Un countable Cardinelity
Theorem: The sets
$$P(N) \cong (N \Rightarrow [2]) \cong (N \Rightarrow [1])$$

are not countable.

NB: Suppose
$$N \xrightarrow{e} B(N)$$

Then $N \xrightarrow{e'} (N \xrightarrow{e'})(N \xrightarrow{e'})(N \xrightarrow{e'})(N \xrightarrow{e'})$

 $N \xrightarrow{\mathcal{E}} (N \rightarrow [2])$ Then $\exists k \in \mathcal{N} \cdot e(k) = S$ E e(k)(k) = S(k) = e(k)(k) $S(0) S(1) \dots S(n) \dots$ new $l(0)(0) = (0)(1) \dots l(0)(n) \dots$ C(0) e(1|0) e(1|(1)) - e(1)(n) - - .e(1) C(h)(h)e(n)6) e(n)(1) - - - $\mathcal{C}(n)$ Let s: N->[2] $S(n) = def \overline{e(n)(n)}$

 $M \longrightarrow \mathcal{P}(N)$ Also There is no Everax : Show it by diagonalisation

are not countable.

 $(N \Rightarrow [2]) \xrightarrow{\simeq} [0,1]$ $S \longrightarrow \sum_{i=2}^{i} \frac{1}{2^{i+1}}$ S(i) = 1

Unbounded cardinality

Theorem 156 (Cantor's diagonalisation argument) For every set A, no surjection from A to $\mathcal{P}(A)$ exists.

PROOF: $A \stackrel{e}{\longrightarrow} \mathcal{P}(A)$ $S^{E} = \{a \in A \mid a \notin e(a)\}$ $\exists a \in A. c(k) = S$ $\alpha \in e(k) \models a \notin e(k) \not = a \notin e(k) \not = a \notin e(k)$

Corollary: For all sets A, There is no surjection from A to $(A \Rightarrow [2])$

Because

 $(A=1[2]) \cong P(A)$

Definition 157 A fixed-point of a function $f : X \to X$ is an element $x \in X$ such that f(x) = x.

Theorem 158 (Lawvere's fixed-point argument) For sets A and X, if there exists a surjection $A \rightarrow (A \Rightarrow X)$ then every function $X \rightarrow X$ has a fixed-point; and hence X is a singleton.

PROOF: $e:A \longrightarrow (A \Rightarrow X)$ Let $f: X \to X$ and define $s: A \to X$, s(a) = f(e(a)(a))- | x. e(x)=S $e(\alpha)(\alpha) = S(\alpha) = f(e(\alpha)(\alpha))$.

If every
function on
$$X$$

hes a fixed-pait
Then X is a
Subjective.
 $x_1 \in Y, x_2 \in X$
 $x_1 \notin x_2$
 $x_1 \notin x_2$

Corollary 159 The sets

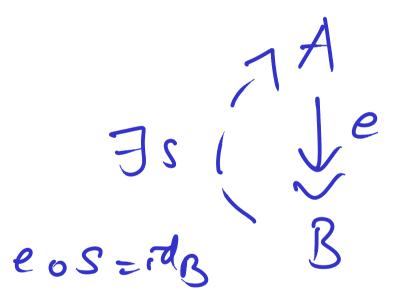
 $\mathcal{P}(\mathbb{N}) \cong (\mathbb{N} \Rightarrow [2]) \cong [0,1] \cong \mathbb{R}$

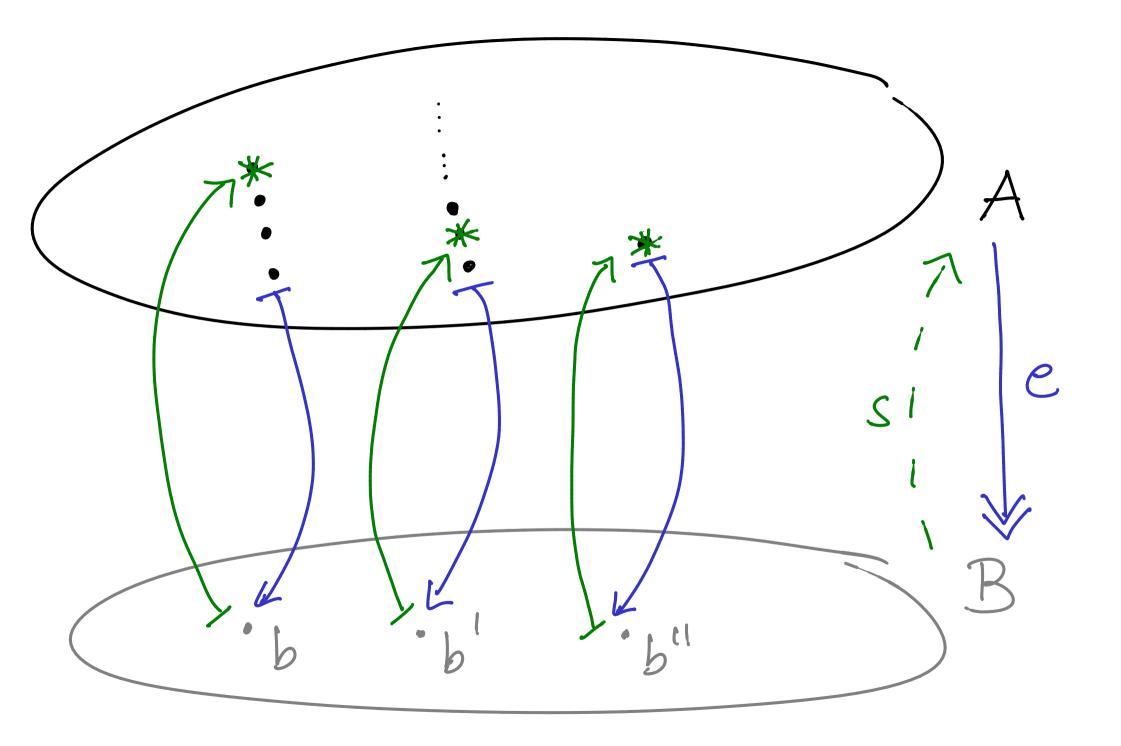
are not enumerable.

Corollary 160 *There are* non-computable *infinite sequences of bits.*

Axiom of choice

Every surjection has a section.





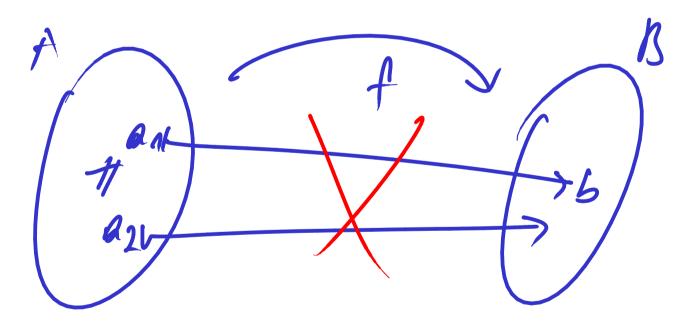
NB: Every section-retraction poir $A \xrightarrow{r} B$ rosendr 15 such That • the retraction r: A > B is a surjection and • The section S: B->A 15 on injection

$$S(a_1) = S(a_1) \Longrightarrow r(S(a_1)) = r(S(a_1))$$

$$\prod_{a_1} Injections \prod_{a_2} a_2$$

Definition 145 A function $f : A \rightarrow B$ is said to be <u>injective</u>, or an injection, and indicated $f : A \rightarrow B$ whenever

 $\forall a_1, a_2 \in A.\left(f(a_1) = f(a_2)\right) \implies a_1 = a_2 \quad .$



Proposition: Every section is an injection.

Proposition, Let X be a set. (i) The unique function from the empty set to X is on infection; and (iv) it is a section of X is empty.

NB: Mereare no fuctions fron a non-lipty 下____ set to The enphyset. r?

Theorem 146 The identity function is an injection, and the composition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A, B)

and we thus have

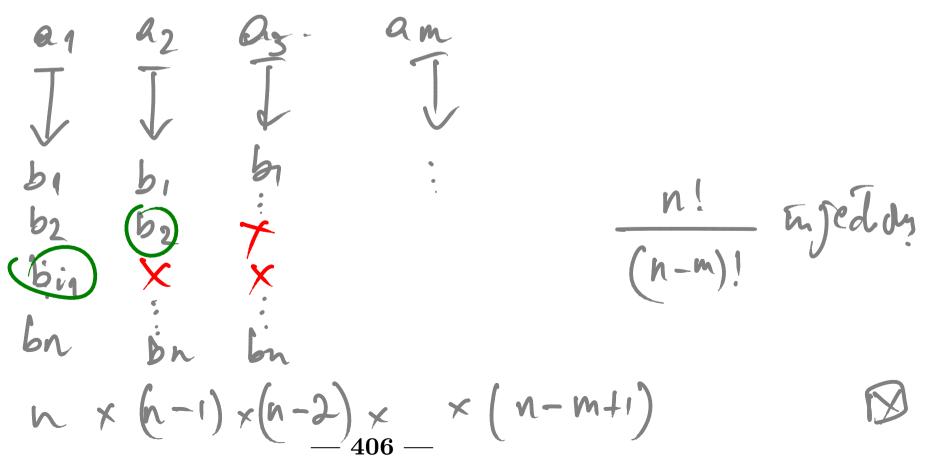
Sur(A, B) Sur(

with

Proposition 147 For all finite sets A and B,

$$\# \operatorname{Inj}(A, B) = \begin{cases} \binom{\#B}{\#A} \cdot (\#A)! & \text{, if } \#A \leq \#B \\ 0 & \text{, otherwise} \end{cases}$$

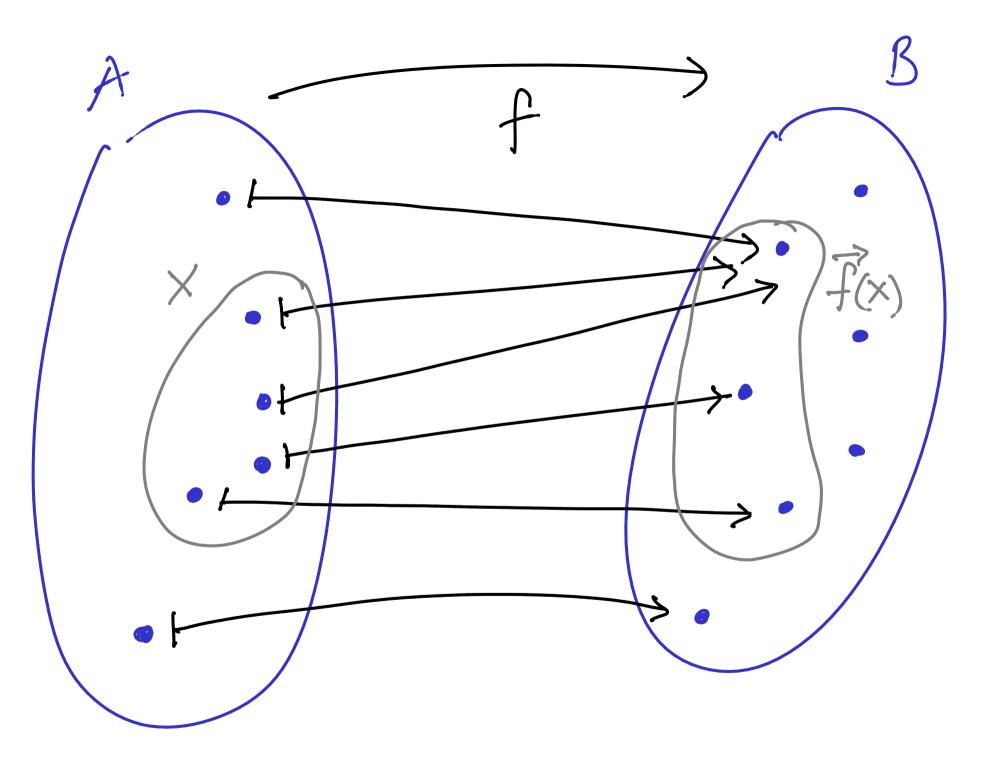
PROOF IDEA:



DIRECT AND INVERSE IMAGES

Functional Images

Definibion Let $f: A \rightarrow B$ be a function The direct image of $X \subseteq A$ under fThe set $\widehat{f'}(x) \subseteq B$, defined as $\overline{f}(x) = \{b \in B \mid \exists x \in X. f(x) = b\}$ $= \left\{ f(x) \in B \mid x \in X \right\}$

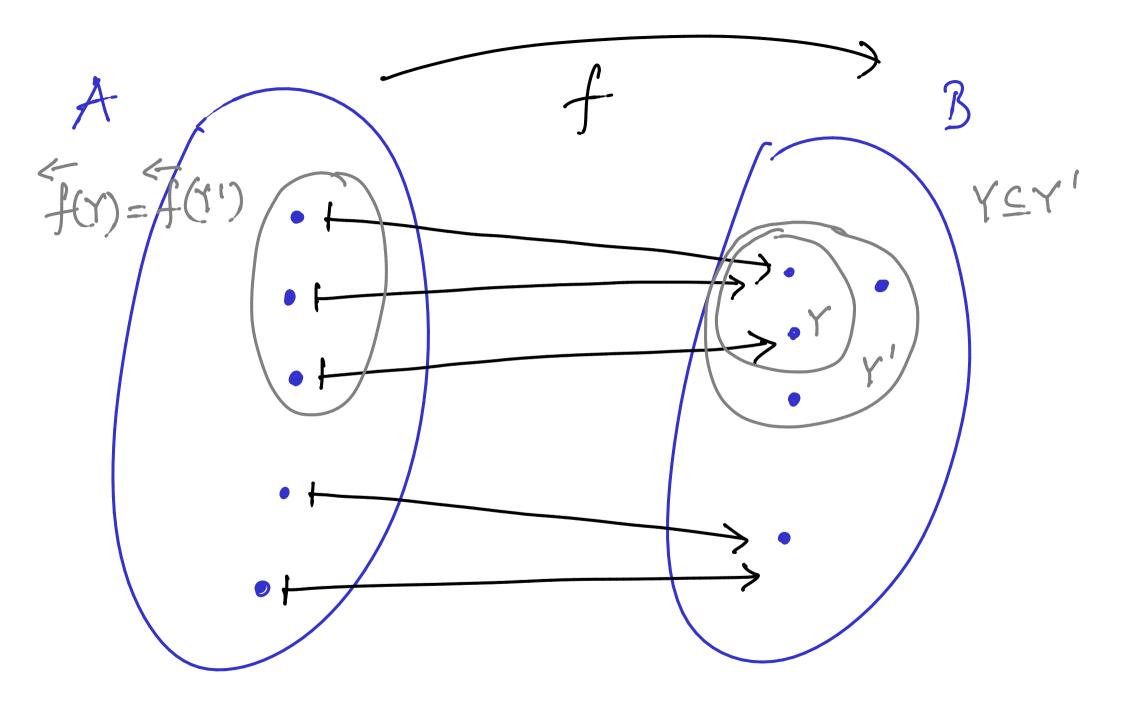


Proposition For all functions $f: A \rightarrow B$, the mapping $A \ni a \mapsto f(a)$ $A \xrightarrow{f'} B$ determines à function $f' = \int \int f(A)$ $f': A \longrightarrow \hat{f}(A)$ that is surjective. Moreover, whenever $f: A \rightarrow B$ is injective, f': A -> f'(A) is bijective.

Injective functions preserve cardinality

Corollary For an injective function $f: A \rightarrow B$, $\forall X \subseteq A. X \cong \vec{f}(X)$.

Definition: Let $f: A \rightarrow B$ be a function. The inverse image of Y S is the set F(Y) CA defined as $f(Y) = \{a \in A \mid f(a) \in Y\}$.



Proposition: For
$$f: A \rightarrow B$$
, the mapping
 $B \supseteq Y \longmapsto \tilde{f}(Y) \subseteq A$
determines a function
 $P(B) \longrightarrow P(A)$
that preserves the Boolean algebra
structure of powersets.

E.g. $f(Y^c) = \{a \in A \mid fa \in Y^c\}$ = { a G A | fa) \$Y ? = { a CA | f(a) ET] c $= \left(f(Y) \right)^{C}$

Replacement axiom

The direct image of every definable functional property on a set is a set.

From 2 mapping $i \mapsto f(i)$ The replacement axion allows The construction of a set $\{f(i) \mid i \in \mathbb{I}^{2}\}$ for i ranging over an indexing set I.

Set-indexed constructions

For every mapping associating a set A_{i} to each element of a set $I, \ensuremath{\mathsf{We}}$ have the set

$$\bigcup_{i\in I} A_i = \bigcup \{A_i \mid i \in I\} = \{a \mid \exists i \in I. a \in A_i\}$$

Examples:

1. Indexed disjoint unions:

2. Finite sequences on a set A:

$$A^* = \biguplus_{n \in \mathbb{N}} A^n$$

3. Finite partial functions from a set A to a set B:

$$(A \Longrightarrow_{\mathrm{fin}} B) = \biguplus_{S \in \mathcal{P}_{\mathrm{fin}}(A)} (S \Rightarrow B)$$

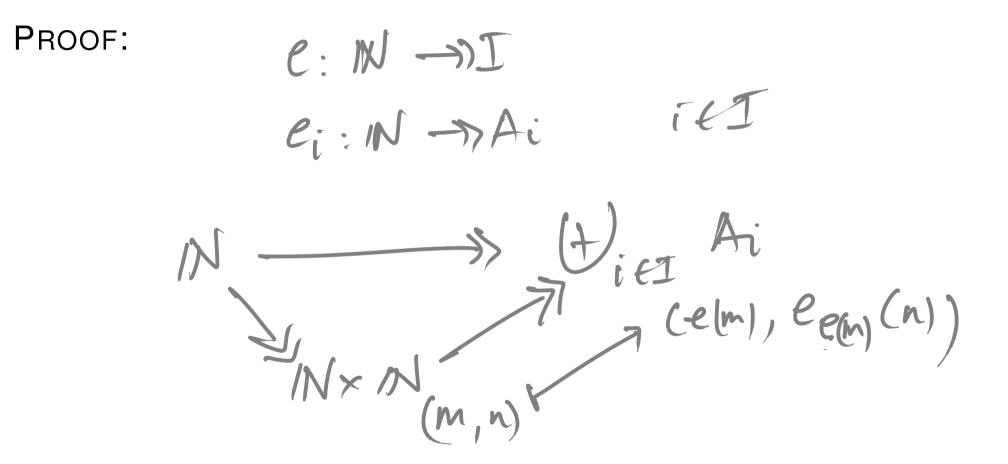
where

$$\mathcal{P}_{fin}(A) = \left\{ S \subseteq A \mid S \text{ is finite} \right\}$$

- 4. Non-empty indexed intersections: for $I \neq \emptyset$, $\bigcap_{i \in I} A_i = \{ x \in \bigcup_{i \in I} A_i \mid \forall i \in I. x \in A_i \}$
- 5. Indexed products:

$$\prod_{i\in I} A_i = \left\{ \alpha \in \left(I \Rightarrow \bigcup_{i\in I} A_i\right) \mid \forall i \in I. \ \alpha(i) \in A_i \right\}$$

Proposition 153 An enumerable indexed disjoint union of enumerable sets is enumerable.



Corollary 155 If X and A are countable sets then so are A^* , $\mathcal{P}_{fin}(A)$, and $(X \Longrightarrow_{fin} A)$.

There are non-computable infinite seguences of bits.

$$Prog \leq Z^*$$
 writeble Z for te
 $\frac{1}{2}$ contable.

Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of \in -Induction .