Nototim f: A=B:g (=) f: A-B,g: B-A fog-rag & gof=idA. $(g=f' \wedge f=g')$. Calculus of bijections $A \cong A , A \cong B \Longrightarrow B \cong A^{\dagger}, (A \cong B \land B \cong C)^{\dagger} \Longrightarrow A \cong C \overset{f_{\bullet}}{\Rightarrow} A \cong C \overset{g_{\bullet}}{\Rightarrow} A \Longrightarrow C \overset{g_{\bullet}}{\Rightarrow} A \overset{g_{\bullet}}{\to} A \Longrightarrow C \overset{g_{\bullet}}{\to} A \Longrightarrow C \overset{g_{\bullet}}{\to} A \Longrightarrow C \overset{g_{\bullet}}{\to} A \overset{g_{\bullet}}{\to$ ▶ If $A \cong X$ and $B \cong Y$ then $\mathcal{P}(A) \cong \mathcal{P}(X)$, $A \times B \cong X \times Y$, $A \uplus B \cong X \uplus Y$, $\operatorname{Rel}(A, B) \cong \operatorname{Rel}(X, Y)$, $(A \Longrightarrow B) \cong (X \Longrightarrow Y)$, $(A \Rightarrow B) \cong (X \Rightarrow Y)$, $\operatorname{Bij}(A, B) \cong \operatorname{Bij}(X, Y)$

 $f: A \cong X: q$ $p: B \equiv Y: q$ $(A \Rightarrow B) \cong (X \Rightarrow Y)$ $F: (A \Rightarrow B) \rightarrow (X \Rightarrow Y)$ F: ABB H> polog: X > Y $G_1: (X \Rightarrow Y) \rightarrow (A \Rightarrow B)$ G: X TY H gorof : X - 1B

RTP: FoG: Td and GoF = id.

Arithmetic Lows
Recall that for finite sets A and B,

$$\#(A \times B) = \#(A) \cdot \#(B)$$
 multiplication
 $\#(A \oplus B) = \#(A) + \#(B)$ addition
 $\#(A \oplus B) = (\#B)^{\#(A)}$ exponentiation
 $\#(A \Rightarrow B) = (\#B)^{\#(A)}$ exponentiation
The arithmetic laws have set-theoretic
counterparts
Eq: (a+b) c = a c+b c $(A \oplus B) \times C \cong (A \oplus C) \times (B \oplus C)$

- $\blacktriangleright \ [0] \uplus A \cong A \ , \ (A \uplus B) \uplus C \cong A \uplus (B \uplus C) \ , \ A \uplus B \cong B \uplus A$
- ▶ $[0] \times A \cong [0]$, $(A \uplus B) \times C \cong (A \times C) \uplus (B \times C)$
- $\blacktriangleright \ \left(A \Rightarrow [1]\right) \cong [1] \ , \ \left(A \Rightarrow (B \times C)\right) \cong (A \Rightarrow B) \times (A \Rightarrow C)$
- $\blacktriangleright \ \left([0] \Rightarrow A \right) \cong [1] \ , \ \left((A \uplus B) \Rightarrow C \right) \cong (A \Rightarrow C) \times (B \Rightarrow C)$
- $\blacktriangleright \ ([1] \Rightarrow A) \cong A \ , \ ((A \times B) \Rightarrow C) \cong (A \Rightarrow (B \Rightarrow C))$
- $\blacktriangleright (A \Longrightarrow B) \cong (A \Longrightarrow (B \uplus [1]))$
- ▶ $\mathcal{P}(A) \cong (A \Rightarrow [2])$

Arithmetic-like Bijections $(A \uplus B) \times C \cong (A \times C) \uplus (B \times C)$ Proposition Let X, Y, Z be sets. If X and Y are disjoint then (i) X x 2 and Y x 2 are disjoint $(ii) (X \cup Y) \times Z \cong (X \times 2) \cup (Y \times 2)$

 $c^{a,b} = (c^b)^a$ $((A \times B) \rightarrow C) \cong (A \Rightarrow (B \Rightarrow C))$ In OCaml notation: $\operatorname{curry}(f) = \operatorname{fun} a \rightarrow \operatorname{fun} b \rightarrow f(a,b)$ of type $(\alpha * \beta \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta \rightarrow \beta)$ $uncurry(h) = fun(a,b) \rightarrow hab$ of type $(\alpha \cdot \beta \cdot \beta) \rightarrow (\alpha * \beta \cdot \beta)$ Exercise: Show That curry and uncurry are inverses of each other.

Characteristic (or indicator) functions

$$\begin{array}{l}
\mathcal{P}(A) \cong (A \Rightarrow [2]) \\
f : \mathcal{P}(A) \longrightarrow (A \Rightarrow [2]) \\
S \subseteq A \longmapsto f(S) : A \rightarrow [2]) \\
S \subseteq A \longmapsto f(S) : A \rightarrow [2]) \\
d \downarrow f(S)(A) = \begin{cases} 0 & a \notin S \\ 1 & a \in S \end{cases} \\
g : (A \Rightarrow [2]) \longrightarrow \mathcal{P}(A) \\
A \rightarrow [2] \longmapsto g(h) = \begin{cases} a \in A \mid h(a) = 1 \end{cases}
\end{array}$$

 $([m]\times[n] \Rightarrow [2]) \cong P([m]\times[n])$ Ezzple Rel (Em], [n]). boolean (m×n)-matrices.

Finite cardinality

Definition 136 A set A is said to be finite whenever $A \cong [n]$ for some $n \in \mathbb{N}$, in which case we write #A = n.

Theorem 137 For all $m, n \in \mathbb{N}$,

- 1. $\mathcal{P}([n]) \cong [2^n]$
- 2. $[m] \times [n] \cong [m \cdot n]$
- 3. $[m] \uplus [n] \cong [m+n]$
- 4. $([m] \Rightarrow [n]) \cong [(n+1)^m]$
- 5. $([m] \Rightarrow [n]) \cong [n^m]$
- **6.** $Bij([n], [n]) \cong [n!]$

For min Eas (i) $[m] \times [n] \cong [m \cdot n]$ $(\ddot{i}i)$ $[m] \forall [n] \cong [m+n]$

(i) Consider $(m) \times (n) \longrightarrow (m \cdot n)$ $(q,r) \longrightarrow q \cdot n + r$ and show it is a bijection

(ii) Consider $[m](t(n)) \longrightarrow [m+n]$ $(0,i) \longmapsto i$ $(1,j) \mapsto mtj$ and show it is a bijection.

 $\forall m \in \mathbb{N}. \forall n \in \mathbb{N}. ([m] \Rightarrow [n]) \cong [m^{n}]$ By note of ion: $m=0: ([0]=)[n]) \cong [n^0] = [1]$ (x°=1) 2 There is a unique fuction from Ø to any other set : nome by The empty relation. $[k] =)[n] \cong [n^k]$ m=k+1. $[Rfi]=(n) \stackrel{?}{\cong} [n^{k+1}]$ R7P

Infinity axiom

There is an infinite set, containing \emptyset and closed under successor.

Bijections

Proposition 138 For a function $f : A \rightarrow B$, the following are equivalent.

1. f is bijective.

2. $\forall b \in B. \exists ! a \in A. f(a) = b.$ 3. $(\forall b \in B. \exists a \in A. f(a) = b)$ \land $(\forall a_1, a_2 \in A. f(a_1) = f(a_2) \implies a_1 = a_2)$ might $(\forall a_1, a_2 \in A. f(a_1) = f(a_2) \implies a_1 = a_2)$

Surjections

Definition 139 A function $f : A \to B$ is said to be surjective, or a surjection, and indicated $f : A \twoheadrightarrow B$ whenever

 $\forall b \in B. \exists a \in A. f(a) = b$.

Theorem 140 The identity function is a surjection, and the composition of surjections yields a surjection.

The set of surjections from A to B is denoted

Sur(A, B)

and we thus have

 $\mathrm{Bij}(A,B)\subseteq \mathrm{Sur}(A,B)\subseteq \mathrm{Fun}(A,B)\subseteq \mathrm{Fun}(A,B)\subseteq \mathrm{Rel}(A,B)$.

Enumerability

Definition 142

- A set A is said to be <u>enumerable</u> whenever there exists a surjection N ^e→ A, referred to as an <u>enumeration</u>.
- 2. A countable set is one that is either empty or enumerable.

$$e(0), e(1), e(2), \dots, e(n), \dots$$
 nEN

Examples:

1. A bijective enumeration of \mathbb{Z} .

 $\mathcal{N} \times \mathcal{N} \xrightarrow{=} \mathcal{N}^{+} \xrightarrow{=} \mathcal{N}$ $(m, n) \xrightarrow{=} 2^{m} \cdot (2n+1)$ 2. A bijective enumeration of $\mathbb{N} \times \mathbb{N}$.

Proposition 143 Every non-empty subset of an enumerable set is enumerable.

PROOF:

N - A $e'(n) = \begin{cases} e(n) &, e(n) \in S \\ a &, tw \end{cases}$

Countability

Proposition 144

- 1. \mathbb{N} , \mathbb{Z} , \mathbb{Q} are countable sets.
- 2. The product and disjoint union of countable sets is countable.
- 3. Every finite set is countable.
- 4. Every subset of a countable set is countable.

Proposition: The product of enumerable sets is enumerable.

N= A. IN ->> NXN->> AXXA2 $(n,m) \mapsto (\mathcal{C}_1(n), \mathcal{C}_2(m))$

