
Complexity Theory
Lecture 4: Reductions

Tom Gur



Recap

• Goal: Chart a landscape of complexity classes
• P captures polynomial-time computation
• NP captures polynomial-time verification
• The million dollars question: is P ̸= NP?
• Natural problems outside of NP?

First superpower of complexity theory: solving one problem using
another!

2



Reductions

3



Reductions

Given two languages L1 ⊆ Σ⋆
1 , and L2 ⊆ Σ⋆

2 ,

A reduction of L1 to L2 is a computable function

f : Σ⋆
1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1 ,

f (x) ∈ L2 if, and only if, x ∈ L1

What is missing here?

4



Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1 is
polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(log n), we write

L1 ≤L L2

Why do we use the ≤ notation?

5



Reductions: an alternative perspective

If L1 ≤P L2 we understand that L1 is no more difficult to solve than L2,
at least as far as polynomial time computation is concerned.

That is to say,
If L1 ≤P L2 and L2 ∈ P, then L1 ∈ P

We can get an algorithm to decide L1 by first computing f , and then
using the polynomial time algorithm for L2.

6



Completeness

Reductions allow us to establish the relative complexity of problems, even
when we cannot prove absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are
maximally difficult.

A language L is said to be NP-hard if for every language A ∈ NP, A ≤P L.

A language L is NP-complete if it is in NP and it is NP-hard.

What languages are NP-complete?

7



Cook-Levin Theorem: SAT is NP-complete

Cook and Levin independently showed that the language SAT of
satisfiable Boolean expressions is NP-complete.

Recall that SAT is in NP. (why?)

It remains to show NP-hardness: for every language L in NP, there is a
polynomial time reduction from L to SAT. (why is that possible?)

Since L is in NP, there is a nondeterministic Turing machine

M = (Q,Σ, s, δ)

and a bound k such that a string x of length n is in L if, and only if, it is
accepted by M within nk steps.

8



Turing Machine Tableau

We need to give, for each x ∈ Σ⋆, a Boolean expression f (x) which is
satisfiable if, and only if, there is an accepting computation of M on
input x .

9



f (x) has the following variables:

Si,q for each i ≤ nk and q ∈ Q
Ti,j,σ for each i , j ≤ nk and σ ∈ Σ

Hi,j for each i , j ≤ nk

Intuitively, these variables are intended to mean:

• Si,q – the state of the machine at time i is q.
• Ti,j,σ – at time i , the symbol at position j of the tape is σ.
• Hi,j – at time i , the tape head is pointing at tape cell j .

We now have to see how to write the formula f (x), so that it enforces
these meanings.

10



Initialization

The initial state is s, and the head is initially at the beginning of the
tape.

S1,s ∧ H1,1

The initial tape contents are x∧
j≤n

T1,j,xj ∧
∧
n<j

T1,j,⊔

11



Consistency

The head is never in two places at once∧
i

∧
j
(Hi,j →

∧
j′ ̸=j

(¬Hi,j′))

The machine is never in two states at once∧
q

∧
i
(Si,q →

∧
q′ ̸=q

(¬Si,q′))

Each tape cell contains only one symbol∧
i

∧
j

∧
σ

(Ti,j,σ →
∧

σ′ ̸=σ

(¬Ti,j,σ′))

12



Computation

The tape does not change except under the head∧
i

∧
j

∧
j′ ̸=j

∧
σ

(Hi,j ∧ Ti,j′,σ) → Ti+1,j′,σ

Each step is according to δ.∧
i

∧
j

∧
σ

∧
q
(Hi,j ∧ Si,q ∧ Ti,j,σ)

→
∨
∆

(Hi+1,j′ ∧ Si+1,q′ ∧ Ti+1,j,σ′)

13



where ∆ is the set of all triples (q′, σ′,D) such that
((q, σ), (q′, σ′,D)) ∈ δ and

j ′ =


j if D = S
j − 1 if D = L
j + 1 if D = R

Finally, the accepting state is reached∨
i

Si,acc

14



CNF

A Boolean expression is in conjunctive normal form if it is the conjunction
of a set of clauses, each of which is the disjunction of a set of literals,
each of these being either a variable or the negation of a variable.

For any Boolean expression ϕ, there is an equivalent expression ψ in
conjunctive normal form.

ψ can be exponentially longer than ϕ.

However, CNF-SAT, the collection of satisfiable CNF expressions, is
NP-complete.

15



3SAT

A Boolean expression is in 3CNF if it is in conjunctive normal form and
each clause contains at most 3 literals.

3SAT is defined as the language consisting of those expressions in 3CNF
that are satisfiable.

3SAT is NP-complete, as there is a polynomial time reduction from
CNF-SAT to 3SAT.

16



Composing Reductions

Polynomial time reductions are clearly closed under composition.

So, if L1 ≤P L2 and L2 ≤P L3, then we also have L1 ≤P L3.

If we show, for some problem A in NP that

SAT ≤P A

or
3SAT ≤P A

it follows that A is also NP-complete.

17



Questions?

17


