z?) and Chudnovsky (like Jacobian, but also store Z2 and Z3).

These all have slightly different performance trade-offs regarding the number of field additions,
multiplications and division required for point add and double operations.
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Elliptic-curve groups with prime order

How large are elliptic curves over Z,7

Equation y? = f(x) has two solutions if f(z) is a quadratic residue, and
one solution if f(z) = 0. Half of the elements in Z; are quadratic
residues, so expect around 2 - (p — 1)/2 4+ 1 = p points on the curve.

Hasse bound: p+1—2,/p < |E(Zy,a,b)| <p+1+2p
Actual group order: approximately uniformly spread over Hasse bound.

Elliptic curves became usable for cryptography with the invention of
efficient algorithms for counting the exact number of points on them.
E.g. Schoof’s algorithm for [E(Z,,) and Satoh'’s algorithm for E(F,n ).

Generate a cyclic elliptic-curve group (p, q, a, b, G) with:
@ Choose n-bit prime p
® Choose a,b € Z, with 4a® + 27b* # 0 (mod p), determine
q = |E(Zp,a,b)|, repeat until ¢ is an n-bit prime
©® Choose G € E(Z,,a,b) \ {O} as generator
Easy to find a point G = (z,y) on the curve: pick uniform = € Z,, until
f(z) is a quadratic residue or 0, then set y = /f(x).
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Elliptic-curve discrete-logarithm problem

The elliptic-curve operation is traditionally written as an additive group,
so the “exponentiation” of the elliptic-curve discrete-logarithm problem
(ECDLP) becomes multiplication:

v G=G+G+ - +G z€l,
—_——
x times

So the square-and-multiply algorithm becomes double-and-add, and Diffie-Hellman becomes
DH(z -G,y -G)=ay -G forz,y € Z;.

Many curve parameters and cyclic subgroups for which ECDLP is
believed to be hard have been proposed or standardised.

Example: NIST P-256

p = Oxf£££££££00000001000000000000000000000000f fffffffFFFffLFFFFFLLFFF

q = Oxffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551

a=3

b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

G = (0x6b17d1f2e12c4247f8bce6e563a440£277037d812deb33a0f4a13945d898¢296,
Ox4fe342e2fela7f9b8ee7ebda7cOf9e162bce33576b315ececbb6406837bf51£5)

Note: p = 2256 — 2224 4 2192 29 _ 1 and g & 2256 — 2224 4 2192 nere are generalized resp. pseudo
Mersenne primes, for fast mod calculation on 32-bit CPUs and good use of the 256-bit space.
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Commonly used standard curves

NIST FIPS 186-4 has standardized five such elliptic curves over integer field
(Zp) coordinates: P-192, P-224, P-256, P-384, P-521.

Also: five random curves of the form y? + zy = 2> + 22 + b over binary field
(Fan) coordinates: B-163, B-233, B-283, B-409, B-571. The number of
points on these curves is twice the order of the base point G (“cofactor 2").

And there are five Koblitz curves of the form y? + zy = 2° + az® + 1
(a € {0,1}, with cofactors 4 or 2, resp.), also over Fan:
K-163, K-233, K-283, K-409, K-571. (Koblitz: a,b € {0,1} = faster.)

Some mistrust the NIST parameters for potentially having been carefully selected by the NSA, to
embed a vulnerability. https://safecurves.cr.yp.to/rigid.html

Brainpool (RFC 5639): seven similar curves over Zj, chosen by the German government.

The Standards for Efficient Cryptography Group SEC 2 specification lists eight curves over Z,,
(secp{192,224,256} {k,r}1, secp{384,521}r1) and 12 over Fpn (sectl63kl,...,sect571rl).
(Vers. 2.0 dropped smaller secp{112,128,160}r{1,2}, secp160kl and sect{113,131}r{1,2}.)
The numbers indicate the bit length of one coordinate, i.e. roughly twice the
equivalent symmetric-key strength.

ANSI X9.62 (and SEC 1) define a compact binary syntax for curve points.
Curve25519 was proposed by Daniel J. Bernstein in 2005 and has since
become a highly popular P-256 alternative due to faster implementation, better
resiliency against some implementation vulnerabilities (e.g., timing attacks),
lack of patents and worries about NSA backdoors.


https://safecurves.cr.yp.to/rigid.html

ElGamal encryption scheme

The DH key exchange requires two messages. This can be eliminated if
everyone publishes their g” as a public key in a sort of phonebook.
Assume ((G,-), g, g) are fixed for all participants.

A chooses secret key x € Z;, and publishes g* € G as her public key.
B generates for each message a new nonce y € Z; and then sends

B— A: 9Y, (¢ -M

where M € G is the message that B sends to A in this asymmetric
encryption scheme. Then A calculates

[(g")" - M) [(9)"~"] = M1
to decrypt M.

In practice, this scheme is rarely used because of the difficulty of fitting
M into G. Instead, B only sends g¥. Then both parties calculate

K = h(¢g™¥) and use that as the private session key for an efficient
blockcipher-based authenticated encryption scheme that protects the
confidentiality and integrity of the bulk of the message M:

B—A: gY, Encg (M)
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Number theory: easy and difficult problems

Easy:
> given integer n,i and x € Z*: calculate 7! € Z or z' € Z,
> given prime p and polynomial f(z) € Z,[z]:
find z € Z,, with f(z) =0

runtime grows linearly with the degree of the polynomial

Difficult:

> given safe prime p, generator g € Zy, (or large subgroup):
® given value a € Zj: find x such that a = ¢g*.
— Discrete Logarithm Problem
® given values g°, g% € Zy: find g*¥.
— Computational Diffie-Hellman Problem
® given values g, g¥, 2z € Zy: tell whether z = g"¥.
— Decision Diffie=Hellman Problem
> given a random n = p- ¢, where p and ¢ are £-bit primes (¢ > 1024):
® find integers p and ¢ such that n =p-¢qin N
— Factoring Problem
® given a polynomial f(x) of degree > 1:
find « € Z,, such that f(z) =0 in Z, (if p and ¢ are unknown)
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® RSA trapdoor permutation
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“Textbook” RSA encryption

Key generation
» Choose random prime numbers p and ¢ (each =~ 1024 bits long)
> n:=pqg (= 2048 bits = key length) e(n)=(@-1)(¢—-1)
> pick integer values e, d such that: ed mod ¢(n) =1
» public key PK := (n,e)
> secret key SK = (n,d)

Encryption
> input plaintext M € ZZ, public key (n,€)
> C:=M°modn

Decryption
> input ciphertext C € ZZ, secret key (n, d)
> M :=C%modn

In Zy: (Me)d — Med — pged mod o(n) — pfl — M.

Common implementation tricks to speed up computation:
» Choose small e with low Hamming weight (e.g., 3, 17, 2'® 4 1) for faster modular encryption

»  Preserve factors of n in SK = (p, q, d), decryption in both Z, and Z4, use Chinese

remainder theorem to recover result in Z,,.
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“Textbook” RSA is not secure

There are significant security problems with a naive application of the
basic “textbook” RSA encryption function C' := M€ mod n:
» deterministic encryption: cannot be CPA secure
> malleability:
® adversary intercepts C and replaces it with ¢/ := X°¢.C
® recipient decrypts M’ = Decsx(C') = X - M mod n
» chosen-ciphertext attack recovers plaintext:
® adversary intercepts C and replaces it with C’ := R°- C mod n
® decryption oracle provides M’ = Decgx(C') = R- M mod n
® adversary recovers M = M’ - R~ mod n
» Small value of M (e.g., 128-bit AES key), small exponent e = 3:

® if M° < nthen C = M® modn = M and then M = +v/C can be
calculated efficiently in Z (no modular arithmetic!)

» many other attacks exist ...
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Trapdoor permutations
A trapdoor permutation is a tuple of polynomial-time algorithms
(Gen, F, F~1) such that

> the key generation algorithm Gen receives a security parameter ¢
and outputs a pair of keys (PK, SK) + Gen(1?), with key lengths
|PK| >4, |SK| > ¢;

> the sampling function ' maps a public key PK and a value z € X
to a value y := Fpg(z) € X;

» the inverting function F~! maps a secret key SK and a value
y € X to avalue z := Fgi(y) € X;

> for all £, (PK, SK) + Gen(1%), = € X: Fgp(Fpr(r)) = =.
In practice, the domain X' may depend on PK.
This looks almost like the definition of a public-key encryption scheme,
the difference being

» F'is deterministic;

> the associated security definition.
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Secure trapdoor permutations

Trapdoor permutation: M = (Gen, F, Ffl)

Experiment/game TDlInv 4 n(¥):

0=
1 (PK, SK) + Gen(1%)
TERA PK,y A
y = Fpk(z)
r = challenger adversary =

© The challenger generates a key pair (PK, SK) <+ Gen(1%) and a
random value x €g X from the domain of Fpk.

® The adversary A is given inputs PK and y := Fpg(z).
® Finally, A outputs z’.

If 2 = x then A has succeeded: TDInv 4 n(¢) = 1.

A trapdoor permutation [T is secure if for all probabilistic polynomial time
adversaries A the probability of success P(TDInv 4 n(¢) = 1) is negligible.
While the definition of a trapdoor permutation resembles that of a public-key encryption scheme,

its security definition does not provide the adversary any control over the input (plaintext).
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Public-key encryption scheme from trapdoor permutation

Trapdoor permutation: Myp = (Gentp, F, F~1) with Fpx : X < X
Authentic. encrypt. scheme: Mag = (Genag, Enc, Dec) with key space K
Secure hash function h: X — K

We define the public-key encryption scheme I’ = (Gen’, Enc’, Dec’):
» Gen': output key pair (PK, SK) < Gentp(1¢)
» Enc’: on input of plaintext message M, generate random z €gr &,
y = Fpr(x), K = h(x), C < Enci (M), output ciphertext (y, C);

» Dec’: on input of ciphertext message (y,C), recover
K = h(Fgz(y)), output Decg (O)

Encrypted message:  Fpx (), Encp(z) (M)

The trapdoor permutation is only used to communicate a “session key” h(xz), the actual message
cca

is protected by a symmetric authenticated encryption scheme. The adversary A in the PubK® 1/
game has no influence over the input of F.

If hash function h is replaced with a “random oracle” (something that
just picks a random output value for each input from X), the resulting
public-key encryption scheme " is CCA secure.
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Using RSA as a CCA-secure encryption scheme
Solution 1: use only as trapdoor permutation to build encryption scheme

» Pick random value z € Z;,

» Ciphertext is (z mod n, Ency(,)(M)), where Enc is from an
authenticated encryption scheme

Solution 2: Optimal Asymmetric Encryption Padding

Make M (with zero padding) the left half, m 000 r
and a random string R the right half, of the oo | k1 ko
input of a two-round Feistel cipher, using a

. ) &—(6)—
secure hash function as the round function.
Interpret the result (X,Y) as an integer ‘>@—€3

Ml n-ko

— /e
Then calculate C := M’" mod n. Wikipedia)/Ozga

PKCS #1 v2.0
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https://datatracker.ietf.org/doc/html/rfc2437

Practical pitfalls with implementing RSA

» low entropy of random-number generator seed when generating p
and ¢ (e.g. in embedded devices):

® take public RSA modulus n; and n, from two devices

? . .
® test gcd(ni,n2) = 1 = if no, n1 and my share this number as a
common factor

® February 2012 experiments: worked for many public HTTPS keys

Lenstra et al.: Public keys, CRYPTO 2012
Heninger et al.: Mining your Ps and Qs, USENIX Security 2012.

216


https://link.springer.com/chapter/10.1007/978-3-642-32009-5_37
https://factorable.net/paper.html

@ Digital signatures

217



Digital signature schemes: existential unforgeability

Signature scheme N = (Gen, Sign, Vrfy), M = {0,1}", security parameter £.
Experiment/game Sig-forge 4 n(¢):

: PK
1 —=\|pK, 5K) + Gen(1) = 1

MY M2, .. MY
St7._.’52751 A

S? «+ Signg (M?)

I b= Vrfypg (M, S) S adversary

Meg{M! M2, . Mt}
© challenger generates key pair (PK, SK) < Gen(1¢)
@® adversary A is given PK and oracle access to Signgg(-); let
Q= {M* ...,M"} denote the set of queries that A asks the oracle
© adversary outputs (M, S)

O the experiment outputs 1 if Vrfy(M,S)=1and M & Q

Definition: A signature scheme N = (Gen, Sign, Vrfy) is existentially
unforgeable under an adaptive chosen-message attack (“secure”) if for all
probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

P(Sig-forge 4 n(¢) = 1) < negl(¢)
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One-time signatures

A simple digital signature scheme can be built using a one-way function h
(e.g., secure hash function):

Secret key: 2n random bit strings R; ; (i € {0,1},1 < j <n)
Public key: 2n bit strings h(R; ;)
Signature: (Rp, 1, Rby25---, R, n), where h(M) = biby ... by

Problem: Can only be used once (i.e., provides no existential
unforgeability if ¢ > 1 oracle queries are allowed).
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RSA signatures
Basic idea: n =pgq, ed =1 (mod ¢(n)), PK = (e,n), SK = (d,n)
S = Signg (M) := M mod n
Vrfy i (M, S) := (S mod n L M)
This “textbook” RSA signature, where adversary has free choice of
message M € Z7, is completely insecure (no existential unforgeability):

» No-message attack: pick any S and present (M, S) with
M := 5° mod n to challenger

» Choose message M, factor it into M = M, M,, query oracle for
signatures S; = M{, S, = M§, present (M, S1S5, mod n)
» If M and e are small (e.g., e = 3, M < 22°0 SHA-256 hash,
[log, n] = 2048), then M°® < n and S = vV M may be integer
Solution: RSA with full-domain hashing (RSA-FDH).
Use a collision-resistant H : {0,1}* — Z* and S := [H(M)]¢ mod n.
There is also RSA-PSS (PKCS #1 v2.1) which adds a “salt” value for randomization.
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https://www.rfc-editor.org/rfc/rfc3447

Schnorr identification scheme

Cyclic group G of prime order g with generator g, DLOG hard
Secret key: x €r Zj, public key: y = g*
Prover P picks k €r Zg, Verifier V' picks r €r Zq

P—V: I:=g*
V= P: T
P—-V: s:=(rxz+ k) modgq

Verifier checks )
9* -y =1

Works because:
gs X y—r _ grw-f-k A (gm)—r _ grw-Hc—Tx — gk -7

As secure as DLOG: an attacker who can find s1, sp for two challenges
71,72 with same I could also calculate any discrete logarithm:

gsl . yle — I — gsz . T2

r1—"72 z(r1—r2)

g =y =g

log, y = (s1 — $2)(r1 —2) " mod ¢
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Schnorr signature scheme

Idea (“Fiat-Shamir transform”): a prover can run the identification
protocol itself, by generating the challenge r from I using a secure hash
function H : {0,1}* — Z,, and that can then also incorporate the
message M to be signed:

r.=H(I, M)

Secret key x €gr Z; and public key y = g® € G in some DLOG hard cyclic group, as before.

Sign: on input of a message M € {0,1}*, generate signature (r, s) with

kERZq
I:=g"
r:=H(I, M)

s:=rx+kmodgq

Verify: on input of message M and signature (r, s), compute

r

=gy~
and output 1 iff H(I, M) =r.
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Digital Signature Algorithm (DSA)

Let (G, q, g) be system-wide choices of a cyclic group G of order ¢ with
generator g. In addition, we need two functions H : {0,1}* — Z4 and

F : G — Zq where H must be collision resistant.

Both H and F' are random oracles in security proofs, but common F' not even preimage resistant.
Key generation: uniform secret key x € Zg, then public key y := ¢* € G.
Signing: On input of a secret key x € Z, and a message m € {0,1}", first
choose (for each message!) uniformly at random k € Z; and set r := F(g").
Then solve the linear equation

k-s—x-r=H(m) (modq) (1)
for s :== k™' - (H(m) + 2r) mod q. If r = 0 or s = 0, restart with a fresh £,
otherwise output Sign,(m) « (r, s).

Verification: On input of public key y, message m, and signature (r, s), verify
equation (1) after both sides have been turned into exponents of g:

ng/ng _ gH(m) (2)

(6")° = gy 3)

gk :gH(m)fl rs! (4)

= actually verify: r< F(gH(m)S_lyrs_l) (5)
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DSA variants

ElGamal signature scheme

The DSA idea was originally proposed by ElGamal with G = Z%,
ord(g) =¢=p—1and F(z) = z.

Unless the p and g are chosen more carefully, EIGamal signatures can be vulnerable to forgery:

D. Bleichenbacher: Generating ElGamal signatures without knowing the secret key.
EUROCRYPT '96. https://link.springer.com/chapter/10.1007/3-540-68339-9_2

NIST DSA
In 1993, the US government standardized the Digital Signature
Algorithm, a modification of the EIGamal signature scheme where
» G is a prime-order subgroup of Z;
» prime number p (1024 bits), prime number ¢ (160 bits) divides p — 1
> g=hP1/9mod p, with 1 <h <p—1sothat g>1(eg., h=2)
> H is SHA-1
> F(z)=xzmodgq
Generate key: random 0 < x < ¢, y := ¢g* mod p.
Signature (r, s) := Sign,(m): random 0 < k < g,
r = (¢* mod p) mod ¢, s := (k" (H(m) + z - 7)) mod q

Later versions of the DSA standard FIPS 186 added larger values for (p, ¢, g), as well as ECDSA,
where G is one of several elliptic-curve groups over Z,, or Fon and F((z,y)) = @ mod q.
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Elliptic-Curve Digital Signature Algorithm (ECDSA)

System-wide domain parameters:
order g of finite field IFy, a representation of Fy, curve parameters a and b, base
point P = (zp,yp) € E(F,), prime order n of P, cofactor h = [E(F)|/n.

ECDSA _KEYGEN: secret key d €r Z;,, public key Q := dP

ECDSA _S1GN(m, d):
select k €r Z),
(z1,31) := kP, convert z; to integer T
r := Z1 mod n, if r = 0 restart with new &
e := H(m)
s :=k~*(e+ dr) mod n, if s = 0 restart
return (7, s)

ECDSA_VRFY(m, 7, s, Q):
reject unless r, s € Z,
e:= H(m)
w = s"! mod n, u1 ;= ew mod n, uy := rw mod n
X = u1 P + up@Q, reject if X = O
v := T1 mod n where Z; is x1 of X converted to integer
accept signature if v = r, otherwise reject signature
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Failoverflow Obtains PS3 Cryptography Key

By Kevin Parrish , DECEMBER 31, 2010 3:10 PM - Source: Engadget

Wednesday during the 27th annual Chaos Communication Conference, the team behind the Wii's Homebrew Channel-- fail0verflow-- revealed
that they figured out the PlayStation 3's private cryptography key. This means hackers could have full access to the console without the need for a
USB device or actual software/hardware hacking.

Typically the "magic password" is used by Sony to authorize the execution of cade onthe gaming console. Now Sony's key is revealed, hackers
can develop hack-free apps and games-- literally signing their code--to execute an the PlayStation 3 as ifheyre licensed developers

“It's not an exploit, its an Epic Fail by Sony," the team said during a live demo. “The PS3 is fine. They serewad up in HQ. They gave us their private
key basically. They leave their private key mathematically, so we dont have to exploit anything, we just sign things ™

According to reparts, Sony didnt bother to generate random numbers to secure the key's secrecy. With that said, the failOverflow team plans to
release tools next month that will take advantage of the security flaw. However the tools aren'tintended to enable PlayStation 3 piracy. Instead,
theyll re-enable the installation of Linux on every unit sold no matter the firmware~- even v3.55 and heyond.

"Yes, we'll release all our tools as soon as we cleaned them up in January or so," the group said via Twitter.
To see the live demo, check out the video pasted below:
0 Lightening Talk -
p—
10.130151] ps3-erci-dri +b._07:
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10.188764] uch usba: Wew USB dewtce Found, 1ovendorslogd, |dProdcts0002
10.140773] ush usbA: Mew USH dewn. ; rodictat, sarialhmsar
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usb wsbd. Manfocturer: Lin 1072 gdkrSHe-dirty chey b
47 Serioliumber
b 4-8:1.
10.141161] bub 4-0:1.0; 2 pores detectin
10.452725] usl new Vgh spesd USH device using pa3-ehci-driver ond cddress 2
10.452755] psd-sici-driver 1b_07: ahsake: 1004; PIPE CONTROL
10, 604585 ~driver 3b_07: gh_moke: 1004: PIPE_CONTROL
22 Wew JSB device found, 1 endor-054c, |dPrOdKt-036F
Mew J58 dovice strings: Mfral, Procuctsl, SeriolNusbered
Blustoath and Wireless LAK Comanite Device

ull)
: erony 1 HPSGrOoVe0UM

PS3 Private Key Exposed




Proper generation of k is important

DSA fails catastrophically if the adversary can ever guess k:
s=k - (Hm)+2r) = ax=(k-s—H(m))-r* (mod q)

All that is needed for k to leak is two messages m # m' signed with the
same k = k' (easily recognized from r =1/ = F(g*)):

s=k~'- (H(m)+ ar)
s'=k™t (H(m') + ar)
s—s' =k~' (H(m)— H(m'))

= (H(m)—H(m'))(s—5s)""  (mod q)
Sony used a fixed k in firmware signatures for their PlayStation 3

(failOverflow, 27th Chaos Communication Conf., Berlin 2010).

Without a good random-bit generator to generate k, use e.g.
k := SHA-3(z|jm) mod g (with hash output longer than gq).
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Public-key infrastructure |

Public key encryption and signature algorithms allow the establishment of
confidential and authenticated communication links with the owners of
public/secret key pairs.

Public keys still need to be reliably associated with identities of owners.
In the absence of a personal exchange of public keys, this can be
mediated via a trusted third party. Such a certification authority C' issues
a digitally signed public key certificate

Certc(A) = (A, PK 4, T, L, N, Signgx . (A, PK 4,T, L, N))

in which C' confirms that the public key PK 4 belongs to entity A,
starting at time 7" and that this confirmation is valid for the time interval
L, and all this has a serial number N and is digitally signed with C's
secret signing key SK ¢.

Anyone who knows C's public key PK ¢~ from a trustworthy source can
use it to verify the certificate Certo(A) and obtain a trustworthy copy of
A’s public key PK 4 this way.
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Public-key infrastructure |l

We can use the operator e to describe the extraction of A's public key
PK 4 from a certificate Certc(A) with the certification authority public
key PK ¢:

PK 4 if certificate valid
PKc o Certc(4) = { failure otherwise
The e operation involves not only the verification of the certificate
signature, but also the validity time and other restrictions specified in the
signature. For instance, a certificate issued by C' might contain a
reference to an online certificate revocation list published by C, which
lists the serial numbers IV of all certificates of public keys that might
have become compromised (e.g., the smartcard containing SK 4 was
stolen or the server storing SK 4 was broken into) and whose certificates
have not yet expired.
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Public-key infrastructure Il

Public keys can also be verified via several trusted intermediaries in a
certificate chain:

PK ¢, o Certe, (C) @ Certe, (C3) e - -0 Certe,_,(Cp)eCerte, (B) = PKp

A has received directly a trustworthy copy of PK ¢, (which many
implementations store locally as a certificate Cert4(C1) to minimise the
number of keys that must be kept in tamper-resistant storage).

Certification authorities could be made part of a hierarchical tree, in
which members of layer n verify the identity of members in layer n — 1
and n + 1. For example layer 1 can be a national CA, layer 2 the
computing services of universities and layer 3 the system administrators
of individual departments.

Practical example: A personally receives K¢, from her local system administrator C1, who
confirmed the identity of the university's computing service C> in Certcl(Cg), who confirmed the
national network operator C3, who confirmed the IT department of B's employer C3 who finally
confirms the identity of B. An online directory service allows A to retrieve all these certificates
(plus related certificate revocation lists) efficiently.

In today’s Transport Layer Security (TLS) practice (HTTPS, etc.), most private users use their
web-browser or operating-system vendor as their sole trusted source of PK ¢, root keys.
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Example of an X.509 certificate

$ openssl s_client -showcerts www.cst.cam.ac.uk:443 </dev/null >cst.crt
depth=2 C = BM, 0 = QuoVadis Limited, CN = QuoVadis Root CA 2 G3
depth=1 C = BM, 0 = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3
depth=0 C = GB, ST = Cambridgeshire, L = CAMBRIDGE, O = University of Cambridge, OU = UIS, CN = www.cst.cam.ac.uk
$ openssl x509 -text -noout -in cst.crt
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
03:07:fb:5f:76:c8:1d:8f:7e:e3:5e:d6:ab:71:5d:ab:1a:c0:e6:70
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = BM, 0 = QuoVadis Limited, CN = QuoVadis Global SSL ICA G3
Validity
Not Before: Sep 13 15:33:05 2017 GMT
Not After : Sep 13 15:43:00 2020 GMT
Subject: C = GB, ST = Cambridgeshire, L = CAMBRIDGE, O = University of Cambridge, OU = UIS, CN = www.cst.cam.ac.uk
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:
00:c3:cb:9f:77:9d:¢8:09:
8e:92:45:50:a7:35:ee:09:
£4:30:79:37:2e:81:2d:85:
a0:d1:93:27:9f:0f:b4:c8:
69:56:40:b5:90:d6:34:06:8f:cc:b7:e0:31:3e:2f:
d9:2£:57:13:£5:4f:7d:ef:d8: 2:
e4:0b:13:87:b2:df:2a:0£:30:£1:6d:9a:b6:0b:c8:
e0:87:0£:b5:72:20:b9:07:2e:48: 3! d:d3:
96:21:1c:c9:94:8f:47:1d:9a:3b:35:ec:20:45:38:
06:15:ed:4e:43:80:96:94:90:fc
cb:27:29:49:e4:80:20:e7:£f1:0:
c3:04:2e:2e:33:ca:76:£c:00:17
66:ac:51:56:8d:27:91:2d:
c1:94:38:54:5a:f4:e9:dc:
bf:ea:85:41:d5:0b:d7:09:
57:€0:b8:£9:fc:0b:76:65:
17:00:df:6a:27:25:1d:30:
c9:3d
Exponent: 65537 (0x10001)
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X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
X509v3 Authority Key Identifier:
keyid:B3:12:89:B5:A9:4B:35:BC:15:00:F0:80:E9:D8:78:87:F1:13:7C:76

Authority Information Access:
CA Issuers - URI:http://trust.quovadisglobal.com/qusslg3.crt
OCSP - URI:http://ocsp.quovadisglobal.com

X509v3 Subject Alternative Name:
DNS:www.cst.cam.ac.uk
X509v3 Certificate Policies
Policy: 1.3.6.1.4.1.8024.0.2.100.1.1
CPS: http://www.quovadisglobal.com/repository

X509v3 Extended Key Usage:
TLS Web Client Authentication, TLS Web Server Authentication
X509v3 CRL Distribution Points:

Full Name:
URI:http://crl.quovadisglobal.com/qvsslg3.crl

X509v3 Subject Key Identifier:
16:19:61:83:6F:AE:05:98:FA:62:9D:B8:AA:99:4B:C5:0A:04:8B:D9
X509v3 Key Usage: critical
Digital Signature, Key Encipherment
Signature Algorithm: sha256WithRSAEncryption
8a:94:59:8a:70:00:c5:£9:1b:26:£0:04:c7:b8:79:46:6b:0c:
2b:d1:01:1a:9e:83:4a:53:£9:c5:45:38:85:1d:£3:32:8a:f8:
03:a2:bd:6d:f7:e6:5b:9’ d:c6:9c:d0:78:01:2a:f4:
8a:d1:51:13:b0:24:72:cc:40:55:8f:e8:bb:b1:ff:£9:66:0a:

2d:fe:9c: :f£:68:12:94:ad:04:
a2:4a:f0: 4c:1c:19:d2:69:b3
eb:98:e7: 199:d9:79:6e:e0:7a:
01:89:a5: :15:04:88:e5:59:86:
65:b3:fb: tccicd:7c:79:d4:32:

4a:70:b7:
[... 16 lines deleted
5c:76:39:6d:51:dc:80: 2 96:90:0c:b8:f1:ed:88:c8:c2:
27:69:fe:0d:b9:ec:48:da:d4:£3:79:77:e1:3a:15:be:03:58:
a6:d1:74:d7:4e:ec:d1:17

9:7f:24:27:fb:7d:03:93:

$ 1s -1 /etc/ssl/certs/



Outlook

Modern cryptography is still a young discipline (born in the early 1980s),
but well on its way from a collection of tricks to a discipline with solid
theoretical foundations.

Some important concepts that we did not touch here for time reasons:
» password-authenticated key exchange
» identity-based encryption

side-channel and fault attacks

application protocols: electronic voting, digital cash, etc.

secure multi-party computation

vV v. vy

post-quantum cryptography
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Appendix



Some basic discrete mathematics notation

>
>

|A] is the number of elements (size) of the finite set A.

Ay X Ay X -+ X A, is the set of all n-tuples (a1, ay,...,a,) with
ay € Ay, ap € Ay, etc. If all the sets A; (1 < ¢ < n) are finite:
|Ap X Ay x -+ x Ap| = |Aq| - |Ag| - -+ Ay

A™ is the set of all n-tuples (a1, az,...,a,) = ajaz...a, with
ap, ag, ... a, € A, If Ais finite then |A™| = |A|".

AT = g A and A" = U, A'

Function f : A — B maps each element of A to an element of B:
a— f(a) orb= f(a) witha € Aand b € B.

A function f: A; X Ay X --- x A,, — B maps each parameter tuple
to an element of B: (aj,ay,...,a,) — f(a1,az,...,a,) or
flay,az,...,a,) =b.

A permutation f: A <+ A maps A onto itself and is invertible:

z = f7Y(f(x)). There are [Perm(A4)| = |[A|!=1-2- --- - |A]
different permutations over a finite set A.

B is the set of all functions of the form f: A — B. If A and B
are finite, there will be |[B4| = | B|l4! such functions.
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Bit-sequence notations

We can further simplify some set and tuple notation to represent bit
strings/sequences. For example, we can write the set of all 23 = 8
sequences of three bits as

{0,1}* = {0,1} x {0,1} x {0,1}
= {(0,0,0),(0,0,1),(0,1,0),(0,1,1),
(1,0,0),(1,0,1),(1,1,0),(1,1,1)}
= {000, 001,010,011, 100, 101,110,111}

Here we treat tuples of bits as bit sequences, merely dropping the
separating commas and enclosing parentheses.

A superscript asterix ( “Kleene star”) denotes the set of all finite-length
bit sequences, including the empty string ¢ = {0,1}0:

.13 = Jo,1y!
=0

These notations are borrowed from formal languages theory.
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Bit-sequence notations

It is also customary to use the exponentiation operator on bit sequences
to denote repetition, e.g.

13 =111, 013 = 0111, (10)* = 101010

Here we can think of operating on the free monoid ({0,1}*,||) of bits
with concatenation as the operator (slide 161), while also using
multiplicative notation (slide 164), meaning that the monoid operator ||
can also be represented through juxtaposition (e.g., 1/|0 = 10) and its
repeated application can be written as exponentiation with a
non-negative integer.

Occasionally, we need to represent a non-negative (or “unsigned”, in C
parlance) integer ¢ in the range 0 < i < 2™ as an n-bit sequence. We use
here the notation (i),,, or simply (i) if the number of bits n is clear from
context. Using the “big-endian” or “most-significant-bit (MSB) first”

convention, this means e.g. (11), = 1011.

In practice, the efficient and portable binary representation of integer numbers has to consider
additional alignment constraints and memory-layout complications. Computer memory is
commonly structured into 8-bit bytes, and different conventions (“big-endian” vs “little-endian”)
for the order of bytes representing an integer value in memory have been used by different
manufacturers. As a result, cryptographic standards often have to spend significant text on
unambiguously specifying the exact bit and byte layout of input and output values, to ensure
interoperability between different implementations.
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Confidentiality games at a glance

1t —=
PrivK®®

b <=

1Y —

Privk™u't

1t —=

PrivKP?

begr {0,1}
K « Gen(1%)
C <+ Encg (My)
challenger

ber{0,1}
K + Gen(1%)
C + EnCK(Mb)
challenger

Mo, My
C
1 272
MY, MR, ..., M}

A

adversary

1 2 t
ML M2, .. M

begr {0,1}

K « Gen(1%)
C* < Ency (M?)
C + EnCK(Mb)

challenger

017027_”764

MY M2 .. MY

A

adversary

ct,...,ci,ol
Mo, M

C
ML Mttt

tt
cttt .., ottt

A

adversary

1¢

1¢

bl

1¢
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Integrity games at a glance

lé

—_—

Mac-forge

b

1¢

Cl

-

—_—

-

beg {0,1}
K « Gen(1%)
C* < Enck (M?)
M? + Deck (C?)
C «+ EncK(Mb)

M C? ...

M2 Ct
Mo, My

C
ML Ctt2 L O, .

K + Gen(1%)
T? + Macg (M?)

b:= Vrfy i (M, T)

o Mt+2, Ct+1

MY M2 .. MY

A

adversary

Tt, ..., T2, Tt

K « Gen(1%)
C* < Encg (M?)

. J0, Decg(C) =L
" |1, Decg(C)# L

M, T
Me{M!,M2,... Mt}

MY M2 .. MY

A

adversary
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C
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